Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Crit Rev Toxicol ; 54(2): 92-122, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363552

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.


Asunto(s)
Bifenilos Policlorados , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Hidroxilación , Sulfatos/toxicidad , Sulfatos/metabolismo , Contaminación Ambiental , Sustancias Peligrosas
2.
Toxicol Ind Health ; 40(1-2): 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37876040

RESUMEN

Synthetic cosmetics, particularly hair dyes, are becoming increasingly popular among people of all ages and genders. 2,4,5,6-tetraaminopyrimidine sulfate (TAPS) is a key component of oxidative hair dyes and is used as a developer in several hair dyes. TAPS has previously been shown to absorb UVB strongly and degrade in a time-dependent manner, causing phototoxicity in human skin cells. However, the toxic effects of UVB-degraded TAPS are not explored in comparison to parent TAPS. Therefore, this research work aims to assess the toxicity of UVB-degraded TAPS than TAPS on two different test systems, that is, HaCaT (mammalian cell) and Staphylococcus aureus (a bacterial cell). Our result on HaCaT has illustrated that UVB-degraded TAPS is less toxic than parent TAPS. Additionally, UVB-exposed TAPS and parent TAPS were given to S. aureus, and the bacterial growth and their metabolic activity were assessed via CFU and phenotype microarray. The findings demonstrated that parent TAPS reduced bacterial growth via decreased metabolic activity; however, bacteria easily utilized the degraded TAPS. Thus, this study suggests that the products generated after UVB irradiation of TAPS is considered to be safer than their parent TAPS.


Asunto(s)
Tinturas para el Cabello , Femenino , Masculino , Animales , Humanos , Tinturas para el Cabello/toxicidad , Tinturas para el Cabello/metabolismo , Sulfatos/toxicidad , Staphylococcus aureus , Piel , Cabello , Rayos Ultravioleta/efectos adversos , Queratinocitos/metabolismo , Mamíferos
3.
Ecotoxicol Environ Saf ; 258: 114984, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37172406

RESUMEN

Elevated concentrations of sulfate in waterways are observed due to various anthropogenic activities. Elevated levels of sulfate can have harmful effects on aquatic life in freshwaters: sulfate can cause osmotic stress or specific ion toxicity in aquatic organisms, especially in soft waters where Ca2+ and Mg2+ concentrations are low. Formerly, chronic toxicity test data in soft water have been scarce. The chronic and acute sulfate toxicity tests conducted with aquatic organisms from 10 families across various trophic levels in this study multiplied the number of tests conducted in soft freshwater conditions and enabled derivation of the species sensitivity distribution (SSD) and sulfate hazardous concentrations for soft freshwaters. The cladoceran Daphnia longispina and freshwater snail Lymnaea stagnalis were the most sensitive to sulfate among the studied species. Harmful effects on the reproduction of D. longispina were observed at 49 mg SO4 /L while growth of L. stagnalis was inhibited at 217 mg SO4 /L. Most studied organisms tolerated high sulfate concentrations: the median of chronic effective concentrations (EC10 or LC10) was 1008 mg/L for all the species tested in this study. Based on the species sensitivity distribution of the studied species the hazardous concentration for 5 % of aquatic organism (HC5) in soft waters was 117-194 mg SO4/L. Different data set combinations were used to demonstrate the data variability in SSD-based HC5 estimates. The lowest values were produced from combining biotest results from the present study and earlier literature, while the highest values were calculated from the present study only. The derived chronic no-effect concentrations (PNEC) varied between 39 and 65 mg SO4/L.


Asunto(s)
Organismos Acuáticos , Contaminantes Químicos del Agua , Animales , Sulfatos/toxicidad , Contaminantes Químicos del Agua/análisis , Agua Dulce , Pruebas de Toxicidad Aguda
4.
Ecotoxicol Environ Saf ; 239: 113633, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598446

RESUMEN

Excessive arsenic in soil and groundwater will not only seriously affect the growth of plants, but also endanger human health through the food chain. However, there are few studies on the effects of metalloid speciation and anion competition on the toxicity of arsenate [As(Ⅴ)]. To investigate the effects of accompanying anions and pH on the toxicity of As(Ⅴ) on wheat root elongation, wheat roots were exposed to the concentrations of As(Ⅴ) in the solution ranged from 0 to 500 mM and different levels of pH (4.5-8.0) and different accompanying anions (H2PO4-, SO42-, NO3- and Cl-) for five days. The root length of wheat was measured and the biotic ligand model (BLM) was developed to predict the potential toxicity of As(V) speciation to wheat roots. The results illustrated that EC50 of total As(V) (EC50{As(Ⅴ)T}) values increased from 6.88 to 33.9 µM with increasing pH values from 4.5 to 8.0, suggesting that increasing pH alleviated As(Ⅴ) toxicity. The EC50{AsO43-} and EC50{HAsO42-} values increased from 0.001 to 4342 µM and from 0.0214 to 27.4 µM, respectively, while the EC50{H2AsO4-} and EC50{H3AsO4} values sharply decreased from 6.62 to 2.68 µM and from 41.8 µM to 5.34 nm, respectively, when pH increased from 4.5 to 8.0. The toxicity of As(Ⅴ) decreased as the H2PO4- and SO42- activities increased but not when the activities of NO3- and Cl- increased, indicating that SO42- and H2PO4- showed competitive effects with As(Ⅴ) on the binding sites. Based on BLM theory, the stability constants were obtained: [Formula: see text] = 3.70; [Formula: see text] = 4.08; [Formula: see text] = 4.77; [Formula: see text] = 6.50; [Formula: see text] = 2.09 and [Formula: see text] = 1.86, with fAsBL50%= 0.30 and ß = 1.73. Results implied that BLM performed well in As(Ⅴ) toxicity prediction when coupling toxic species AsO43-, HAsO42-, H2AsO4-, and H3AsO4, and the competition of SO42- and H2PO4- for binding sites. The current study provides a useful tool to accurately predict As(V) toxicity to wheat roots.


Asunto(s)
Arseniatos , Triticum , Arseniatos/toxicidad , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Fosfatos/farmacología , Raíces de Plantas , Sulfatos/toxicidad
5.
Int J Toxicol ; 40(1_suppl): 86S-94S, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34259063

RESUMEN

The Expert Panel for Cosmetic Ingredient Safety (Panel) reopened the safety assessment of Sodium Sulfate, a cosmetic ingredient that is an inorganic salt reported to function in cosmetics as a viscosity increasing agent-aqueous. The Panel reviewed the relevant new data for the ingredient, including frequency of use and concentration of use, and considered data from the previous Panel assessment. The Panel concluded that Sodium Sulfate is safe in cosmetics in the present practices of use and concentrations described in this safety assessment when formulated to be nonirritating.


Asunto(s)
Cosméticos/toxicidad , Irritantes/toxicidad , Sulfatos/toxicidad , Animales , Seguridad de Productos para el Consumidor , Cosméticos/química , Cosméticos/farmacocinética , Humanos , Irritantes/química , Irritantes/farmacocinética , Medición de Riesgo , Sulfatos/química , Sulfatos/farmacocinética
6.
Water Sci Technol ; 83(11): 2669-2677, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34115621

RESUMEN

This study compares sulfate-reduction performance in an anaerobic sludge with different carbon sources (ethanol, acetate, and glucose). Also, the toxic effect of copper was evaluated to assess its feasibility for possible acid mine drainage (AMD) treatment. Serological bottles with 1.5 g VSS/L and 150 mL of basal medium (0.67 g COD/g SO42- at a 7-8 pH) were used to determine the percentage of electron equivalents, maximum specific methanogenic (SMA), and sulfide generation activities (SGA). The copper effect was evaluated in a previously activated sludge in batch bioassays containing different concentrations of copper (0-50 mg/L), 3 gVSS/L, and 150 mL of basal medium (0.67 g COD/g SO42-). Carbon source bioassays with glucose obtained the best results in terms of the SGA (1.73 ± 0.34 mg S2-/g VSS•d) and SMA (10.41 mg COD-CH4/g VSS•d). The electron flow in the presence of glucose also indicated that 21.29 ± 5.2% of the metabolic activity of the sludge was directed towards sulfidogenesis. Copper toxicity bioassays indicated that a considerable decline in metabolic activity occurs above 10 mg/L. The 20%IC, 50%IC, and 80%IC were 4.5, 14.94, and 35.31 mg Cu/L. Compared to the other carbon sources tested, glucose proved to be a suitable electron donor since it favors sulfidogenesis. Finally, copper concentrations above 15 mg/L inhibited metabolic activity in the toxicity bioassays.


Asunto(s)
Carbono , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Sulfatos/toxicidad
7.
Toxicol Lett ; 343: 56-66, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33639196

RESUMEN

N6-methyladenosine (m6A) modification and m6A-modified Long non-coding RNAs (LncRNAs) play crucial roles in various pathological processes, yet their changes and relationship in cadmium-induced oxidative damage are largely unknown. Here, five m6A-modified LncRNAs (LncRNA-TUG1, LncRNA-PVT1, LncRNA-MALAT1, LncRNA-XIST, LncRNA-NEAT1), which have been evidenced to involve in oxidative damage, were selected and their binding proteins were submitted to bioinformatics analysis. Our analysis results showed that these five m6A-modified LncRNAs bound to different regulatory proteins of m6A modification, implicating that m6A modification on LncRNAs may synergistically control by multiple regulatory proteins. Furthermore, the detection data revealed that levels of m6A modification, methyltransferase-like 3 (METTL3) and fat mass and obesity-associated protein (FTO) were all significantly decreased in CdSO4-induced oxidative damage, which was demonstrated by increasing ROS accumulation and MDA contents as well as decreasing SOD activities. More importantly, LncRNA-MALAT1 and LncRNA-PVT1 indicated downward trend and showed positive relationship with m6A modification. Collectively, our results showed that m6A modification and m6A-modified LncRNAs may involve in oxidative damage induced by cadmium.


Asunto(s)
Adenosina/análogos & derivados , Compuestos de Cadmio/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , ARN Largo no Codificante/metabolismo , Sulfatos/toxicidad , Adenosina/química , Adenosina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Células Secretoras de Insulina/metabolismo , Ratones , Especies Reactivas de Oxígeno
8.
Sci Total Environ ; 772: 145522, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33571779

RESUMEN

With the continuous development of industrialization, a growing number of refractory organic pollutants are released into the environment. These contaminants could cause serious risks to the human health and wildlife, therefore their degradation and mineralization is very critical and urgent. Recently sulfate radical-based advanced oxidation technology has been widely applied to organic pollutants treatment due to its high efficiency and eco-friendly nature. This review comprehensively summarizes different methods for persulfate (PS) and peroxymonosulfate (PMS) activation including ultraviolet light, ultrasonic, electrochemical, heat, radiation and alkali. The reactive oxygen species identification and mechanisms of PS/PMS activation by different approaches are discussed. In addition, this paper summarized the toxicity of degradation intermediates through bioassays and Ecological Structure Activity Relationships (ECOSAR) program prediction and the formation of toxic bromated disinfection byproducts (Br-DBPs) and carcinogenic bromate (BrO3-) in the presence of Br-. The detoxification and mineralization of target pollutants induced by different reactive oxygen species are also analyzed. Finally, perspectives of potential future research and applications on sulfate radical-based advanced oxidation technology in the treatment of organic pollutants are proposed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Oxidación-Reducción , Sulfatos/toxicidad , Contaminantes Químicos del Agua/análisis
9.
Toxins (Basel) ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499131

RESUMEN

Two different types of polycyclic ether toxins, namely brevisulcenals (KBTs) and brevisulcatic acids (BSXs), produced by the red tide dinoflagellate Karenia brevisulcata, were the cause of a toxic incident that occurred in New Zealand in 1998. Four major components, KBT-F, -G, -H, and -I, shown to be cytotoxic and lethal in mice, were isolated from cultured K. brevisulcata cells, and their structures were elucidated by spectroscopic analyses. New analogues, brevisulcenal-A1 (KBT-A1) and brevisulcenal-A2 (KBT-A2), toxins of higher polarity than that of known KBTs, were isolated from neutral lipophilic extracts of bulk dinoflagellate culture extracts. The structures of KBT-A1 and KBT-A2 were elucidated as sulfated analogues of KBT-F and KBT-G, respectively, by NMR and matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI TOF/TOF), and by comparison with the spectra of KBT-F and KBT-G. The cytotoxicities of the sulfate analogues were lower than those of KBT-F and KBT-G.


Asunto(s)
Dinoflagelados/metabolismo , Éteres Cíclicos/aislamiento & purificación , Sulfatos/aislamiento & purificación , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Éteres Cíclicos/toxicidad , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Sulfatos/toxicidad
10.
Ecotoxicol Environ Saf ; 208: 111763, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396083

RESUMEN

Sulfate occurs naturally in the aquatic environment but its elevated levels can be toxic to aquatic life in freshwater environments. We investigated the toxicity of sulfate in humic, soft freshwater to whitefish (Coregonus lavaretus) from fertilization of eggs to hatching i.e. during the critical phases of whitefish early development. Anadromous Kokemäenjoki whitefish eggs and sperm during fertilization, embryos and larvae were exposed in the long-term 175-day incubation to seven different sodium sulfate (Na2SO4) concentrations from 44 to 2 000 mg SO4 L-1. Endpoint variables were the fertilization success, offspring survival and larval growth. Egg fertilization and early embryonic development were the most sensitive developmental stages of whitefish to sulfate, although the fertilization success and survival of embryos decreased only in the highest concentration of 2 000 mg SO4 L-1. The survival during late embryonic period, hatching and the 5-day larval period was high and no difference between the control and sulfate treatments were observed. LC50-values of sulfate for early embryonic period and for the entire embryonic and larval period was 1 413 and 1 161 mg L-1, respectively. The NOEC (No-observed Effect Concentration) of sulfate for the both periods was 1 207 mg L-1. The tolerance of whitefish early stages to sulfate toxicity seems to be on the same level as the tolerance of other salmonids' early stages.


Asunto(s)
Embrión no Mamífero/fisiología , Desarrollo Embrionario/efectos de los fármacos , Salmonidae/embriología , Sulfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Agua Dulce/química , Larva , Dosificación Letal Mediana , Masculino , Salmonidae/crecimiento & desarrollo , Espermatozoides
11.
J Hazard Mater ; 409: 124505, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33191031

RESUMEN

Fenpiclonil is an agricultural phenylpyrrole fungicide, which raise the concern about its ecotoxicological effects. In this paper, we investigate the indirect photochemical transformation mechanisms, environmental persistence and eco-toxicity of fenpiclonil initiated by various active oxidants (1O2, •OH and SO4•‾) in aquatic environments. The results shown that 1O2 can react with pyrrole ring by cycloaddition pathways to form the endo-peroxides. In addition, •OH and SO4•‾ initial mechanisms are calculated, suggesting that •OH-initiated mechanisms play a dominant role in the degradation process of fenpiclonil at high rate constants (2.26 ×109 M-1 s-1, at 298 K). The kinetic calculation results indicate that high temperature is more favorable for the degradation of fenpiclonil. To better understand the adverse effects of the transformation products formed during the subsequent reaction of •OH-adduct IM10, the computational toxicology has been used for the toxicity estimation. The results show that aquatic toxicity of these products decrease with degradation process, especially the decomposition products (TP3 and TP4). However, TP1 and TP2 are still toxic and developmental toxicant. The study provides guidance for further experimental research and industrial application of fungicide degradation from the perspective of theoretical calculation.


Asunto(s)
Radical Hidroxilo , Contaminantes Químicos del Agua , Cinética , Oxidación-Reducción , Pirroles , Oxígeno Singlete , Sulfatos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Br J Clin Pharmacol ; 87(5): 2392-2396, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33179287

RESUMEN

Paracetamol-induced hepatotoxicity is the leading cause of acute liver failure in many countries, including North America and the United Kingdom. Among the three dominant paracetamol metabolism pathways (i.e. glucuronidation, sulfation and oxidation), the importance of sulfation is often underestimated because of the general thinking that the sulfation pathway is saturated at therapeutic doses and ultimately accounts for a limited proportion of the fate of a paracetamol dose. We illustrate that insufficient sulfation leads to a shift in biotransformation of paracetamol to toxic oxidation pathways and patients with low sulfate reserves are at higher risk of paracetamol toxicity. Here, we propose that sulfation is of critical importance in understanding the risk of liver toxicity secondary to paracetamol overdose. Serum inorganic sulfate, a measurable substrate on the causal path of paracetamol-induced liver toxicity, should be considered a biomarker for potential toxicity as well as a target for treatment.


Asunto(s)
Analgésicos no Narcóticos , Enfermedad Hepática Inducida por Sustancias y Drogas , Sobredosis de Droga , Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Sobredosis de Droga/tratamiento farmacológico , Humanos , Sulfatos/uso terapéutico , Sulfatos/toxicidad
13.
J Neurosci Res ; 99(1): 407-418, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729199

RESUMEN

Lithium is widely used to treat bipolar disorder. However, the efficacy and vulnerability as to its side effects are known to differ. Although the specific biochemical mechanism of action is still elusive, lithium may influence mitochondrial function, and consequently, metabolism. Lithium exposure in this study was conducted on a unique set of mito-nuclear introgression lines of Drosophila subobscura to disentangle the independent effects of mitochondrial DNA (mtDNA) against a common nuclear DNA background. The study addressed three issues: (a) whether lithium has a dose-dependent effect on whole-organism metabolic rate, (b) whether mtDNA haplotypes show divergent metabolic efficiency measured by metabolic rate to lithium exposure and (c) whether lithium influences the whole-organism metabolic rate across sexes. The results confirm that lithium influenced the whole-organism metabolic rate, showing a subtle balance between efficacy and adverse effects within a narrow dose range. In addition, lithium exposure was found to influence metabolism differently based on mtDNA haplotypes and sex. This preliminary research may have a range of biological implications for the role of mitochondrial variability in psychiatric disease and treatment by contributing to the understanding and predicting of the lithium treatment response and risk for toxic side effects.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Compuestos de Litio/toxicidad , Mitocondrias/efectos de los fármacos , Sulfatos/toxicidad , Animales , Drosophila , Femenino , Masculino
14.
Ecotoxicol Environ Saf ; 204: 110977, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739673

RESUMEN

Indirect oxidation induced by reactive free radicals, such as hydroxyl radical (HO), sulfate radical (SO4-) and carbonate radical (CO3-), plays an important or even crucial role in the degradation of micropollutants. Thus, the coadjutant degradation of phenacetin (PNT) by HO, SO4- and CO3-, as well as the synergistic effect of O2 on HO and HO2 were studied through mechanism, kinetics and toxicity evaluation. The results showed that the degradation of PNT was mainly caused by radical adduct formation (RAF) reaction (69% for Г, the same as below) and H atom transfer (HAT) reaction (31%) of HO. For the two inorganic anionic radicals, SO4- initiated PNT degradation by sequential radical addition-elimination (SRAE; 55%), HAT (28%) and single electron transfer (SET; 17%) reactions, while only by HAT reaction for CO3-. The total initial reaction rate constants of PNT by three radicals were in the order: SO4- > HO > CO3-. The kinetics of PNT degradation simulated by Kintecus program showed that UV/persulfate could degrade target compound more effectively than UV/H2O2 in ultrapure water. In the subsequent reaction of PNT with O2, HO and HO2, the formation of mono/di/tri-hydroxyl substitutions and unsaturated aldehydes/ketones/alcohols were confirmed. The results of toxicity assessment showed that the acute and chronic toxicity of most products to fish increased and to daphnia decreased, and acute toxicity to green algae decreased while chronic toxicity increased.


Asunto(s)
Carbonatos/toxicidad , Peróxido de Hidrógeno/toxicidad , Fenacetina/toxicidad , Sulfatos/toxicidad , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Animales , Carbonatos/química , Chlorophyta/efectos de los fármacos , Daphnia/efectos de los fármacos , Peces , Peróxido de Hidrógeno/química , Iones/química , Iones/toxicidad , Cinética , Modelos Químicos , Oxígeno/química , Fenacetina/química , Sulfatos/química , Agua/química
15.
Chemosphere ; 257: 127264, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32516671

RESUMEN

Degradation of phenol by sodium persulfate (SPS) in hot compressed water (HCW) was investigated in a lab-built fused quartz tube reactor (FQTR) coupled with Raman spectroscopy system. The species of S2O82-, SO42-, HSO4-, SO32- and HSO3- in the reaction system were qualitatively and quantitatively analyzed by Raman spectroscopy. The hydrothermal stability of phenol and SPS at different temperature and the degradation of phenol by SPS were also studied. The results indicated that phenol was not stable in aqueous solution above 200 °C, and that only SO42- was generated in the hydrolysis of SPS at temperatures below 50 °C, and SO42- and HSO4- were generated at higher temperatures. The maximum conversion rate (90.93%) and mineralization efficiency (38.88%) of phenol by SPS was obtained at reaction temperature of 300 °C with 180 min reaction time. During the degradation of phenol by SPS, HSO4- was the main product and S∗ (not detected by Raman spectroscopy) exhibits a positive correlation with temperature. In addition, a degradation pathway of phenol by SPS was proposed. The degradation data for the kinetic analysis indicated that the reaction followed pseudo first-order kinetics, and the reaction rate constants (ks) were given as k50 °C = 0.0083 min-1, k100°C = 0.0197 min-1, k200 °C = 0.0498 min-1, k300 °C = 0.0619 min-1 and k400°C = 0.0505 min-1 at 30 min reaction. Moreover, the activation energy (12.580 kJ mol-1), the enthalpy change (9.064 kJ mol-1) and the entropy change (-222.104 J mol-1) of the reaction were also calculated.


Asunto(s)
Fenol/metabolismo , Compuestos de Sodio/toxicidad , Sulfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Calor , Cinética , Oxidación-Reducción , Fenol/química , Compuestos de Sodio/metabolismo , Espectrometría Raman , Sulfatos/metabolismo , Temperatura , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos
16.
J Agric Food Chem ; 68(29): 7757-7764, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32584032

RESUMEN

Juveniles are considered as one of the most vulnerable population groups concerning mycotoxins and their modified forms. The weaning stage is a particularly vulnerable period in the life of mammals, reflected in intestinal and immune dysfunction. The current study investigated the toxicokinetic (TK) characteristics of zearalenone (ZEN), zearalenone-14-glucoside (ZEN14G), and zearalenone-14-sulfate (ZEN14S) in weaned (4-week-old) piglets, by means of oral and intravenous administration of equimolar doses, i.e., 331, 500, and 415 µg/kg bodyweight, respectively. Plasma and urine were sampled pre- and post-administration and were quantitatively analyzed for ZEN, ZEN14G, ZEN14S, and in vivo metabolites by liquid chromatography-high-resolution mass spectrometry. Tailor-made TK models were elaborated to process data. A statistical comparison of the results was performed with TK data obtained in a previously reported study in pigs of 8 weeks of age. Additionally, porcine plasma protein binding was determined to support TK findings. The TK results for ZEN, ZEN14G, and ZEN14S, obtained in 4- and 8-week-old pigs, revealed significant age-related differences, based on differences in intestinal permeability, body fat content, gastrointestinal transit time, and biotransformation, with a special emphasis on an increased absorbed fraction of ZEN14G, i.e., 94 vs 61% in 4- compared to 8-week-old pigs. Since the growing pig has been reported to be a suitable pediatric animal model for humans concerning TK processes, these results may contribute to refine the risk assessment concerning modified ZEN forms in juvenile animals and humans.


Asunto(s)
Glucósidos/farmacocinética , Porcinos/sangre , Porcinos/orina , Zearalenona/análogos & derivados , Zearalenona/farmacocinética , Factores de Edad , Animales , Femenino , Glucósidos/sangre , Glucósidos/toxicidad , Glucósidos/orina , Masculino , Sulfatos/sangre , Sulfatos/toxicidad , Sulfatos/orina , Porcinos/crecimiento & desarrollo , Toxicocinética , Zearalenona/sangre , Zearalenona/toxicidad , Zearalenona/orina
17.
Ecotoxicol Environ Saf ; 196: 110535, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32224368

RESUMEN

Acid rain containing SO42- and NO3- in China has been a public concern for decades. However, a decrease of SO2 has been recorded since the government enacted a series of policies to control its emission. To comprehensively evaluate the consequence of realistic and future acid deposition scenarios, this study explored the effects of mixed acid rain with different molar ratios of SO42- and NO3- (0:1, 1:0, 2:1, 1:1, and 1:2) on stream leaf breakdown through a microcosm experiment. A significant inhibition of leaf breakdown rate was observed when the ratio was 1:2 with reduced microcosm pH, fungal biomass, enzyme activities as well as the frequencies of hub general in the fungal community. In conclusion, the ratio of SO42- and NO3- in acid rain was an important factor that could have a profound impact on leaf breakdown, even on ecosystem structure and functioning of streams.


Asunto(s)
Lluvia Ácida/efectos adversos , Agua Dulce/química , Nitratos/toxicidad , Hojas de la Planta/metabolismo , Sulfatos/toxicidad , Lluvia Ácida/análisis , Biodegradación Ambiental/efectos de los fármacos , Biomasa , China , Ecosistema , Agua Dulce/microbiología , Micobioma/efectos de los fármacos , Nitratos/análisis , Sulfatos/análisis
18.
Bull Environ Contam Toxicol ; 104(5): 634-641, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32236702

RESUMEN

The aim of this study was to characterize the leachate derived from biochar produced from malt spent rootlets (MSR) and to evaluate the required washing level in order to provide water free from inorganic substances. MSR biochar was placed in a column and subjected to six serial washes with distilled water, and the leachate was analysed for main anions and heavy metals. The 1st wash aliquot contained increased levels of mainly phosphates (980 mg/L) and chlorides (760 mg/L), and lower levels of nitrates, sulfates, fluoride and bromide, which were decreased over washes. Zero concentrations were observed after three washes for most anions. The increased levels of Zn, Be, Cs, Mn, V and Se determined in the 1st wash aliquot were eliminated in the successive washes. The toxic potency of each wash aliquot, determined by the use of the fairy shrimp Thamnocephalus platyurus showed that the 1st and 2nd MSR biochar leachates were toxic with 4.52 and 1.46 toxic units (TU), respectively, followed by a significant elimination of toxicity after further washes.


Asunto(s)
Carbón Orgánico/química , Metales Pesados/toxicidad , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/toxicidad , Animales , Anostraca/efectos de los fármacos , Bioensayo , Relación Dosis-Respuesta a Droga , Dosificación Letal Mediana , Metales Pesados/análisis , Nitratos/análisis , Nitratos/toxicidad , Sulfatos/análisis , Sulfatos/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/análisis
19.
Environ Toxicol Chem ; 39(5): 1071-1085, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32113188

RESUMEN

Elevated nitrate (NO3 ) and sulfate (SO4 ) in surface water are of global concern, and studies are needed to generate toxicity data to develop environmental guideline values for NO3 and SO4 . The present study was designed to fill existing gaps in toxicity databases by determining the acute and/or chronic toxicity of NO3 (tested as NaNO3 ) to a unionid mussel (Lampsilis siliquoidea), a midge (Chironomus dilutus), a fish (rainbow trout, Oncorhynchus mykiss), and 2 amphibians (Hyla versicolor and Lithobates sylvaticus), and to determine the acute and/or chronic toxicity of SO4 (tested as Na2 SO4 ) to 2 unionid mussels (L. siliquoidea and Villosa iris), an amphipod (Hyalella azteca), and 2 fish species (fathead minnow, Pimephales promelas and O. mykiss). Among the different test species, acute NO3 median effect concentrations (EC50s) ranged from 189 to >883 mg NO3 -N/L, and chronic NO3 20% effect concentrations (EC20s) based on the most sensitive endpoint ranged from 9.6 to 47 mg NO3 -N/L. The midge was the most sensitive species, and the trout was the least sensitive species in both acute and chronic NO3 exposures. Acute SO4 EC50s for the 2 mussel species (2071 and 2064 mg SO4 /L) were similar to the EC50 for the amphipod (2689 mg SO4 /L), whereas chronic EC20s for the 2 mussels (438 and 384 mg SO4 /L) were >2-fold lower than the EC20 of the amphipod (1111 mg SO4 /L), indicating the high sensitivity of mussels in chronic SO4 exposures. However, the fathead minnow, with an EC20 of 374 mg SO4 /L, was the most sensitive species in chronic SO4 exposures whereas the rainbow trout was the least sensitive species (EC20 > 3240 mg SO4 /L). The high sensitivity of fathead minnow was consistent with the finding in a previous chronic Na2 SO4 study. However, the EC20 values from the present study conducted in test water containing a higher potassium concentration (3 mg K/L) were >2-fold greater than those in the previous study at a lower potassium concentration (1 mg K/L), which confirmed the influence of potassium on chronic Na2 SO4 toxicity to the minnow. Environ Toxicol Chem 2020;39:1071-1085. © 2020 SETAC.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Agua Dulce/química , Nitratos/toxicidad , Sulfatos/toxicidad , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/toxicidad , Anfípodos/efectos de los fármacos , Animales , Bivalvos/efectos de los fármacos , Chironomidae/efectos de los fármacos , Femenino , Oncorhynchus mykiss/fisiología , Especificidad de la Especie , Unionidae/efectos de los fármacos , Calidad del Agua
20.
Artículo en Japonés | MEDLINE | ID: mdl-31434811

RESUMEN

Recently, the main air pollutant has been fine particulate matter (PM2.5), which is taken up by the whole body with severe adverse health effects. The main chemical components of PM2.5 are salts of sulfate (and nitrate) and carbons. However, it remains unknown which components are toxic. Here, the author reviewed the literatures to determine which components are toxic and the main mechanisms underlying their toxicity. Many epidemiological studies have shown that sulfate concentration is strongly related to mortality. However, there is no experimental evidence showing that sulfate at environmental concentrations of PM2.5 causes cardiovascular disease or other disease. On the other hand, carbon components such as elementary carbon (EC) produces high concentrations of reactive oxygen species (ROS) via its phagocytosis by macrophages, and organic carbon (OC) also produces high concentrations of ROS during its metabolic processes, and the ROS cause acute and chronic inflammation. They cause many diseases including cardiovascular disease, asthma and cancer. Furthermore, there are many lines of evidence showing that epigenetic changes such as DNA methylation or microRNA expression induced by particulate matters also induce the development of many diseases such as those mentioned above. It has been reported that carbon components are incorporated into the brain and produce ROS, and that the ROS cause damage to brain cells and Alzheimer's disease and cognitive disorders in the elderly.From these lines of evidence, the author would like to emphasize that the main toxicity of PM2.5 is due to carbon components, and it is important to take countermeasures to decrease the concentration of carbon components in ambient air.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Carbono/toxicidad , Material Particulado/toxicidad , Sulfatos/toxicidad , Enfermedad de Alzheimer/etiología , Animales , Asma/etiología , Enfermedades Cardiovasculares/etiología , Epigénesis Genética , Cobayas , Humanos , Ratones , Neoplasias/etiología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA