RESUMEN
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Asunto(s)
Benzofuranos , Nucléolo Celular , Microscopía por Crioelectrón , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Benzofuranos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Líquenes/metabolismoRESUMEN
Ribosomes across species contain subsets of zinc finger proteins that play structural roles by binding to rRNA. While the majority of these zinc fingers belong to the C2-C2 type, the large subunit protein L36 in bacteria and mitochondria exhibits an atypical C2-CH motif. To comprehend the contribution of each coordinating residue in S. cerevisiae bL36m to mitoribosome assembly and function, we engineered and characterized strains carrying single and double mutations in the zinc coordinating residues. Our findings reveal that although all four residues markedly influence protein stability, C to A mutations in C66 and/or C69 have a more pronounced effect compared to those at C82 and H88. Importantly, protein stability directly correlates with the assembly and function of the mitoribosome and the growth rate of yeast in respiratory conditions. Mass spectrometry analysis of large subunit particles indicates that strains deleted for bL36m or expressing mutant variants have defective assembly of the L7/L12 stalk base, limiting their functional competence. Furthermore, we employed a synthetic bL36m protein collection, including both wild-type and mutant proteins, to elucidate their ability to bind zinc. Our data indicate that mutations in C82 and, particularly, H88 allow for some zinc binding albeit inefficient or unstable, explaining the residual accumulation and activity in mitochondria of bL36m variants carrying mutations in these residues. In conclusion, stable zinc binding by bL36m is essential for optimal mitoribosome assembly and function. MS data are available via ProteomeXchange with identifierPXD046465.
Asunto(s)
Ribosomas Mitocondriales , Saccharomyces cerevisiae , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dedos de Zinc/genética , Subunidades Ribosómicas Grandes/genética , Zinc/metabolismoRESUMEN
Ribosomal RNA modifications are introduced by specific enzymes during ribosome assembly in bacteria. Deletion of individual modification enzymes has a minor effect on bacterial growth, ribosome biogenesis, and translation, which has complicated the definition of the function of the enzymes and their products. We have constructed an Escherichia coli strain lacking 10 genes encoding enzymes that modify 23S rRNA around the peptidyl-transferase center. This strain exhibits severely compromised growth and ribosome assembly, especially at lower temperatures. Re-introduction of the individual modification enzymes allows for the definition of their functions. The results demonstrate that in addition to previously known RlmE, also RlmB, RlmKL, RlmN and RluC facilitate large ribosome subunit assembly. RlmB and RlmKL have functions in ribosome assembly independent of their modification activities. While the assembly stage specificity of rRNA modification enzymes is well established, this study demonstrates that there is a mutual interdependence between the rRNA modification process and large ribosome subunit assembly.
Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , ARN Ribosómico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Grandes/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/genética , Ribosomas/metabolismo , Ribosomas/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/químicaRESUMEN
BACKGROUND: NOL12 5'-3' exoribonucleases, conserved among eukaryotes, play important roles in pre-rRNA processing, ribosome assembly and export. The most well-described yeast counterpart, Rrp17, is required for maturation of 5.8 and 25S rRNAs, whereas human hNOL12 is crucial for the separation of the large (LSU) and small (SSU) ribosome subunit rRNA precursors. RESULTS: In this study we demonstrate that plant AtNOL12 is also involved in rRNA biogenesis, specifically in the processing of the LSU rRNA precursor, 27S pre-rRNA. Importantly, the absence of AtNOL12 alters the expression of many ribosomal protein and ribosome biogenesis genes. These changes could potentially exacerbate rRNA biogenesis defects, or, conversely, they might stem from the disturbed ribosome assembly caused by delayed pre-rRNA processing. Moreover, exposure of the nol12 mutant to stress factors, including heat and pathogen Pseudomonas syringae, enhances the observed molecular phenotypes, linking pre-rRNA processing to stress response pathways. The aberrant rRNA processing, dependent on AtNOL12, could impact ribosome function, as suggested by improved mutant resistance to ribosome-targeting antibiotics. CONCLUSION: Despite extensive studies, the pre-rRNA processing pathway in plants remains insufficiently characterized. Our investigation reveals the involvement of AtNOL12 in the maturation of rRNA precursors, correlating this process to stress response in Arabidopsis. These findings contribute to a more comprehensive understanding of plant ribosome biogenesis.
Asunto(s)
Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Procesamiento Postranscripcional del ARN , Subunidades Ribosómicas Grandes/metabolismo , Plantas/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
Large ribosomal subunit precursors (pre-LSUs) are primarily synthesized in the nucleolus. At an undetermined step in their assembly, they are released into the nucleoplasm. Structural models of yeast pre-LSUs at various stages of assembly have been collected using cryo-EM. However, which cryo-EM model is closest to the final nucleolar intermediate of the LSU has yet to be determined. To elucidate the mechanisms of the release of pre-LSUs from the nucleolus, we assayed effects of depleting or knocking out two yeast ribosome biogenesis factors (RiBi factors), Puf6 and Nog2, and two ribosomal proteins, uL2 and eL43. These proteins function during or stabilize onto pre-LSUs between the late nucleolar stages to early nucleoplasmic stages of ribosome biogenesis. By characterizing the phenotype of these four mutants, we determined that a particle that is intermediate between the cryo-EM model State NE1 and State NE2 likely represents the final nucleolar assembly intermediate of the LSU. We conclude that the release of the RiBi factors Nip7, Nop2 and Spb1 and the subsequent stabilization of rRNA domains IV and V may be key triggers for the release of pre-LSUs from the nucleolus.
Asunto(s)
Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Ribosome biogenesis is one of the biggest consumers of cellular energy. More than 20 genetic diseases (ribosomopathies) and multiple cancers arise from defects in the production of the 40S (SSU) and 60S (LSU) ribosomal subunits. Defects in the production of either the SSU or LSU result in p53 induction through the accumulation of the 5S RNP, an LSU assembly intermediate. While the mechanism is understood for the LSU, it is still unclear how SSU production defects induce p53 through the 5S RNP since the production of the two subunits is believed to be uncoupled. Here, we examined the response to SSU production defects to understand how this leads to the activation of p53 via the 5S RNP. We found that p53 activation occurs rapidly after SSU production is blocked, prior to changes in mature ribosomal RNA (rRNA) levels but correlated with early, middle and late SSU pre-rRNA processing defects. Furthermore, both nucleolar/nuclear LSU maturation, in particular late stages in 5.8S rRNA processing, and pre-LSU export were affected by SSU production defects. We have therefore uncovered a novel connection between the SSU and LSU production pathways in human cells, which explains how p53 is induced in response to SSU production defects.
Asunto(s)
Subunidades Ribosómicas Grandes , Subunidades Ribosómicas Pequeñas , Proteína p53 Supresora de Tumor , Humanos , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro. RNA tags in the Escherichia coli 50S subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild-type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.
Asunto(s)
Escherichia coli , ARN Ribosómico , ARN Ribosómico/genética , ARN Ribosómico/análisis , Escherichia coli/genética , Ribosomas/genética , Ribosomas/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/química , Subunidades Ribosómicas Grandes , ARN Bacteriano/genética , ARN Bacteriano/química , Proteínas RibosómicasRESUMEN
During transcription of eukaryotic ribosomal DNA in the nucleolus, assembly checkpoints exist that guarantee the formation of stable precursors of small and large ribosomal subunits. While the formation of an early large subunit assembly checkpoint precedes the separation of small and large subunit maturation, its mechanism of action and function remain unknown. Here, we report the cryo-electron microscopy structure of the yeast co-transcriptional large ribosomal subunit assembly intermediate that serves as a checkpoint. The structure provides the mechanistic basis for how quality-control pathways are established through co-transcriptional ribosome assembly factors, that structurally interrogate, remodel and, together with ribosomal proteins, cooperatively stabilize correctly folded pre-ribosomal RNA. Our findings thus provide a molecular explanation for quality control during eukaryotic ribosome assembly in the nucleolus.
Asunto(s)
ARN Ribosómico , Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismoRESUMEN
Understanding the assembly principles of biological macromolecular complexes remains a significant challenge, due to the complexity of the systems and the difficulties in developing experimental approaches. As a ribonucleoprotein complex, the ribosome serves as a model system for the profiling of macromolecular complex assembly. In this work, we report an ensemble of large ribosomal subunit intermediate structures that accumulate during synthesis in a near-physiological and co-transcriptional in vitro reconstitution system. Thirteen pre-50S intermediate maps covering the entire assembly process were resolved using cryo-EM single-particle analysis and heterogeneous subclassification. Segmentation of the set of density maps reveals that the 50S ribosome intermediates assemble based on fourteen cooperative assembly blocks, including the smallest assembly core reported to date, which is composed of a 600-nucleotide-long folded rRNA and three ribosomal proteins. The cooperative blocks assemble onto the assembly core following defined dependencies, revealing the parallel pathways at both early and late assembly stages of the 50S subunit.
Asunto(s)
ARN Ribosómico , Ribosomas , Ribosomas/genética , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismoRESUMEN
A common aspect of ribosome assembly, conserved across all domains of life, is the establishment of connections between the 5' and 3' ends of the large subunit (LSU) ribosomal RNA (rRNA) to initiate rRNA domain compaction and subunit assembly. We discuss the diverse mechanisms employed in different organisms to accomplish this important event.
Asunto(s)
ARN Ribosómico , Proteínas de Saccharomyces cerevisiae , Subunidades Ribosómicas Grandes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ribosómicas/genéticaRESUMEN
Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2'-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis.
Asunto(s)
Proteínas de Drosophila/metabolismo , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Metilación , Metiltransferasas/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/metabolismoRESUMEN
BACKGROUND: Crown and root rot is the most important and destructive strawberry diseases in Korea as it causes substantial economic loss. In August 2020, a severe outbreak of crown and root rot on strawberries (Fragaria × ananassa Duch.) was observed in the greenhouse at Sangju, South Korea. Infected plantlets displayed browning rot within the crown and root, stunted growth, and poor rooting. METHODS AND RESULTS: Thirty fungal isolates were obtained from the affected plantlet. Isolates were identified based on morphological characteristics and pathogenicity test as well as sequence data obtained from internal transcribed spacer, large subunit ribosomal ribonucleic acid, translation elongation factor, and RNA polymerase II-second largest subunit. Results showed that the crown and root rot of strawberry in Korea was caused by three distinct fungal species: Fusarium oxysporum f. sp. fragariae, F. solani, and Plectosphaerella cucumerina. To the best of our knowledge, F. solani, and P. cucumerina are reported for the first time as the causal agents of the crown and root rot of strawberry in South Korea. Pathogenicity tests confirmed that these isolates are pathogenic to strawberry. CONCLUSIONS: Understanding the composition and biology of the pathogen population will be helpful to provide effective control strategies for the disease.
Asunto(s)
ADN de Hongos/genética , Fragaria/microbiología , Hongos/clasificación , Tipificación de Secuencias Multilocus/métodos , Enfermedades de las Plantas/microbiología , ADN Intergénico/genética , Brotes de Enfermedades , Hongos/genética , Hongos/aislamiento & purificación , Hongos/patogenicidad , Filogenia , Raíces de Plantas/microbiología , ARN Polimerasa II/genética , República de Corea , Subunidades Ribosómicas Grandes/genéticaRESUMEN
Mycorrhizal colonization of roots is traditionally evaluated by empirical methods, such as root microscopy. We compared this method with data from using a real time PCR technique, and determined the correlation between methods, indicating particularities of a promising system for a quick and accurate molecular diagnostic of arbuscular mycorrhization.
Asunto(s)
Hongos/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo , Brachiaria/microbiología , Crotalaria/microbiología , Hongos/genética , Raíces de Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Subunidades Ribosómicas Grandes/genética , Microbiología del SueloRESUMEN
Os ribossomos são complexos ribonucleoproteicos conservados formados por duas subunidades assimétricas (40S e 60S em eucariotos) responsáveis pela tradução da informação genética e catálise da síntese proteica. A montagem destes complexos em eucariotos é mais bem descrita em S. cerevisiae, constituindo um processo celular energeticamente dispendioso e com múltiplas etapas. Ela tem origem no nucléolo com a transcrição do pré-rRNA 35S e requer o recrutamento hierárquico e transiente de cerca de 200 fatores de montagem para garantir a formação correta dos centros funcionais aptos à tradução. Neste processo, que se estende no núcleo e citoplasma, 79 proteínas ribossomais associam-se gradativamente à medida que o prérRNA é dobrado, modificado e processado. O processamento do pré-rRNA 35S consiste na remoção progressiva de espaçadores internos (ITS1 e ITS2) e externos (5ETS e 3ETS), que separam e flanqueiam os rRNAs maduros componentes de ambas subunidades ribossomais. A clivagem do ITS1 separa as vias de maturação do pré-60S e do pré-40S. O ITS2, que, em associação a fatores de montagem, forma uma estrutura denominada ITS2-foot, é o último espaçador do pré-60S a ser removido. A composição do ITS2-foot permanece inalterada no nucléolo até a transição entre o estado E nucleolar e a formação da partícula Nog2 nuclear. Nesta etapa, a liberação do fator Erb1 permite o recrutamento do fator de montagem conservado e essencial Nop53. Na base do ITS2-foot, Nop53 recruta o exossomo via RNA helicase Mtr4 para a clivagem 3-5 exonucleolítica de parte do ITS2 levando à desmontagem do ITS2-foot. O fato de Nop53 atuar como ponte entre dois grandes complexos e apresentar uma estrutura flexível e estendida nos levou a aprofundar a caracterização de seu papel durante a maturação do pré60S. Neste trabalho, usando análise proteômica quantitativa label-free baseada em espectrometria de massas, caracterizou-se o interactoma de Nop53, e avaliou-se o impacto da depleção de Nop53 no interactoma da subunidade catalítica do exossomo Rrp6 e na composição de pré-ribossomos representativos de quase todas as etapas de maturação do pré-60S. Em paralelo, foram caracterizados mutantes truncados de Nop53 e avaliada por pull-down a interação de Nop53 com componentes do exossomo. Os resultados obtidos mostraram que Nop53 é capaz de interagir com o cofator do exossomo Mpp6, sugerindo pontos adicionais de interação durante o recrutamento do exossomo ao pré-60S. A análise do interactoma de Rrp6 mostrou uma associação precoce do exossomo aos intermediários pré-ribossomais nucleolares mais iniciais, anteriores aos previamente descritos. Mudanças na composição dos intermediários pré-60S revelaram que a depleção de Nop53 afeta a transição entre o estado E e a partícula Nog2, afetando eventos tardios de maturação como o recrutamento de Yvh1. Comparando-se o efeito da depleção de Nop53 com o de mutantes nop53 desprovidos da região de recrutamento do exossomo, obtivemos evidências bioquímicas do papel estrutural de Nop53 na base do ITS2- foot. Em conjunto, estas observações, à luz de estruturas de intermediários pré-ribossomais recentemente descritas, nos permitiram concluir que o recrutamento de Nop53 ao pré-60S contribui para a estabilização de eventos de remodelamento do rRNA que antecedem a formação da partícula Nog2
Ribosomes are conserved ribonucleoprotein complexes formed by two asymmetric subunits (the 40S and the 60S in eukaryotes) responsible for translating the genetic information and catalyzing protein synthesis. The assembly of these complexes in eukaryotes is best described in S. cerevisiae. It is an energetically demanding, multi-step cellular process, that starts in the nucleolus with the transcription of the 35S pre-rRNA. It requires the hierarchical and transient recruitment of about 200 assembly factors to ensure the correct formation of the functional centers suitable for translation. In this process, which extends into the nucleus and cytoplasm, 79 ribosomal proteins gradually associate as the pre-rRNA is folded, modified, and processed. The 35S pre-rRNA processing happens with the progressive removal of internal (ITS1 and ITS2) and external (5'ETS and 3'ETS) transcribed spacers, which separate and flank the mature rRNA components of both ribosomal subunits. The cleavage at the ITS1 separates the pre-60S and pre40S maturation pathways. The ITS2, which in association with assembly factors constitutes a structure called ITS2-foot, is the last pre-60S spacer to be removed. The composition of the ITS2- foot remains unchanged in the nucleolus until the transition between the nucleolar state E and the nuclear Nog2 particle. At this stage, the release of Erb1 allows the recruitment of the conserved and essential assembly factor Nop53. At the base of the ITS2-foot, Nop53 recruits the exosome via the RNA helicase Mtr4 for the ITS2 3'-5' exonucleolytic cleavage leading to the ITS2-foot disassembly. The fact that Nop53 acts as a bridge between these two large complexes and exhibits a flexible and extended structure led us to further characterize its role in the pre-60S maturation. In this work, using mass spectrometry-based label-free quantitative proteomics, we characterized the interactome of Nop53, as well as the impact of the depletion of Nop53 on the interactome of the exosome catalytic subunit Rrp6 and on the composition of pre-ribosomes representative of almost all pre-60S maturation stages. In parallel, we characterized nop53 truncated mutants and evaluated the interaction of Nop53 with exosome components by pulldown assays. The results showed that Nop53 can interact with the exosome cofactor Mpp6, suggesting the contribution of additional points of interaction during the exosome recruitment to the pre-60S. The analysis of the Rrp6 interactome revealed an early association of the exosome with pre-ribosomal intermediates at very early nucleolar stages, before those previously described. Changes in the composition of pre-60S intermediates revealed that Nop53 depletion affects the transition between the state E and the Nog2 particle, affecting late pre-60S maturation events, such as the Yvh1 recruitment. Comparing the effect of Nop53 depletion with that of nop53 mutants lacking the exosome interacting region, we obtained biochemical evidence of the structural role of Nop53 at the base of the ITS2-foot. Altogether, and in light of recently described structures of pre-ribosomal intermediates, these observations allowed us to conclude that the recruitment of Nop53 to the pre-60S contributes to the stabilization of rRNA remodeling events that precede the formation of the Nog2 particle
Asunto(s)
Saccharomyces cerevisiae/clasificación , Subunidades Ribosómicas/química , Ribonucleoproteínas , Proteínas Ribosómicas , Espectrometría de Masas/métodos , Nucléolo Celular , Subunidades Ribosómicas Grandes , EucariontesRESUMEN
In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.
Asunto(s)
Proteínas Fúngicas/metabolismo , Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Pliegue de Proteína , Subunidades Ribosómicas Grandes/metabolismoRESUMEN
Assembly of the mitoribosome is largely enigmatic and involves numerous assembly factors. Little is known about their function and the architectural transitions of the pre-ribosomal intermediates. Here, we solve cryo-EM structures of the human 39S large subunit pre-ribosomes, representing five distinct late states. Besides the MALSU1 complex used as bait for affinity purification, we identify several assembly factors, including the DDX28 helicase, MRM3, GTPBP10 and the NSUN4-mTERF4 complex, all of which keep the 16S rRNA in immature conformations. The late transitions mainly involve rRNA domains IV and V, which form the central protuberance, the intersubunit side and the peptidyltransferase center of the 39S subunit. Unexpectedly, we find deacylated tRNA in the ribosomal E-site, suggesting a role in 39S assembly. Taken together, our study provides an architectural inventory of the distinct late assembly phase of the human 39S mitoribosome.
Asunto(s)
Ribosomas Mitocondriales/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Línea Celular , Codón sin Sentido/genética , Microscopía por Crioelectrón , ARN Helicasas DEAD-box , Humanos , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/ultraestructura , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/ultraestructura , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes/ultraestructuraRESUMEN
Mitochondrial ribosomes (mitoribosomes) synthesize a critical set of proteins essential for oxidative phosphorylation. Therefore, mitoribosomal function is vital to the cellular energy supply. Mitoribosome biogenesis follows distinct molecular pathways that remain poorly understood. Here, we determine the cryo-EM structures of mitoribosomes isolated from human cell lines with either depleted or overexpressed mitoribosome assembly factor GTPBP5, allowing us to capture consecutive steps during mitoribosomal large subunit (mt-LSU) biogenesis. Our structures provide essential insights into the last steps of 16S rRNA folding, methylation and peptidyl transferase centre (PTC) completion, which require the coordinated action of nine assembly factors. We show that mammalian-specific MTERF4 contributes to the folding of 16S rRNA, allowing 16 S rRNA methylation by MRM2, while GTPBP5 and NSUN4 promote fine-tuning rRNA rearrangements leading to PTC formation. Moreover, our data reveal an unexpected involvement of the elongation factor mtEF-Tu in mt-LSU assembly, where mtEF-Tu interacts with GTPBP5, similar to its interaction with tRNA during translational elongation.
Asunto(s)
Ribosomas Mitocondriales/química , Subunidades Ribosómicas Grandes/química , Línea Celular , Microscopía por Crioelectrón , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Unión Proteica , Pliegue del ARN , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.
Asunto(s)
Proteínas de Unión al GTP/química , Ribosomas Mitocondriales/química , Proteínas de Unión al GTP Monoméricas/química , Microscopía por Crioelectrón , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Biogénesis de Organelos , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Pliegue de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
Mitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors. We discover that the NSUN4-MTERF4 dimer plays a critical role in the process by stabilizing the 16S rRNA in a conformation that exposes the functionally important regions of rRNA for modification by the MRM2 methyltransferase and quality control interactions with the conserved mitochondrial GTPase MTG2 that contacts the sarcin-ricin loop and the immature active site. The successive action of these factors leads to the formation of the peptidyl transferase active site of the mitoribosome and the folding of the surrounding rRNA regions responsible for interactions with tRNAs and the small ribosomal subunit.
Asunto(s)
Ribosomas Mitocondriales/química , Peptidil Transferasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Conformación de Ácido Nucleico , Peptidil Transferasas/metabolismo , Multimerización de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/metabolismoRESUMEN
The anaerobic gut fungi (AGF; phylum Neocallimastigomycota) reside in the alimentary tracts of herbivores. Multiple novel, yet-uncultured AGF taxa have recently been identified in culture-independent diversity surveys. Here, we report on the isolation and characterization of the first representative of the RH5 lineage from faecal samples of a wild blackbuck (Indian Antelope, Antilope cervicapra) from Sutton County, Texas, USA. The isolates displayed medium sized (2-4 mm) compact circular colonies on agar roll tubes and thin loose biofilm-like growth in liquid medium. Microscopic examination revealed monoflagellated zoospores and polycentric thalli with highly branched nucleated filamentous rhizomycelium, a growth pattern encountered in a minority of described AGF genera so far. The obtained isolates are characterized by formation of spherical vesicles at the hyphal tips from which multiple sporangia formed either directly on the spherical vesicles or at the end of sporangiophores. Phylogenetic analysis using the D1/D2 regions of the large ribosomal subunit (D1/D2 LSU) and the ribosomal internal transcribed spacer 1 (ITS1) revealed sequence similarities of 93.5 and 81.3%, respectively, to the closest cultured relatives (Orpinomyces joyonii strain D3A (D1/D2 LSU) and Joblinomyces apicalis strain GFH681 (ITS1). Substrate utilization experiments using the type strain (BB-3T) demonstrated growth capabilities on a wide range of mono-, oligo- and polysaccharides, including glucose, xylose, mannose, fructose, cellobiose, sucrose, maltose, trehalose, lactose, cellulose, xylan, starch and raffinose. We propose accommodating these novel isolates in a new genus and species, for which the name Paucimyces polynucleatus gen. nov., sp. nov. is proposed.