Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.849
Filtrar
1.
Commun Biol ; 7(1): 1303, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414992

RESUMEN

Endothelin type B receptor (ETBR) plays a crucial role in regulating blood pressure and humoral homeostasis, making it an important therapeutic target for related diseases. ETBR activation by the endogenous peptide hormones endothelin (ET)-1-3 stimulates several signaling pathways, including Gs, Gi/o, Gq/11, G12/13, and ß-arrestin. Although the conserved NPxxY motif in transmembrane helix 7 (TM7) is important during GPCR activation, ETBR possesses the lesser known NPxxL motif. In this study, we present the cryo-EM structure of the ETBR-Gi complex, complemented by MD simulations and functional studies. These investigations reveal an unusual movement of TM7 to the intracellular side during ETBR activation and the essential roles of the diverse NPxxL motif in stabilizing the active conformation of ETBR and organizing the assembly of the binding pocket for the α5 helix of Gi protein. These findings enhance our understanding of the interactions between GPCRs and G proteins, thereby advancing the development of therapeutic strategies.


Asunto(s)
Secuencias de Aminoácidos , Receptor de Endotelina B , Receptor de Endotelina B/metabolismo , Receptor de Endotelina B/química , Humanos , Simulación de Dinámica Molecular , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Conformación Proteica , Células HEK293 , Unión Proteica
2.
Nat Commun ; 15(1): 8284, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333070

RESUMEN

Delta opioid receptor (δOR) plays a pivotal role in modulating human sensation and emotion. It is an attractive target for drug discovery since, unlike Mu opioid receptor, it is associated with low risk of drug dependence. Despite its potential applications, the pharmacological properties of δOR, including the mechanisms of activation by small-molecule agonists and the complex signaling pathways it engages, as well as their relation to the potential side effects, remain poorly understood. In this study, we use cryo-electron microscopy (cryo-EM) to determine the structure of the δOR-Gi complex when bound to a small-molecule agonist (ADL5859). Moreover, we design a series of probes to examine the key receptor-ligand interaction site and identify a region involved in signaling bias. Using ADL06 as a chemical tool, we elucidate the relationship between the ß-arrestin pathway of the δOR and its biological functions, such as analgesic tolerance and convulsion activities. Notably, we discover that the ß-arrestin recruitment of δOR might be linked to reduced gastrointestinal motility. These insights enhance our understanding of δOR's structure, signaling pathways, and biological functions, paving the way for the structure-based drug discovery.


Asunto(s)
Microscopía por Crioelectrón , Receptores Opioides delta , Receptores Opioides delta/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/química , Humanos , Animales , Descubrimiento de Drogas/métodos , Células HEK293 , Transducción de Señal/efectos de los fármacos , beta-Arrestinas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Ratones , Ligandos , Unión Proteica , Masculino , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Benzamidas/farmacología , Benzamidas/química , Piperazinas
3.
Cell Death Dis ; 15(9): 699, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349432

RESUMEN

The increasing mortality rate of pancreatic cancer globally necessitates the urgent identification for novel therapeutic targets. This study investigated the expression, functions, and mechanistic insight of G protein inhibitory subunit 3 (Gαi3) in pancreatic cancer. Bioinformatics analyses reveal that Gαi3 is overexpressed in human pancreatic cancer, correlating with poor prognosis, higher tumor grade, and advanced classification. Elevated Gαi3 levels are also confirmed in human pancreatic cancer tissues and primary/immortalized cancer cells. Gαi3 shRNA or knockout (KO) significantly reduced cell viability, proliferation, cell cycle progression, and mobility in primary/immortalized pancreatic cancer cells. Conversely, Gαi3 overexpression enhanced pancreatic cancer cell growth. RNA-sequencing and bioinformatics analyses of Gαi3-depleted cells indicated Gαi3's role in modulating the Akt-mTOR and PKA-Hippo-YAP pathways. Akt-S6 phosphorylation was decreased in Gαi3-depleted cells, but was increased with Gαi3 overexpression. Additionally, Gαi3 depletion elevated PKA activity and activated the Hippo pathway kinase LATS1/2, leading to YAP/TAZ inactivation, while Gαi3 overexpression exerted the opposite effects. There is an increased binding between Gαi3 promoter and the transcription factor TCF7L2 in pancreatic cancer tissues and cells. Gαi3 expression was significantly decreased following TCF7L2 silencing, but increased with TCF7L2 overexpression. In vivo, intratumoral injection of Gαi3 shRNA-expressing adeno-associated virus significantly inhibited subcutaneous pancreatic cancer xenografts growth in nude mice. A significant growth reduction was also observed in xenografts from Gαi3 knockout pancreatic cancer cells. Akt-mTOR inactivation and increased PKA activity coupled with YAP/TAZ inactivation were also detected in xenograft tumors upon Gαi3 depletion. Furthermore, bioinformatic analysis and multiplex immunohistochemistry (mIHC) staining on pancreatic cancer tissue microarrays showed a reduced proportion of M1-type macrophages and an increase in PD-L1 positive cells in Gαi3-high pancreatic cancer tissues. Collectively, these findings highlight Gαi3's critical role in promoting pancreatic cancer cell growth, potentially through the modulation of the Akt-mTOR and PKA-Hippo-YAP pathways and its influence on the immune landscape.


Asunto(s)
Proliferación Celular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ratones Desnudos , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino
4.
Proc Natl Acad Sci U S A ; 121(36): e2411846121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190348

RESUMEN

Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.


Asunto(s)
Caenorhabditis elegans , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Optogenética , Proteínas RGS , Transducción de Señal , Pez Cebra , Animales , Optogenética/métodos , Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Proteínas RGS/metabolismo , Proteínas RGS/genética , Pez Cebra/embriología , Neuronas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Dominios Proteicos , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Drosophila/metabolismo
5.
Nat Commun ; 15(1): 6643, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103320

RESUMEN

Many neurotransmitter receptors activate G proteins through exchange of GDP for GTP. The intermediate nucleotide-free state has eluded characterization, due largely to its inherent instability. Here we characterize a G protein variant associated with a rare neurological disorder in humans. GαoK46E has a charge reversal that clashes with the phosphate groups of GDP and GTP. As anticipated, the purified protein binds poorly to guanine nucleotides yet retains wild-type affinity for G protein ßγ subunits. In cells with physiological concentrations of nucleotide, GαoK46E forms a stable complex with receptors and Gßγ, impeding effector activation. Further, we demonstrate that the mutant can be easily purified in complex with dopamine-bound D2 receptors, and use cryo-electron microscopy to determine the structure, including both domains of Gαo, without nucleotide or stabilizing nanobodies. These findings reveal the molecular basis for the first committed step of G protein activation, establish a mechanistic basis for a neurological disorder, provide a simplified strategy to determine receptor-G protein structures, and a method to detect high affinity agonist binding in cells.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Difosfato , Guanosina Trifosfato , Mutación , Humanos , Células HEK293 , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Unión Proteica , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética
6.
J Phys Chem Lett ; 15(30): 7652-7658, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037351

RESUMEN

Oligomerization is one of the important mechanisms for G protein-coupled receptors (GPCRs) to modulate their activity in signal transduction. However, details of how and why the oligomerization of GPCRs regulates their functions under physiological conditions remain largely unknown. Here, using single-molecule photobleaching technology, we show that chemokine ligand 5 (CCL5) and chemokine ligand 8 (CCL8) are similar to the previously reported chemokine ligand 11 (CCL11) and chemokine ligand 24 (CCL24), which can regulate the oligomerization of chemokine receptor 3 (CCR3). Our results further demonstrate that downstream proteins, ß-arrestin 2 and Gi protein complex, on the CCR3 signal transduction pathway, can inversely regulate the oligomeric states of CCR3 induced by its binding ligands. This unexpected discovery suggests complex relationships between the oligomeric behaviors of CCR3 and the components of ligands-CCR3-downstream proteins, reflecting the potentially functional impact of the oligomerization on the multiple activation pathways of GPCR, such as biased activation.


Asunto(s)
Multimerización de Proteína , Receptores CCR3 , Transducción de Señal , Receptores CCR3/metabolismo , Receptores CCR3/química , Humanos , Ligandos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Arrestina beta 2/metabolismo , Arrestina beta 2/química
7.
Structure ; 32(10): 1632-1639.e4, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39043181

RESUMEN

The endothelin receptor type B (ETB) exhibits promiscuous coupling with various heterotrimeric G protein subtypes including Gs, Gi/o, Gq/11, and G12/13. Recent fluorescence and structural studies have raised questions regarding the coupling efficiencies and determinants of these G protein subtypes. Herein, by utilizing an integrative approach, combining hydrogen/deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cellular systems, we investigated conformational changes of Gs, Gi, and Gq triggered by ETB activation. ETB coupled to Gi and Gq but not with Gs. We underscored the critical roles of specific regions, including the C terminus of Gα and intracellular loop 2 (ICL2) of ETB in ETB-Gi1 or ETB-Gq coupling. Although The C terminus of Gα is essential for ETB-Gi1 and ETB-Gq coupling, ETB ICL2 influences Gq-coupling but not Gi1-coupling. Our results suggest a differential coupling efficiency of ETB with Gs, Gi1, and Gq, accompanied by distinct conformational changes in G proteins upon ETB-induced activation.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Unión Proteica , Receptor de Endotelina B , Humanos , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Células HEK293 , Modelos Moleculares , Conformación Proteica , Receptor de Endotelina B/metabolismo , Receptor de Endotelina B/química
8.
Sci Rep ; 14(1): 17097, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048611

RESUMEN

GNAO1 encodes G protein subunit alpha O1 (Gαo). Pathogenic variations in GNAO1 cause developmental delay, intractable seizures, and progressive involuntary movements from early infancy. Because the functional role of GNAO1 in the developing brain remains unclear, therapeutic strategies are still unestablished for patients presenting with GNAO1-associated encephalopathy. We herein report that siRNA-mediated depletion of Gnao1 perturbs the expression of transcripts associated with Rho GTPase signaling in Neuro2a cells. Consistently, siRNA treatment hampered neurite outgrowth and extension. Growth cone formation was markedly disrupted in monolayer neurons differentiated from iPSCs from a patient with a pathogenic variant of Gαo (p.G203R). This variant disabled neuro-spherical assembly, acquisition of the organized structure, and polarized signals of phospho-MLC2 in cortical organoids from the patient's iPSCs. We confirmed that the Rho kinase inhibitor Y27632 restored these morphological phenotypes. Thus, Gαo determines the self-organizing process of the developing brain by regulating the Rho-associated pathway. These data suggest that Rho GTPase pathway might be an alternative target of therapy for patients with GNAO1-associated encephalopathy.


Asunto(s)
Diferenciación Celular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Células Madre Pluripotentes Inducidas , Neuronas , Transducción de Señal , Proteínas de Unión al GTP rho , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Neuronas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Ratones , Animales , Quinasas Asociadas a rho/metabolismo , Organoides/metabolismo , Amidas/farmacología , Piridinas
9.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000340

RESUMEN

Most α2-AR agonists derived from dexmedetomidine have few structural differences between them and have no selectivity for α2A/2B-AR or Gi/Gs, which can lead to side effects in drugs. To obtain novel and potent α2A-AR agonists, we performed virtual screening for human α2A-AR and α2B-AR to find α2A-AR agonists with higher selectivity. Compound P300-2342 and its three analogs significantly decreased the locomotor activity of mice (p < 0.05). Furthermore, P300-2342 and its three analogs inhibited the binding of [3H] Rauwolscine with IC50 values of 7.72 ± 0.76 and 12.23 ± 0.11 µM, respectively, to α2A-AR and α2B-AR. In α2A-AR-HEK293 cells, P300-2342 decreased forskolin-stimulated cAMP production without increasing cAMP production, which indicated that P300-2342 activated α2A-AR with coupling to the Gαi/o pathway but without Gαs coupling. P300-2342 exhibited no agonist but slight antagonist activities in α2B-AR. Similar results were obtained for the analogs of P300-2342. The docking results showed that P300-2342 formed π-hydrogen bonds with Y394, V114 in α2A-AR, and V93 in α2B-AR. Three analogs of P300-2342 formed several π-hydrogen bonds with V114, Y196, F390 in α2A-AR, and V93 in α2B-AR. We believe that these molecules can serve as leads for the further optimization of α2A-AR agonists with potentially few side effects.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2 , Simulación del Acoplamiento Molecular , Receptores Adrenérgicos alfa 2 , Humanos , Animales , Células HEK293 , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Ratones , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , AMP Cíclico/metabolismo , Masculino , Unión Proteica
10.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063192

RESUMEN

Wool is generated by hair follicles (HFs), which are crucial in defining the length, diameter, and morphology of wool fibers. However, the regulatory mechanism of HF growth and development remains largely unknown. Dermal papilla cells (DPCs) are a specialized cell type within HFs that play a crucial role in governing the growth and development of HFs. This study aims to investigate the proliferation and induction ability of ovine DPCs to enhance our understanding of the potential regulatory mechanisms underlying ovine HF growth and development. Previous research has demonstrated that microRNA-181a (miR-181a) was differentially expressed in skin tissues with different wool phenotypes, which indicated that miR-181a might play a crucial role in wool morphogenesis. In this study, we revealed that miR-181a inhibited the proliferation and induction ability of ovine DPCs by quantitative Real-time PCR (qRT-PCR), cell counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and alkaline phosphatase staining. Then, we also confirmed G protein subunit alpha i2 (GNAI2) is a target gene of miR-181a by dual luciferase reporter assay, qRT-PCR, and Western blot, and that it could promote the proliferation and induction ability of ovine DPCs. In addition, GNAI2 could also activate the Wnt/ß-Catenin signaling pathway in ovine DPCs. This study showed that miR-181a can inhibit the proliferation and induction ability of ovine DPCs by targeting GNAI2 through the Wnt/ß-Catenin signaling pathway.


Asunto(s)
Proliferación Celular , Folículo Piloso , MicroARNs , Vía de Señalización Wnt , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ovinos , Folículo Piloso/metabolismo , Folículo Piloso/citología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Dermis/citología , Dermis/metabolismo , Células Cultivadas , Lana/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
11.
Sci Signal ; 17(839): eade8041, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833528

RESUMEN

A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gßγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gßγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Receptores CXCR4 , Transducción de Señal , Fosforilación , Humanos , Células HEK293 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales
12.
J Clin Invest ; 134(15)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874642

RESUMEN

GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G protein Gαo. Of the more than 80 pathogenic mutations, most are single amino acid substitutions spreading across the Gαo sequence. We performed extensive characterization of Gαo mutants, showing abnormal GTP uptake and hydrolysis and deficiencies in binding Gßγ and RGS19. Plasma membrane localization of Gαo was decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerged for the more severe mutants. Pathogenic mutants massively gained interaction with Ric8A and, surprisingly, Ric8B proteins, relocalizing them from cytoplasm to Golgi. Of these 2 mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/Gαo, Gαq, and Gα12/Gα13 subfamilies, and Ric8B solely responsible for Gαs/Gαolf. Ric8 mediates the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through imbalance of the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work uncovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights into other maladies caused by G protein malfunctioning and further genetic diseases.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Animales , Femenino , Humanos , Masculino , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/patología , Drosophila melanogaster , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Mutación
13.
J Phys Chem B ; 128(25): 6071-6081, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38877985

RESUMEN

The G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the Gi protein complex, and GDP release. Our findings demonstrate that the association between GPR183 and the Gi protein involves the formation of receptor-specific conformations, the gradual proximity of the Gi protein to the binding pocket, and fine adjustments of the protein conformation, ultimately leading to a stable GPR183-Gi complex characterized by a high energy barrier. The presence of Gi protein partially promotes GPR183 activation, which is consistent with the observation of GPCR constitutive activity test experiments, thus illustrating the reliability of our calculations. Moreover, our study suggests the existence of a stable partially activated state preceding complete activation, providing novel avenues for future investigations. In addition, the relevance of GPR183 for various diseases, such as colitis, the response of eosinophils to Mycobacterium tuberculosis infection, antiviral properties, and pulmonary inflammation, has been emphasized, underscoring its therapeutic potential. Consequently, understanding the activation process of GPR183 through molecular dynamic simulations offers valuable kinetic insights that can aid in the development of targeted therapies.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Conformación Proteica , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Unión Proteica , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química
14.
Nature ; 631(8020): 459-466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776963

RESUMEN

Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.


Asunto(s)
Ácidos Aristolóquicos , Colesterol , Ácido Flufenámico , Receptores Acoplados a Proteínas G , Gusto , Humanos , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacología , Sitios de Unión/efectos de los fármacos , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Microscopía por Crioelectrón , Ácido Flufenámico/química , Ácido Flufenámico/metabolismo , Ácido Flufenámico/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Gusto/efectos de los fármacos , Gusto/fisiología , Transducina/química , Transducina/metabolismo
15.
Nat Commun ; 15(1): 3544, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740791

RESUMEN

G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the µ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.


Asunto(s)
Microscopía por Crioelectrón , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/genética , Regulación Alostérica , Humanos , Unión Proteica , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células HEK293 , Ligandos , Modelos Moleculares , Conformación Proteica
16.
Nature ; 629(8011): 481-488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632411

RESUMEN

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Sensibles al Calcio , Humanos , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/química , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Sitios de Unión , Estructura Secundaria de Proteína , Especificidad por Sustrato
17.
Br J Pharmacol ; 181(15): 2676-2696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38627101

RESUMEN

BACKGROUND AND PURPOSE: Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH: Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS: Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS: This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.


Asunto(s)
Ganglios Espinales , Células Madre Pluripotentes Inducidas , Receptores Sensibles al Calcio , Transducción de Señal , Humanos , Receptores Sensibles al Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Ratones , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Nociceptores/metabolismo , Células Cultivadas , Células HEK293
18.
Nature ; 629(8011): 474-480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600384

RESUMEN

The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.


Asunto(s)
Ligandos , Conformación Proteica , Receptores Opioides mu , Humanos , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Unión Proteica , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Imagen Individual de Molécula
19.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651641

RESUMEN

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Células Ciliadas Auditivas , Morfogénesis , Animales , Ratones , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Polaridad Celular , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética
20.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581012

RESUMEN

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Asunto(s)
Adenilil Ciclasas , GTP Fosfohidrolasas , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Portadoras , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...