Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 440, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145804

RESUMEN

Chondroitin sulfate E (CS-E) is a vital sulfated glycosaminoglycan with diverse biological functions and therapeutic potential. This study marks a significant milestone by achieving the first successful microbial production of chondroitin 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) in Escherichia coli, enabling recombinant CS-E biosynthesis. Initially, we identified sulfotransferases capable of converting chondroitin sulfate A (CS-A) to CS-E, but these enzymes were non-functional when expressed in E. coli. Moreover, there is no experimentally derived three-dimensional structure available for this specific sulfotransferase in the protein databases. To overcome this challenge, we developed a 3D model of GalNAc4S-6ST using AlphaFold2 and employed PROSS stability design to identify mutations that enhance enzyme solubility and stability with different N-terminal truncations. Experimental validation of these mutations led to the identification of several functional enzymes. Among various E. coli strains tested for enzyme expression, Origami B (DE3) emerged as the most effective host. This facilitated the enzymatic conversion of CS-A to CS-E, achieving a conversion rate of over 50%, and marking the first successful biosynthesis of animal-free CS-E. These findings represent a significant advancement towards the large-scale synthesis of CS-E using cost-effective carbon sources, offering a sustainable alternative to traditional sourcing from endangered animals like sharks. KEY POINTS: • Functional expression of GalNAc4S-6ST in a simple prokaryote was accomplished. • First-time biosynthesis of animal-free chondroitin sulfate E was accomplished.


Asunto(s)
Sulfatos de Condroitina , Escherichia coli , Proteínas Recombinantes , Sulfotransferasas , Escherichia coli/genética , Escherichia coli/metabolismo , Sulfatos de Condroitina/biosíntesis , Sulfatos de Condroitina/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Modelos Moleculares , Estabilidad de Enzimas
2.
Carbohydr Polym ; 337: 122158, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710555

RESUMEN

Chondroitin sulfate (CS) stands as a pivotal compound in dietary supplements for osteoarthritis treatment, propelling significant interest in the biotechnological pursuit of environmentally friendly and safe CS production. Enzymatic synthesis of CS for instance CSA has been considered as one of the most promising methods. However, the bottleneck consistently encountered is the active expression of chondroitin 4-O-sulfotransferase (C4ST) during CSA biosynthesis. This study meticulously delved into optimizing C4ST expression through systematic enhancements in transcription, translation, and secretion mechanisms via modifications in the 5' untranslated region, the N-terminal encoding sequence, and the Komagataella phaffii chassis. Ultimately, the active C4ST expression escalated to 2713.1 U/L, representing a striking 43.7-fold increase. By applying the culture broth supernatant of C4ST and integrating the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis module, we constructed a one-pot enzymatic system for CSA biosynthesis, achieving a remarkable sulfonation degree of up to 97.0 %. The substantial enhancement in C4ST expression and the development of an engineered one-pot enzymatic synthesis system promises to expedite large-scale CSA biosynthesis with customizable sulfonation degrees.


Asunto(s)
Sulfatos de Condroitina , Sulfotransferasas , Sulfatos de Condroitina/química , Sulfatos de Condroitina/biosíntesis , Sulfatos de Condroitina/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Saccharomycetales/genética
3.
Braz. j. med. biol. res ; 34(2): 251-258, Feb. 2001.
Artículo en Inglés | LILACS | ID: lil-281604

RESUMEN

Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth


Asunto(s)
Animales , Ratones , Astrocitos/metabolismo , Glicosaminoglicanos/biosíntesis , Mesencéfalo/citología , Sulfatos/metabolismo , Ésteres del Ácido Sulfúrico , Astrocitos/metabolismo , Técnicas de Cultivo de Célula , Sulfatos de Condroitina/biosíntesis , Sulfatos de Condroitina/metabolismo , Electroforesis en Gel de Agar , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/biosíntesis , Heparitina Sulfato/metabolismo
4.
Braz. j. med. biol. res ; 29(9): 1221-6, Sept. 1996. ilus, graf
Artículo en Inglés | LILACS | ID: lil-186129

RESUMEN

The synthesis of glycosaminoglycans and acidic polysaccharides during embryonic and fetal development in mammals and molluscs is briefly reviewed. A sequential order of appearance of each of the acidic polysaccharides was observed, coinciding with the major processes of the ontogeny. In mammals, hyaluronic acid is the first glycosaminoglycan synthesized at the beginning of morphogenesis. This glycosaminoglycan is then replaced by chondroitin 6-sulfate during the migration of the mesenchymal cells. Heparan sulfate, dermatan sulfate and chondroitin 4-sulfate are synthesized only during cell differentiation. The synthesis of heparin, on the other hand, is confined to mast cells in a few tissues and is a late event in the differentiation process. The same general pattern is also observed in molluscs except that hyaluronic acid is replaced by an acidic galactan in the morphogenetic process. The activity of the degrading enzymes responsible for the disappearance of hyaluronic acid, chondroitin sulfate and the acidic galactan in each phase of embryonic development is also reviewed.


Asunto(s)
Animales , Sulfatos de Condroitina/biosíntesis , Dermatán Sulfato/biosíntesis , Heparina/biosíntesis , Heparitina Sulfato/biosíntesis , Ácido Hialurónico/biosíntesis , Morfogénesis/fisiología , Glicosaminoglicanos/biosíntesis , Mamíferos/crecimiento & desarrollo , Moluscos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...