Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.048
Filtrar
1.
Bull Environ Contam Toxicol ; 112(5): 69, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722440

RESUMEN

The rapid development of livestock and poultry industry in China has caused serious environment pollution problems. To understand the heavy metals accumulation and identify their sources, 7 heavy metals contents and lead isotope ratios were determined in 24 soil samples from vegetable fields irrigated with swine wastewater in Dongxiang County, Jiangxi Province, China. The results showed that the concentration of Cr, Ni, Cu, Zn, As, Cd and Pb in the swine wastewater irrigated vegetable soils varied from 38.5 to 86.4, 7.57 to 30.6, 20.0 to 57.1, 37.5 to 174, 9.18 to 53.1, 0.043 to 0.274 and 12.8 to 37.1 mg/kg, respectively. The soils were moderately to heavily polluted by As, moderately polluted by Cr, Ni, Cu, Zn and Cd, and unpolluted to moderately polluted by Pb. Sampling soils were classified as moderately polluted according to the Nemerow comprehensive pollution index. Lead isotope and Principal Component Analysis (PCA) analysis indicated that swine wastewater irrigation and atmospheric deposition were the primary sources of the heavy metals.


Asunto(s)
Monitoreo del Ambiente , Plomo , Metales Pesados , Contaminantes del Suelo , Verduras , Aguas Residuales , Contaminantes del Suelo/análisis , Animales , Metales Pesados/análisis , China , Aguas Residuales/química , Porcinos , Verduras/química , Plomo/análisis , Riego Agrícola , Suelo/química , Isótopos/análisis
2.
Environ Monit Assess ; 196(6): 546, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743357

RESUMEN

Industrial activities have the potential to pollute soils with a wide variety of heavy metals (HMs). In Ghana, however, assessment of HM pollution of soils in industrial areas remains limited. Accordingly, HM soil pollution in one of the industrial areas in Accra, Ghana was assessed. Soil samples were taken and analysed for HMs, including Fe, Zr, Zn, Ti, Sr, Rb, Mn, Pb, Cu, and Co, using X-Ray Fluorescence (XRF). HM geochemical threshold values (GTVs) were determined to establish soil HM pollution levels and identify areas needing remediation. Furthermore, risk assessments were conducted to evaluate the potential ecological and human health risks associated with these metals. The mean concentrations of Fe, Zn, Rb, Sr, Zr, Ti, Mn, Co, Cu, and Pb in the soils were: 27133.83, 147.72, 16.30, 95.95, 307.11, 4663.66, 289.85, 418.54, 44.97, and 112.88 mg/kg, respectively. Generally, the concentrations of HMs decreased with depth, although some lower layers exhibited elevated HM levels. Soil pollution levels were categorized as low for Fe, Rb, Zr, Ti, Mn, Co, and Cu; moderate for Sr and Zn; and considerable for Pb. Notably, the northwestern part of the study area displayed a considerable to very high degree of HM contamination. While HMs in the soils posed low ecological risk, the human health risk assessment indicated potential health effects from Co, particularly in children. The presence of HMs in the soils was noted to originate from both natural geological phenomena and human activities, including industrial operations, agricultural practices, landfill activities, and vehicular emissions.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Ghana , Metales Pesados/análisis , Suelo/química , Medición de Riesgo , Humanos , Industrias , Contaminación Ambiental/estadística & datos numéricos
3.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747174

RESUMEN

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Asunto(s)
Fósforo , Raíces de Plantas , Silicatos , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Silicatos/metabolismo , Micorrizas/fisiología , Compuestos de Calcio , Carbono/metabolismo
4.
Glob Chang Biol ; 30(5): e17309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747209

RESUMEN

Global soil nitrogen (N) cycling remains poorly understood due to its complex driving mechanisms. Here, we present a comprehensive analysis of global soil δ15N, a stable isotopic signature indicative of the N input-output balance, using a machine-learning approach on 10,676 observations from 2670 sites. Our findings reveal prevalent joint effects of climatic conditions, plant N-use strategies, soil properties, and other natural and anthropogenic forcings on global soil δ15N. The joint effects of multiple drivers govern the latitudinal distribution of soil δ15N, with more rapid N cycling at lower latitudes than at higher latitudes. In contrast to previous climate-focused models, our data-driven model more accurately simulates spatial changes in global soil δ15N, highlighting the need to consider the joint effects of multiple drivers to estimate the Earth's N budget. These insights contribute to the reconciliation of discordances among empirical, theoretical, and modeling studies on soil N cycling, as well as sustainable N management.


Asunto(s)
Ciclo del Nitrógeno , Suelo , Suelo/química , Isótopos de Nitrógeno/análisis , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Clima , Modelos Teóricos
5.
Braz J Biol ; 84: e282493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747864

RESUMEN

The use of fertilizers affects not only the soil fertility and crop yield, but also significantly changes the taxonomic structure of the soil microbiocenosis. Here, based on stationary field experiment, we studied the influence of organo-mineral fertilizer (ОМF), modified by bacteria Bacillus subtilis, H-13 in comparison with different fertilizer systems (organic, mineral, organo-mineral) on (i) crop yield, (ii) physical and chemical properties, and (iii) alpha and beta diversity of the microbial community Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric). The studies were carried out against the background of liming (рНКCl - 5.9) and without it (рНКCl - 5.1). The use of only one cattle farmyard manure was less effective than its co-application with mineral fertilizers in half doses. A similar effect was obtained when applying ОМF. In addition, the use of OMF contributes to a significant increase in the reserves of soil organic carbon in the soil layer 0-20 cm by 18%-32%. Using high-throughput sequencing of the 16S rRNA variable V4 gene sequence libraries, 10.759 taxa from 456 genera were identified, assigned to 34 fila (31 bacterial and 3 archaeotic. Unilateral application of mineral fertilizers leads to a significant decrease in the alpha diversity of the structure of soil microbial communities (OTE (other things equal) and Shannon index). A clear clustering of the microbiota was found in the variants with and without the introduction of сattle farmyard manure. It is revealed that the taxonomic structure of the microbiocenosis is formed under the influence of two main factors: crop rotation culture and applied fertilizers. The type of cultivated crop determines the dynamics of the microbiota at the level of larger taxa, such as domains, and fertilizers affect the structure of the microbial community at a lower taxonomic level (phyla, orders, bloodlines). On the basis of the Deseq analysis, marker taxa were identified, according to the share participation of which it is possible to determine the type of cultivated crop and fertilizers used in the experiment. Understanding the dynamics of taxa association and other influential factors can lead to the creation of universal systems of metagenomic indication, where tracking the dynamics of microbial communities will allow for a comprehensive assessment of the agroecological state of soils and timely decisions to prevent their degradation.


Asunto(s)
Productos Agrícolas , Fertilizantes , Microbiología del Suelo , Suelo , Fertilizantes/análisis , Suelo/química , Productos Agrícolas/microbiología , Federación de Rusia , Agricultura/métodos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Animales , Bovinos , Microbiota , Estiércol/microbiología
6.
Sci Data ; 11(1): 478, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724554

RESUMEN

Soil organic carbon (SOC) is a soil health indicator and understanding dynamics changing SOC stocks will help achieving net zero goals. Here we present four datasets featuring 11,750 data points covering co-located aboveground and below-ground metrics for exploring ecosystem SOC dynamics. Five sites across England with an established land use contrast, grassland and woodland next to each other, were rigorously sampled for aboveground (n = 109), surface (n = 33 soil water release curves), topsoil, and subsoil metrics. Commonly measured soil metrics were analysed in five soil increments for 0-1 metre (n = 4550). Less commonly measured soil metrics which were assumed to change across the soil profile were measured on a subset of samples only (n = 3762). Additionally, we developed a simple method for soil organic matter fractionation using density fractionation which is part of the less common metrics. Finally, soil metrics which may impact SOC dynamics, but with less confidence as to their importance across the soil profile were only measured on topsoil (~5-15 cm = mineral soil) and subsoil (below 50 cm) samples (n = 2567).


Asunto(s)
Carbono , Pradera , Suelo , Suelo/química , Carbono/análisis , Inglaterra , Bosques , Ecosistema
7.
Curr Microbiol ; 81(7): 170, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734822

RESUMEN

As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.


Asunto(s)
Fosfatos , Rizosfera , Microbiología del Suelo , Suelo , Triticum , Triticum/microbiología , Triticum/crecimiento & desarrollo , Fosfatos/metabolismo , Suelo/química , Fertilizantes/análisis , Paenibacillus/metabolismo , Paenibacillus/genética , Paenibacillus/crecimiento & desarrollo , Fósforo/metabolismo
8.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719847

RESUMEN

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Asunto(s)
Fertilizantes , Glycine max , Níquel , Suelo , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Fertilizantes/análisis , Suelo/química , Ureasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Agricultura/métodos
9.
Sci Rep ; 14(1): 10544, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719860

RESUMEN

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Asunto(s)
Acetolactato Sintasa , Acetil-CoA Carboxilasa , Echinochloa , Resistencia a los Herbicidas , Herbicidas , Microbiología del Suelo , Italia/epidemiología , Herbicidas/farmacología , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/genética , Echinochloa/efectos de los fármacos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Malezas/efectos de los fármacos , Microbiota/efectos de los fármacos , Biodiversidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Suelo/química , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Hongos/genética
10.
Microbiome ; 12(1): 83, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725008

RESUMEN

BACKGROUND: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS: Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS: This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.


Asunto(s)
Hifa , Microbiota , Micorrizas , Raíces de Plantas , Microbiología del Suelo , Streptomyces , Micorrizas/fisiología , Micorrizas/clasificación , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/fisiología , Hifa/crecimiento & desarrollo , Raíces de Plantas/microbiología , Fósforo/metabolismo , Interacciones Microbianas/fisiología , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo
11.
Environ Monit Assess ; 196(6): 536, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730046

RESUMEN

Desertification is a specific land-degrading process, reducing soil productivity and potentially threatening global food security. Therefore, spatially and temporally identifying and mapping desertification-sensitive areas is essential for better management. The current study aimed to (1) assess spatial areas sensitive to desertification and (2) examine the changing tendency of the desertification-sensitive areas over the past 25 years in the provincial Ninh Thuan. The desertification sensitivity index (DSI) was computed based on the Medalus model using 10 quantitative parameters, grouped into the soil, climate, and vegetation quality indexes, computed for the years 1996, 2005, 2010, and 2016. GIS was used to map desertification-sensitive areas associated with five DSI classes. Results showed that classes II and III had the highest area percentage, followed by classes IV and V, and class I. The classes most sensitive to desertification (classes IV and V) covered around 13 to 17%, and classes II and III were 25 to 32% of the total study area, respectively. The coastal areas located in the southeastern parts were more sensitive to desertification than the other parts. Over the four examined periods, the areas of classes IV and V increased while those of classes II and I decreased. These indicated that the study province tended to increase in its desertification sensitivity with a severe increase in the coastal areas over the past 25 years. The key factors involved in these changes could be related the human activities and climate variation, which could be more serious in southeastern areas than in the other areas.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Vietnam , Monitoreo del Ambiente/métodos , Suelo/química , Sistemas de Información Geográfica
12.
PLoS One ; 19(5): e0303387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728351

RESUMEN

Heavy metal pollution in farmland soil represents a considerable risk to ecosystems and human health, constituting a global concern. Focusing on a key area for the cultivation of special agricultural products in Cangxi County, we collected 228 surface soil samples. We analyzed the concentration, spatial distribution, and pollution levels of six heavy metals (Cr, Cu, Pb, Ni, Zn, and Hg) in the soil. Moreover, we investigated the sources and contribution rates of these heavy metals using Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) and Positive Matrix Factorization (PMF) models. Our findings indicate that none of the six metals exceeded the pollution thresholds for farmland soils. However, the mean concentrations of Cr and Ni surpassed the background levels of Sichuan Province. A moderate spatial correlation existed between Pb and Ni, attributable to both natural and anthropogenic factors, whereas Zn, Cu, Hg, and Cr displayed a strong spatial correlation, mainly due to natural factors. The spatial patterns of Cr, Cu, Zn, Pb, and Ni were similar, with higher concentrations in the northern and eastern regions and lower concentrations centrally. Hg's spatial distribution differed, exhibiting a broader range of lower values. The single pollution index evaluation showed that Cr and Ni were low pollution, and the other elements were no pollution. The average value of comprehensive pollution index is 0.994, and the degree of pollution is close to light pollution. Predominantly, higher pollution levels in the northern and eastern regions, lower around reservoirs. The PCA/APCS model identified two main pollution sources: agricultural traffic mixed source (65.2%) and natural parent source (17.2%). The PMF model delineated three sources: agricultural activities (32.59%), transportation (30.64%), and natural parent sources (36.77%). Comparatively, the PMF model proved more accurate and reliable, yielding findings more aligned with the study area's actual conditions.


Asunto(s)
Agricultura , Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , China , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente/métodos , Análisis de Componente Principal , Análisis Espacial
13.
PLoS One ; 19(5): e0303341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728347

RESUMEN

The field of landscape architecture has placed significant emphasis on low-carbon landscapes due to the increasing challenges posed by global warming and environmental deterioration in recent years. The soil ecological conditions in saline-alkaline areas are characterized by poor quality, resulting in suboptimal growth conditions for trees. This, in turn, hampers their ability to effectively sequester carbon, thereby diminishing the potential benefits of carbon sinks. Additionally, the maintenance of tree landscapes in such areas generates more carbon emissions than does conventional green land, making it difficult to reap the benefits of tree-based carbon. A comprehensive evaluation of trees in green park spaces in saline-alkaline areas is conducted from a low-carbon perspective; by identifying the dominant tree species that are well suited to greening, we can offer a precise scientific foundation for implementing low-carbon greening initiatives in cities situated in saline-alkaline environments. Therefore, as a case study, this study investigates Tianjin Qiaoyuan Park, a typical saline park in the Bohai Bay region. The hierarchical analysis method (AHP) was used to evaluate 50 species of trees and shrubs in the park from a low-carbon perspective. The results show that the evaluation system consists of four criterion layers and 15 indicator factors. The relative weight of the criterion layer followed the order of habitat adaptability (B2) > carbon sequestration capacity (B1) > low-carbon management and conservation (B3) > landscape aesthetics (B4). The indicator layer assigned greater weight values to net assimilation (C1), saline and alkaline adaptability (C3), drought tolerance (C4), irr igation and fertilization needs (C8), growth rate (C2), and adaptability to barrenness (C5). The trees were classified into five distinct categories, with each exhibiting significant variation in terms of the strengths and weaknesses of the indicators. According to the comprehensive score, the trees were categorized into three levels. The Grade I plants exhibited the best carbon efficiency performance, comprising a total of 12 species (e.g. Sabina chinensis, Fraxinus chinensis 'Aurea' and Hibiscus syriacu), and demonstrated superior performance in all aspects. Grade II trees, consisting of 26 species (e.g Pinus tabuliformis, Paulownia fortunei, Ligustrum × vicaryi), had the second-highest comprehensive score. Moreover, Grade III trees, encompassing 12 species (e.g Acer mono, Cedrus deodara, Magnolia denudata), exhibited lower comprehensive scores. The extensive use of Grade I and II tree species is recommended in the implementation of low-carbon greening projects in the Bohai Bay region, while Grade III tree species should be judiciously utilized. The findings of this research can serve as a valuable resource for the scientific identification of tree species that are suitable for urban park green spaces in the Bohai Bay region, which is characterized by predominantly saline and alkaline soil. Additionally, the development of an evaluation system can guide the selection of low-carbon tree species when evaluating other types of saline and alkaline lands.


Asunto(s)
Carbono , Carbono/análisis , Carbono/metabolismo , China , Árboles/crecimiento & desarrollo , Parques Recreativos , Conservación de los Recursos Naturales/métodos , Ecosistema , Suelo/química , Secuestro de Carbono
14.
Environ Microbiol ; 26(5): e16633, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733078

RESUMEN

Soil is home to a multitude of microorganisms from all three domains of life. These organisms and their interactions are crucial in driving the cycling of soil carbon. One key indicator of this process is Microbial Carbon Use Efficiency (CUE), which shows how microbes influence soil carbon storage through their biomass production. Although CUE varies among different microorganisms, there have been few studies that directly examine how biotic factors influence CUE. One such factor could be body size, which can impact microbial growth rates and interactions in soil, thereby influencing CUE. Despite this, evidence demonstrating a direct causal connection between microbial biodiversity and CUE is still scarce. To address these knowledge gaps, we conducted an experiment where we manipulated microbial body size and biodiversity through size-selective filtering. Our findings show that manipulating the structure of the microbial community can reduce CUE by approximately 65%. When we restricted the maximum body size of the microbial community, we observed a reduction in bacterial diversity and functional potential, which in turn lowered the community's CUE. Interestingly, when we included large body size micro-eukarya in the soil, it shifted the soil carbon cycling, increasing CUE by approximately 50% and the soil carbon to nitrogen ratio by about 25%. Our metrics of microbial diversity and community structure were able to explain 36%-50% of the variation in CUE. This highlights the importance of microbial traits, community structure and trophic interactions in mediating soil carbon cycling.


Asunto(s)
Bacterias , Biodiversidad , Carbono , Microbiología del Suelo , Suelo , Carbono/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/genética , Suelo/química , Microbiota/fisiología , Ciclo del Carbono , Nitrógeno/metabolismo , Biomasa , Eucariontes/metabolismo , Eucariontes/crecimiento & desarrollo
15.
Environ Microbiol ; 26(5): e16627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733112

RESUMEN

Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.


Asunto(s)
Hongos , Microbiología del Suelo , Suelo , Agua , Suelo/química , Hongos/crecimiento & desarrollo , Agua/química , Biomasa , Sequías
16.
Bull Environ Contam Toxicol ; 112(5): 75, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733395

RESUMEN

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.


Asunto(s)
Monitoreo del Ambiente , Éteres Difenilos Halogenados , Plásticos , Contaminantes del Suelo , Suelo , Éteres Difenilos Halogenados/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Suelo/química , Plásticos/análisis , Plantas , China
17.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695903

RESUMEN

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Asunto(s)
Bacterias , Eleutherococcus , Hongos , Rizosfera , Estrés Salino , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/genética , Hongos/aislamiento & purificación , Eleutherococcus/metabolismo , Microbiota/efectos de los fármacos , Suelo/química , Cloruro de Sodio/metabolismo , Raíces de Plantas/microbiología
18.
PLoS One ; 19(5): e0300573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739594

RESUMEN

The intercropping system is a promising approach to augmenting the soil nutrient status and promoting sustainable crop production. However, it is not known whether intercropping improves the soil phosphorus (P) status in alluvial soils with low P under subtropical climates. Over two growing seasons--2019-2020 and 2020-2021--two experimental fields were employed to explore the effect of durum wheat (Dw) and chickpea (Cp) cropping systems on the soil available P. A randomized complete block design was used in this experiment, with three blocks each divided into three plots. Each plot was used for one of the following three treatments with three replications: Dw monocrop (Dw-MC), Cp monocrop (Cp-MC), and Dw + Cp intercrop (CpDw-InC), with bulk soil (BS) used as a control. A reduction in the rhizosphere soil pH (-0.44 and -0.11 unit) was observed in the (Cp-MC) and (CpDw-InC) treatments over BS, occurring concomitantly with a significant increase in available P in the rhizosphere soil of around 28.45% for CpDw-InC and 24.9% for Cp-MC over BS. Conversely, the rhizosphere soil pH was significantly higher (+0.12 units) in the Dw-MC treatments. In addition, intercropping enhanced the soil microbial biomass P, with strong positive correlations observed between the biomass P and available P in the Cp-MC treatment, whereas this correlation was negative in the CpDw-InC and Dw-MC treatments. These findings suggested that Cp intercropped with Dw could be a viable approach in enhancing the available P through improved pH variation and biomass P when cultivated on alluvial soil under a subtropical climate.


Asunto(s)
Biomasa , Cicer , Fósforo , Suelo , Triticum , Fósforo/análisis , Fósforo/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Suelo/química , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Agricultura/métodos , Rizosfera , Clima Tropical , Productos Agrícolas/crecimiento & desarrollo , Producción de Cultivos/métodos , Concentración de Iones de Hidrógeno , Clima
19.
Physiol Plant ; 176(3): e14338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38740528

RESUMEN

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.


Asunto(s)
Bacillus subtilis , Fósforo , Raíces de Plantas , Suelo , Solanum lycopersicum , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Suelo/química , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Microbiología del Suelo , Solubilidad , Ácidos Indolacéticos/metabolismo , Fertilizantes
20.
Water Environ Res ; 96(5): e11036, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740567

RESUMEN

The cheese making and vegetable processing industries generate immense volumes of high-nitrogen wastewater that is often treated at rural facilities using land applications. Laboratory incubation results showed denitrification decreased with temperature in industry facility soils but remained high in soils from agricultural sites (75% at 2.1°C). 16S rRNA, phospholipid fatty acid (PLFA), and soil respiration analyses were conducted to investigate potential soil microbiome impacts. Biotic and abiotic system factor correlations showed no clear patterns explaining the divergent denitrification rates. In all three soil types at the phylum level, Actinobacteria, Proteobacteria, and Acidobacteria dominated, whereas at the class level, Nitrososphaeria and Alphaproteobacteria dominated, similar to denitrifying systems such as wetlands, wastewater resource recovery facilities, and wastewater-irrigated agricultural systems. Results show that potential denitrification drivers vary but lay the foundation to develop a better understanding of the key factors regulating denitrification in land application systems and protect local groundwater supplies. PRACTITIONER POINTS: Incubation study denitrification rates decreased as temperatures decreased, potentially leading to groundwater contamination issues during colder months. The three most dominant phyla for all systems are Actinobacteria, Proteobacteria, and Acidobacteria. The dominant class for all systems is Nitrosphaeria (phyla Crenarchaeota). No correlation patterns between denitrification rates and system biotic and abiotic factors were observed that explained system efficiency differences.


Asunto(s)
Queso , Desnitrificación , Microbiología del Suelo , Verduras , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA