Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
BMC Med Genomics ; 17(1): 158, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862963

RESUMEN

BACKGROUND AND AIMS: To investigate the clinical features, ALDH5A1 gene variations, treatment, and prognosis of patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. MATERIALS AND METHODS: This retrospective study evaluated the findings in 13 Chinese patients with SSADH deficiency admitted to the Pediatric Department of Peking University First Hospital from September 2013 to September 2023. RESULTS: Thirteen patients (seven male and six female patients; two sibling sisters) had the symptoms aged from 1 month to 1 year. Their urine 4-hydroxybutyrate acid levels were elevated and were accompanied by mildly increased serum lactate levels. Brain magnetic resonance imaging (MRI) showed symmetric abnormal signals in both sides of the globus pallidus and other areas. All 13 patients had psychomotor retardation, with seven showing epileptic seizures. Among the 18 variants of the ALDH5A1 gene identified in these 13 patients, six were previously reported, while 12 were novel variants. Among the 12 novel variants, three (c.85_116del, c.206_222dup, c.762C > G) were pathogenic variants; five (c.427delA, c.515G > A, c.637C > T, c.755G > T, c.1274T > C) were likely pathogenic; and the remaining four (c.454G > C, c.479C > T, c.1480G > A, c.1501G > C) were variants of uncertain significance. The patients received drugs such as L-carnitine, vigabatrin, and taurine, along with symptomatic treatment. Their urine 4-hydroxybutyric acid levels showed variable degrees of reduction. CONCLUSIONS: A cohort of 13 cases with early-onset SSADH deficiency was analyzed. Onset of symptoms occurred from 1 month to 1 year of age. Twelve novel variants of the ALDH5A1 gene were identified.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Succionato-Semialdehído Deshidrogenasa , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Femenino , Masculino , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lactante , Estudios Retrospectivos , Pueblo Asiatico/genética , Mutación , China , Preescolar , Discapacidades del Desarrollo/genética , Imagen por Resonancia Magnética , Pueblos del Este de Asia
2.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791277

RESUMEN

Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Discapacidades del Desarrollo , Succionato-Semialdehído Deshidrogenasa , Femenino , Humanos , Masculino , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Variación Genética , Mutación , Linaje , Pliegue de Proteína , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/química , Succionato-Semialdehído Deshidrogenasa/metabolismo
3.
Stem Cell Res ; 77: 103424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677032

RESUMEN

Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD) is an ultra-rare autosomal recessive neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. Here, we report the generation and characterization of human induced pluripotent stem cells (hiPSCs) derived from fibroblasts of three unrelated SSADHD patients - one female and two males with the CRISPR-corrected isogenic controls. These individuals are clinically diagnosed and are being followed in a longitudinal clinical study.


Asunto(s)
Células Madre Pluripotentes Inducidas , Succionato-Semialdehído Deshidrogenasa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Femenino , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas , Discapacidades del Desarrollo
4.
J Inherit Metab Dis ; 47(3): 476-493, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581234

RESUMEN

Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Terapia Genética , Succionato-Semialdehído Deshidrogenasa , Transmisión Sináptica , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Terapia Genética/métodos , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Transmisión Sináptica/genética , Animales
5.
J Neurodev Disord ; 16(1): 21, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658850

RESUMEN

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Discapacidades del Desarrollo , Células Madre Pluripotentes Inducidas , Succionato-Semialdehído Deshidrogenasa , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/genética , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/metabolismo , Succionato-Semialdehído Deshidrogenasa/genética
6.
J Inherit Metab Dis ; 47(3): 447-462, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38499966

RESUMEN

The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Fenotipo , Succionato-Semialdehído Deshidrogenasa , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Niño , Masculino , Femenino , Preescolar , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lactante , Adolescente , Adulto Joven , Discapacidades del Desarrollo/genética , Trastornos del Movimiento/genética , Mutación , Hipotonía Muscular/genética
7.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452608

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Discapacidades del Desarrollo , Succionato-Semialdehído Deshidrogenasa , Succionato-Semialdehído Deshidrogenasa/deficiencia , Humanos , Succionato-Semialdehído Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Consenso , Ácido gamma-Aminobutírico/metabolismo , Guías de Práctica Clínica como Asunto
8.
Clin Neurophysiol ; 161: 52-58, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447494

RESUMEN

OBJECTIVE: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a genetic disorder resulting in abnormal regulation of γ-aminobutyric acid, lipid metabolism, and myelin biogenesis, leading to ataxia, seizures, and cognitive impairment. Since the myelin sheath is thinner in a murine model of SSADHD compared to a wild type, we hypothesized that this also holds for human brain. We tested whether the conduction velocity in the somatosensory pathway is accordingly delayed. METHODS: Somatosensory evoked magnetic fields (SEF) produced by transcutaneous electrical stimulation of the median nerve were measured in 13 SSADHD patients, 11 healthy and 14 disease controls with focal epilepsy. The peak latencies of the initial four components (M1, M2, M3 and M4) were measured. RESULTS: The SEF waveforms and scalp topographies were comparable across the groups. The latencies were statistically significantly longer in the SSADHD group compared to the two controls. We found these latencies for the SSADHD, healthy and disease controls respectively to be: M1: (21.9 ± 0.8 ms [mean ± standard error of the mean], 20.4 ± 0.6 ms, and 21.0 ± 0.4 ms) (p < 0.05); M2: (36.1 ± 1.0 ms, 33.1 ± 0.6 ms, and 32.1 ± 1.1 ms) (p < 0.005); M3: (62.5 ± 2.4 ms, 54.7 ± 2.0 ms, and 49.9 ± 1.8 ms) (p < 0.005); M4: (86.2 ± 2.3 ms, 78.8 ± 2.8 ms, and 73.5 ± 2.9 ms) (p < 0.005). CONCLUSIONS: The SEF latencies are delayed in patients with SSADHD compared with healthy controls and disease controls. SIGNIFICANCE: This is the first study that compares conduction velocities in the somatosensory pathway in SSADHD, an inherited disorder of GABA metabolism. The longer peak latency implying slower conduction velocity supports the hypothesis that myelin sheath thickness is decreased in SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Discapacidades del Desarrollo , Potenciales Evocados Somatosensoriales , Nervio Mediano , Succionato-Semialdehído Deshidrogenasa/deficiencia , Humanos , Masculino , Femenino , Nervio Mediano/fisiopatología , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Adulto , Potenciales Evocados Somatosensoriales/fisiología , Adulto Joven , Tiempo de Reacción/fisiología , Adolescente , Persona de Mediana Edad , Conducción Nerviosa/fisiología , Magnetoencefalografía/métodos
9.
J Sleep Res ; 33(4): e14105, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38148273

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder of γ-aminobutyrate (GABA) catabolism. Cerebral waste clearance along glymphatic perivascular spaces depends on aquaporin 4 (AQP4) water channels, the function of which was shown to be influenced by GABA. Sleep disturbances are associated independently with SSADHD and glymphatic dysfunction. This study aimed to determine whether indices of the hyperGABAergic state characteristic of SSADHD coincide with glymphatic dysfunction and sleep disturbances and to explicate the modulatory effect that GABA may have on the glymphatic system. The study included 42 individuals (21 with SSADHD; 21 healthy controls) who underwent brain MRIs and magnetic resonance spectroscopy (MRS) for assessment of glymphatic dysfunction and cortical GABA, plasma GABA measurements, and circadian clock gene expression. The SSADHD subjects responded to an additional Children's Sleep Habits Questionnaire (CSHQ). Compared with the control group, SSADHD subjects did not differ in sex and age but had a higher severity of enlarged perivascular spaces in the centrum semiovale (p < 0.001), basal ganglia (p = 0.01), and midbrain (p = 0.001), as well as a higher MRS-derived GABA/NAA peak (p < 0.001). Within the SSADHD group, the severity of glymphatic dysfunction was specific for a lower MRS-derived GABA/NAA (p = 0.04) and lower plasma GABA (p = 0.004). Additionally, the degree of their glymphatic dysfunction correlated with the CSHQ-estimated sleep disturbances scores (R = 5.18, p = 0.03). In the control group, EPVS burden did not correlate with age or cerebral and plasma GABA values. The modulatory effect that GABA may exert on the glymphatic system has therapeutic implications for sleep-related disorders and neurodegenerative conditions associated with glymphatic dysfunction.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Sistema Glinfático , Imagen por Resonancia Magnética , Trastornos del Sueño-Vigilia , Succionato-Semialdehído Deshidrogenasa , Ácido gamma-Aminobutírico , Humanos , Masculino , Femenino , Ácido gamma-Aminobutírico/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Trastornos del Sueño-Vigilia/fisiopatología , Sistema Glinfático/fisiopatología , Niño , Succionato-Semialdehído Deshidrogenasa/deficiencia , Espectroscopía de Resonancia Magnética , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/metabolismo , Acuaporina 4 , Laringoestenosis/fisiopatología , Preescolar , Discapacidades del Desarrollo
10.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269750

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Succionato-Semialdehído Deshidrogenasa , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Niño , Discapacidades del Desarrollo/genética , Humanos , Ratones , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(2): 216-221, 2022 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-35076924

RESUMEN

OBJECTIVE: To explore the genetic basis for a child with succinate semialdehyde dehydrogenase deficiency. METHODS: Peripheral blood samples of the proband and his parents were collected and subjected to Sanger sequencing. High-throughput sequencing was used to verify the gene variants. Bioinformatic software was used to analyze the pathogenicity of the variant sites. RESULTS: Sanger sequencing showed that the proband carried a homozygous c.1529C>T (p.S510F) variant of the ALDH5A1 gene, for which his mother was a carrier. The same variant was not detected in his father. However, high-throughput sequencing revealed that the child and his father both had a deletion of ALDH5A1 gene fragment (chr6: 24 403 265-24 566 986). CONCLUSION: The c.1529C>T variant of the ALDH5A1 gene and deletion of ALDH5A1 gene fragment probably underlay the disease in the child. High-throughput sequencing can detect site variation as well as deletion of gene fragment, which has enabled genetic diagnosis and counseling for the family.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Succionato-Semialdehído Deshidrogenasa , Errores Innatos del Metabolismo de los Aminoácidos/genética , Niño , Discapacidades del Desarrollo , Humanos , Lactante , Mutación , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética
12.
Mol Genet Metab ; 135(1): 42-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896003

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited inborn error of the γ-aminobutyric acid (GABA) metabolism pathway. It results from mutations in the ALDH5A1 gene leading to elevated GABA, γ-hydroxybutyric acid (GHB), succinic semialdehyde (SSA), decreased glutamine and alterations in several other metabolites. The phenotype includes developmental and cognitive delays, hypotonia, seizures, neuropsychiatric morbidity and other nervous system pathologies. The composition of the intestinal flora of patients with SSADHD has not been characterized, and dysbiosis of the gut microbiome may unveil novel treatment paradigms. We investigated the gut microbiome in SSADHD using 16S ribosomal DNA sequencing and unmasked evidence of dysbiosis in both aldh5a1-deficient mice and patients with SSADHD. In the murine model, there was a reduction in α-diversity measurements, and there were 4 phyla, 3 classes, 5 orders, 9 families, and 15 genera that differed, with a total of 17 predicted metabolic pathways altered. In patients, there were changes in Fusobacterium, 3 classes, 4 orders, 11 families, and a predicted alteration in genes associated with the digestive system. We believe this is the first evaluation of microbiome structure in an IEM with a neurometabolic phenotype that is not treated dietarily.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Disbiosis , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Niño , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Disbiosis/genética , Humanos , Ratones , Succionato-Semialdehído Deshidrogenasa/deficiencia
13.
J Child Neurol ; 36(13-14): 1218-1222, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34882073

RESUMEN

Pathogenic variants in ALDH5A1 cause succinic semialdehyde dehydrogenase (SSADH) deficiency, with >180 cases reported worldwide. However, a nonspecific neurologic presentation and inconsistent variant nomenclature have limited diagnoses. In this study, pathogenic variants in ALDH5A1 were curated and variant prevalence assessed in the Genome Aggregation Database (gnomAD) to determine a minimum carrier frequency and to estimate disease prevalence. Stringent population variant analysis, including 98 reported disease-associated ALDH5A1 variants, indicates a pan-ethnic carrier frequency of ∼1/340, supporting a prevalence of SSADH deficiency of ∼1/460 000 worldwide, with highest carrier frequencies observed in East Asian and South Asian populations. Because heterozygous loss of function alleles are rare in gnomAD and >60% of reported disease-causing variants were missense changes that were not present in gnomAD, the pan-ethnic carrier frequency for SSADH deficiency is likely not fully represented in this study. Additional analyses to investigate the potential impact of more common ALDH5A1 variants with reduced but not deficient enzyme activity, including analysis in diverse populations, are needed to fully assess the prevalence of this ultra-rare disease.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/epidemiología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/genética , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Niño , Bases de Datos Factuales , Discapacidades del Desarrollo/patología , Humanos , Internacionalidad , Pérdida de Heterocigocidad , Prevalencia , Enfermedades Raras
15.
J Child Neurol ; 36(13-14): 1223-1230, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34463169

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD), a rare disorder of GABA metabolism, presents with significant neurodevelopmental morbidity. Although there is a growing interest in the concept of quality of life through patient reports as a meaningful outcome in rare disease clinical trials, little is known about the overall impact of SSADHD from the patient/family perspective. The purpose of this study was to determine issues related to quality of life and patient/family experience through a focus group discussion with family caregivers of patients with SSADHD. The discussion included the input of 5 family caregivers, and highlighted concerns related to physical function, cognitive and intellectual function, psychological and behavioral function, social function, and family impact. These themes represent appropriate starting points in the development of a quality-of-life survey that may serve as a meaningful clinical tool in future studies of SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Errores Innatos del Metabolismo de los Aminoácidos/psicología , Discapacidades del Desarrollo/fisiopatología , Discapacidades del Desarrollo/psicología , Familia/psicología , Encuestas Epidemiológicas/métodos , Calidad de Vida/psicología , Succionato-Semialdehído Deshidrogenasa/deficiencia , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Niño , Preescolar , Discapacidades del Desarrollo/metabolismo , Femenino , Grupos Focales , Encuestas Epidemiológicas/estadística & datos numéricos , Humanos , Masculino , Enfermedades Raras , Succionato-Semialdehído Deshidrogenasa/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
16.
J Child Neurol ; 36(13-14): 1169-1176, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34058900

RESUMEN

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a disorder of GABA degradation with use-dependent downregulation of postsynaptic GABAA/B receptors. We aim to measure the resulting cortical excitation: inhibition ratio using transcranial magnetic stimulation. METHODS: In this single-center observational study, 18 subjects with SSADHD and 8 healthy controls underwent transcranial magnetic stimulation. Resting motor threshold, cortical silent period, and long-interval intracortical inhibition were measured in both groups. Resting motor threshold in focal epilepsy patients from an institutional transcranial magnetic stimulation database were also included. RESULTS: SSADHD subjects had higher resting motor threshold than healthy controls but lower relative to focal epilepsy patients. Resting motor threshold decreased with age in all groups. Cortical silent period was longer in SSADHD subjects than in healthy controls. No difference was detected in long-interval intracortical inhibition between the 2 groups. CONCLUSION: Findings suggest abnormal corticospinal tract physiology in SSADHD, but with preserved developmental trajectory for corticospinal tract maturation. Defining features of these transcranial magnetic stimulation metrics in SSADHD will be better elucidated through this ongoing longitudinal study.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Excitabilidad Cortical/fisiología , Discapacidades del Desarrollo/fisiopatología , Succionato-Semialdehído Deshidrogenasa/deficiencia , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Niño , Bases de Datos Factuales , Femenino , Humanos , Masculino , Adulto Joven
18.
J Child Neurol ; 36(13-14): 1189-1199, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34015244

RESUMEN

We examined safety, tolerability, and efficacy of SGS-742, a γ-aminobutyric acid B (GABA-B) receptor antagonist, in patients with succinic semialdehyde dehydrogenase deficiency. This was a single-center randomized, double-blind crossover phase II clinical trial of SGS-742 versus placebo in patients with succinic semialdehyde dehydrogenase deficiency. Procedures included transcranial magnetic stimulation and the Adaptive Behavior Assessment Scale. Nineteen subjects were consented and enrolled; the mean age was 14.0 ± 7.5 years and 11 (58%) were female. We did not find a significant effect of SGS-742 on the Adaptive Behavior Assessment Scale score, motor threshold, and paired-pulse stimulation. The difference in recruitment curve slopes between treatment groups was 0.003 (P = .09). There was no significant difference in incidence of adverse effects between drug and placebo arms. SGS-742 failed to produce improved cognition and normalization of cortical excitability as measured by the Adaptive Behavior Assessment Scale and transcranial magnetic stimulation. Our data do not support the current use of SGS-742 in succinic semialdehyde dehydrogenase deficiency.Trial registry number NCT02019667. Phase 2 Clinical Trial of SGS-742 Therapy in Succinic Semialdehyde Dehydrogenase Deficiency. https://clinicaltrials.gov/ct2/show/NCT02019667.


Asunto(s)
Antagonistas del GABA/uso terapéutico , Compuestos Organofosforados/uso terapéutico , Succionato-Semialdehído Deshidrogenasa/deficiencia , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos , Niño , Preescolar , Estudios Cruzados , Discapacidades del Desarrollo , Método Doble Ciego , Femenino , Humanos , Masculino , Succionato-Semialdehído Deshidrogenasa/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven
19.
J Child Neurol ; 36(13-14): 1210-1217, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33757330

RESUMEN

This study reviews the fundamental roles of pre-supplementary motor area (SMA) and SMA-proper responsible for speech-motor functions and auditory perception in succinic semialdehyde dehydrogenase (SSADH) deficiency. We comprehensively searched the databases of PubMed, Google Scholar, and the electronic journals Springer, PreQuest, and Science Direct associated with keywords SSADHD, SMA, auditory perception, speech, and motor with AND operator. Transcranial magnetic stimulation emerged for assessing excitability/inhibitory M1 functions, but its role in pre-SMA and SMA proper dysfunction remains unknown. There was a lack of data on resting-state and task-based functional magnetic resonance imaging (MRI), with a focus on passive and active tasks for both speech and music, in terms of analysis of SMA-related cortex and its connections. Children with SSADH deficiency likely experience a dysfunction in connectivity between SMA portions with cortical and subcortical areas contributing to disabilities in speech-motor functions and auditory perception. Early diagnosis of auditory-motor disabilities in children with SSADH deficiency by neuroimaging techniques invites opportunities for utilizing sensory-motor integration as future interventional strategies.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Percepción Auditiva/fisiología , Discapacidades del Desarrollo/fisiopatología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Habla/fisiología , Succionato-Semialdehído Deshidrogenasa/deficiencia , Estimulación Magnética Transcraneal/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Niño , Bases de Datos Factuales , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología
20.
J Child Neurol ; 36(13-14): 1200-1209, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33624531

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inborn metabolic disorder caused by the functional impairment of SSADH (encoded by the ALDH5A1 gene), an enzyme essential for metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In SSADHD, pathologic accumulation of GABA and its metabolite γ-hydroxybutyrate (GHB) results in broad spectrum encephalopathy including developmental delay, ataxia, seizures, and a heightened risk of sudden unexpected death in epilepsy (SUDEP). Proof-of-concept systemic SSADH restoration via enzyme replacement therapy increased survival of SSADH knockout mice, suggesting that SSADH restoration might be a viable intervention for SSADHD. However, before testing enzyme replacement therapy or gene therapy in patients, we must consider its safety and feasibility in the context of early brain development and unique SSADHD pathophysiology. Specifically, a profound use-dependent downregulation of GABAA receptors in SSADHD indicates a risk that any sudden SSADH restoration might diminish GABAergic tone and provoke seizures. In addition, the tight developmental regulation of GABA circuit plasticity might limit the age window when SSADH restoration is accomplished safely. Moreover, given SSADH expressions are cell type-specific, targeted instead of global restoration might be necessary. We therefore describe 3 key parameters for the clinical readiness of SSADH restoration: (1) rate, (2) timing, and (3) cell type specificity. Our work focuses on the construction of a novel SSADHD mouse model that allows "on-demand" SSADH restoration for the systematic investigation of these key parameters. We aim to understand the impacts of specific SSADH restoration protocols on brain physiology, accelerating bench-to-bedside development of enzyme replacement therapy or gene therapy for SSADHD patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Discapacidades del Desarrollo/tratamiento farmacológico , Discapacidades del Desarrollo/metabolismo , Terapia de Reemplazo Enzimático/métodos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Ácido gamma-Aminobutírico/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Succionato-Semialdehído Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...