Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5051, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877024

RESUMEN

Type IV pili are filamentous appendages found in most bacteria and archaea, where they can support functions such as surface adhesion, DNA uptake, aggregation, and motility. In most bacteria, PilT-family ATPases disassemble adhesion pili, causing them to rapidly retract and produce twitching motility, important for surface colonization. As archaea do not possess PilT homologs, it was thought that archaeal pili cannot retract and that archaea do not exhibit twitching motility. Here, we use live-cell imaging, automated cell tracking, fluorescence imaging, and genetic manipulation to show that the hyperthermophilic archaeon Sulfolobus acidocaldarius exhibits twitching motility, driven by retractable adhesion (Aap) pili, under physiologically relevant conditions (75 °C, pH 2). Aap pili are thus capable of retraction in the absence of a PilT homolog, suggesting that the ancestral type IV pili in the last universal common ancestor (LUCA) were capable of retraction.


Asunto(s)
Fimbrias Bacterianas , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/fisiología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética
2.
Nat Commun ; 15(1): 5050, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877033

RESUMEN

Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.


Asunto(s)
Microscopía por Crioelectrón , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/fisiología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Modelos Moleculares
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983838

RESUMEN

Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by assemblies of cytoskeletal polymers. Here we developed a physical model for the ESCRT-III-mediated division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. By comparing the dynamics of simulations with data collected from live cell imaging experiments, we propose that this branch of life uses a previously unidentified division mechanism. Active changes in the curvature of elastic cytoskeletal filaments can lead to filament perversions and supercoiling, to drive ring constriction and deform the overlying membrane. Abscission is then completed following filament disassembly. The model was also used to explore how different adenosine triphosphate (ATP)-driven processes that govern the way the structure of the filament is changed likely impact the robustness and symmetry of the resulting division. Comparisons between midcell constriction dynamics in simulations and experiments reveal a good agreement with the process when changes in curvature are implemented at random positions along the filament, supporting this as a possible mechanism of ESCRT-III-dependent division in this system. Beyond archaea, this study pinpoints a general mechanism of cytokinesis based on dynamic coupling between a coiling filament and the membrane.


Asunto(s)
Archaea/fisiología , División Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Citocinesis , Citoesqueleto/metabolismo , Sulfolobus acidocaldarius/fisiología
4.
Mol Microbiol ; 116(3): 943-956, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34219289

RESUMEN

Motile archaea are propelled by the archaellum, whose motor complex consists of the membrane protein ArlJ, the ATPase ArlI, and the ATP-binding protein ArlH. Despite its essential function and the existence of structural and biochemical data on ArlH, the role of ArlH in archaellum assembly and function remains elusive. ArlH is a structural homolog of KaiC, the central component of the cyanobacterial circadian clock. Since autophosphorylation and dephosphorylation of KaiC are central properties for the function of KaiC, we asked whether autophosphorylation is also a property of ArlH proteins. We observed that both ArlH from the euryarchaeon Pyrococcus furiosus (PfArlH) and from the crenarchaeon Sulfolobus acidocaldarius (SaArlH) have autophosphorylation activity. Using a combination of single-molecule fluorescence measurements and biochemical assays, we show that autophosphorylation of ArlH is closely linked to its oligomeric state when bound to hexameric ArlI. These experiments also strongly suggest that ArlH is a hexamer in its ArlI-bound state. Mutagenesis of the putative catalytic residue (Glu-57 in SaArlH) in ArlH results in a reduced autophosphorylation activity and abolished archaellation and motility in S. acidocaldarius, indicating that optimum phosphorylation activity of ArlH is essential for archaellation and motility.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Movimiento , Pyrococcus furiosus/fisiología , Sulfolobus acidocaldarius/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Relojes Circadianos , Mutagénesis Insercional/métodos , Fosforilación
5.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741627

RESUMEN

Sulfolobus acidocaldarius is a thermoacidophilic crenarchaeon with optimal growth at 80°C and pH 2 to 3. Due to its unique physiological properties, allowing life at environmental extremes, and the recent availability of genetic tools, this extremophile has received increasing interest for biotechnological applications. In order to elucidate the potential of tolerating process-related stress conditions, we investigated the response of S. acidocaldarius toward the industrially relevant organic solvent 1-butanol. In response to butanol exposure, biofilm formation of S. acidocaldarius was enhanced and occurred at up to 1.5% (vol/vol) 1-butanol, while planktonic growth was observed at up to 1% (vol/vol) 1-butanol. Confocal laser-scanning microscopy revealed that biofilm architecture changed with the formation of denser and higher tower-like structures. Concomitantly, changes in the extracellular polymeric substances with enhanced carbohydrate and protein content were determined in 1-butanol-exposed biofilms. Using scanning electron microscopy, three different cell morphotypes were observed in response to 1-butanol. Transcriptome and proteome analyses were performed comparing the response of planktonic and biofilm cells in the absence and presence of 1-butanol. In response to 1% (vol/vol) 1-butanol, transcript levels of genes encoding motility and cell envelope structures, as well as membrane proteins, were reduced. Cell division and/or vesicle formation were upregulated. Furthermore, changes in immune and defense systems, as well as metabolism and general stress responses, were observed. Our findings show that the extreme lifestyle of S.acidocaldarius coincided with a high tolerance to organic solvents. This study provides what may be the first insights into biofilm formation and membrane/cell stress caused by organic solvents in S. acidocaldariusIMPORTANCEArchaea are unique in terms of metabolic and cellular processes, as well as the adaptation to extreme environments. In the past few years, the development of genetic systems and biochemical, genetic, and polyomics studies has provided deep insights into the physiology of some archaeal model organisms. In this study, we used S. acidocaldarius, which is adapted to the two extremes of low pH and high temperature, to study its tolerance and robustness as well as its global cellular response toward organic solvents, as exemplified by 1-butanol. We were able to identify biofilm formation as a primary cellular response to 1-butanol. Furthermore, the triggered cell/membrane stress led to significant changes in culture heterogeneity accompanied by changes in central cellular processes, such as cell division and cellular defense systems, thus suggesting a global response for the protection at the population level.


Asunto(s)
1-Butanol/efectos adversos , Biopelículas/efectos de los fármacos , Plancton/efectos de los fármacos , Proteoma , Solventes/efectos adversos , Sulfolobus acidocaldarius/fisiología , Transcriptoma , Aclimatación , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Microscopía Electrónica de Rastreo , Plancton/fisiología , Estrés Fisiológico , Sulfolobus acidocaldarius/efectos de los fármacos , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/ultraestructura
6.
Nat Microbiol ; 5(1): 216-225, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844299

RESUMEN

Motility structures are vital in all three domains of life. In Archaea, motility is mediated by the archaellum, a rotating type IV pilus-like structure that is a unique nanomachine for swimming motility in nature. Whereas periplasmic FlaF binds the surface layer (S-layer), the structure, assembly and roles of other periplasmic components remain enigmatic, limiting our knowledge of the archaellum's functional interactions. Here, we find that the periplasmic protein FlaG and the association with its paralogue FlaF are essential for archaellation and motility. Therefore, we determine the crystal structure of Sulfolobus acidocaldarius soluble FlaG (sFlaG), which reveals a ß-sandwich fold resembling the S-layer-interacting FlaF soluble domain (sFlaF). Furthermore, we solve the sFlaG2-sFlaF2 co-crystal structure, define its heterotetrameric complex in solution by small-angle X-ray scattering and find that mutations that disrupt the complex abolish motility. Interestingly, the sFlaF and sFlaG of Pyrococcus furiosus form a globular complex, whereas sFlaG alone forms a filament, indicating that FlaF can regulate FlaG filament assembly. Strikingly, Sulfolobus cells that lack the S-layer component bound by FlaF assemble archaella but cannot swim. These collective results support a model where a FlaG filament capped by a FlaG-FlaF complex anchors the archaellum to the S-layer to allow motility.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Periplasma/metabolismo , Sulfolobus acidocaldarius/fisiología , Proteínas Arqueales/genética , Membrana Celular/metabolismo , Flagelos/fisiología , Modelos Biológicos , Modelos Moleculares , Movimiento , Mutación , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad
7.
Proc Natl Acad Sci U S A ; 115(51): 12932-12937, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30518563

RESUMEN

Archaea have many unique physiological features of which the lipid composition of their cellular membranes is the most striking. Archaeal ether-linked isoprenoidal membranes can occur as bilayers or monolayers, possess diverse polar head groups, and a multiplicity of ring structures in the isoprenoidal cores. These lipid structures are proposed to provide protection from the extreme temperature, pH, salinity, and nutrient-starved conditions that many archaea inhabit. However, many questions remain regarding the synthesis and physiological role of some of the more complex archaeal lipids. In this study, we identify a radical S-adenosylmethionine (SAM) protein in Sulfolobus acidocaldarius required for the synthesis of a unique cyclopentyl head group, known as calditol. Calditol-linked glycerol dibiphytanyl glycerol tetraethers (GDGTs) are membrane spanning lipids in which calditol is ether bonded to the glycerol backbone and whose production is restricted to a subset of thermoacidophilic archaea of the Sulfolobales order within the Crenarchaeota phylum. Several studies have focused on the enzymatic mechanism for the synthesis of the calditol moiety, but to date no protein that catalyzes this reaction has been discovered. Phylogenetic analyses of this putative calditol synthase (Cds) reveal the genetic potential for calditol-GDGT synthesis in phyla other than the Crenarchaeota, including the Korarchaeota and Marsarchaeota. In addition, we identify Cds homologs in metagenomes predominantly from acidic ecosystems. Finally, we demonstrate that deletion of calditol synthesis renders S. acidocaldarius sensitive to extremely low pH, indicating that calditol plays a critical role in protecting archaeal cells from acidic stress.


Asunto(s)
Proteínas Arqueales/fisiología , Lípidos de la Membrana/química , Estrés Fisiológico , Sulfolobus acidocaldarius/fisiología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Genoma Arqueal , Concentración de Iones de Hidrógeno , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo
8.
Nucleic Acids Res ; 46(9): 4794-4806, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29529252

RESUMEN

Non-coding RNAs (ncRNA) are involved in essential biological processes in all three domains of life. The regulatory potential of ncRNAs in Archaea is, however, not fully explored. In this study, RNA-seq analyses identified a set of 29 ncRNA transcripts in the hyperthermophilic archaeon Sulfolobus acidocaldarius that were differentially expressed in response to biofilm formation. The most abundant ncRNA of this set was found to be resistant to RNase R treatment (RNase R resistant RNA, RrrR(+)) due to duplex formation with a reverse complementary RNA (RrrR(-)). The deletion of the RrrR(+) gene resulted in significantly impaired biofilm formation, while its overproduction increased biofilm yield. RrrR(+) was found to act as an antisense RNA against the mRNA of a hypothetical membrane protein. The RrrR(+) transcript was shown to be stabilized by the presence of the RrrR(-) strand in S. acidocaldarius cell extracts. The accumulation of these RrrR duplexes correlates with an apparent absence of dsRNA degrading RNase III domains in archaeal proteins.


Asunto(s)
Biopelículas/crecimiento & desarrollo , ARN Bicatenario/metabolismo , ARN no Traducido/metabolismo , Sulfolobus acidocaldarius/genética , Exorribonucleasas , Eliminación de Gen , Perfilación de la Expresión Génica , Estabilidad del ARN , ARN Bicatenario/genética , ARN no Traducido/genética , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/fisiología
9.
Sci Rep ; 7(1): 16984, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208997

RESUMEN

Burial is generally detrimental to the preservation of biological signals. It has often been assumed that (bio)mineral-encrusted microorganisms are more resistant to burial-induced degradation than non-encrusted ones over geological timescales. For the present study, we submitted Sulfolobus acidocaldarius experimentally encrusted by amorphous Fe phosphates to constrained temperature conditions (150 °C) under pressure for 1 to 5 days, thereby simulating burial-induced processes. We document the molecular and mineralogical evolution of these assemblages down to the sub-micrometer scale using X-ray diffraction, scanning and transmission electron microscopies and synchrotron-based X-ray absorption near edge structure spectroscopy at the carbon K-edge. The present results demonstrate that the presence of Fe-phosphates enhances the chemical degradation of microbial organic matter. While Fe-phosphates remained amorphous in abiotic controls, crystalline lipscombite (FeIIxFeIII3-x(PO4)2(OH)3-x) entrapping organic matter formed in the presence of S. acidocaldarius cells. Lipscombite textures (framboidal vs. bipyramidal) appeared only controlled by the initial level of encrustation of the cells, suggesting that the initial organic matter to mineral ratio influences the competition between nucleation and crystal growth. Altogether these results highlight the important interplay between minerals and organic matter during fossilization, which should be taken into account when interpreting the fossil record.


Asunto(s)
Compuestos Ferrosos , Fósiles , Fosfatos , Sulfolobus acidocaldarius/fisiología , Compuestos Ferrosos/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Minerales/química , Fosfatos/química , Sulfolobus acidocaldarius/crecimiento & desarrollo , Sulfolobus acidocaldarius/ultraestructura , Temperatura , Espectroscopía de Absorción de Rayos X , Difracción de Rayos X
10.
PLoS One ; 11(5): e0155287, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27167213

RESUMEN

In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures) such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF) to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow.


Asunto(s)
Membrana Celular/química , Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Fosfolípidos/química , Sulfolobus acidocaldarius/química , Adaptación Fisiológica , Aniones , Membrana Celular/ultraestructura , Medios de Cultivo/química , Ciclopentanos/química , Ambientes Extremos , Electricidad Estática , Sulfolobus acidocaldarius/fisiología , Termodinámica
11.
Biochimie ; 118: 294-301, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25447136

RESUMEN

N-Glycosylation is one of the predominant posttranslational modifications, which is found in all three domains of life. N-Glycosylation has been shown to influence many biological aspects of proteins, like protein folding, stability or activity. In this study we demonstrate that the archaellum filament subunit FlaB of Sulfolobus acidocaldarius is N-glycosylated. Each of the six predicted N-Glycosylation sites within FlaB are modified with the attachment of an N-glycan. Although, it has been previously shown that N-Glycosylation is essential for motility in S. acidocaldarius, as defects in the N-Glycosylation process resulted in none or reduced motile cells, strains lacking one to all six N-Glycosylation sites within FlaB still remained motile. Deletion of the first five N-Glycosylation sites in FlaB did not significantly affect the motility, whereas removal of all six N-Glycosylation sites reduced motility by about 40%. Transmission electron microscopy analyses of non glycosylated and glycosylated archaellum filament revealed no structural change in length. Therefore N-Glycosylation does not appear to be important for the stability and assembly of the archaellum filament itself, but plays a role in other parts of the archaellum assembly.


Asunto(s)
Proteínas Arqueales/metabolismo , Flagelina/metabolismo , Sulfolobus acidocaldarius/fisiología , Secuencia de Aminoácidos , Glicosilación , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa
12.
Microbiologyopen ; 3(4): 531-43, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24916761

RESUMEN

Sulfolobus acidocaldarius, a thermo-acidophilic crenarchaeon which grows optimally at 76 °C and pH 3, exhibits an astonishing high number of N-glycans linked to the surface (S-) layer proteins. The S-layer proteins as well as other surface-exposed proteins are modified via N-glycosylation, in which the oligosaccharyl transferase AglB catalyzes the final step of the transfer of the glycan tree to the nascent protein. In this study, we demonstrated that AglB is essential for the viability of S. acidocaldarius. Different deletion approaches, that is, markerless in-frame deletion as well as a marker insertion were unsuccessful to create an aglB deletion mutant. Only the integration of a second aglB gene copy allowed the successful deletion of the original aglB.


Asunto(s)
Genes Esenciales , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sulfolobus acidocaldarius/enzimología , Sulfolobus acidocaldarius/fisiología , Genes Arqueales , Glicosilación , Concentración de Iones de Hidrógeno , Viabilidad Microbiana , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/crecimiento & desarrollo , Temperatura
13.
Extremophiles ; 18(2): 331-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24399085

RESUMEN

The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1-3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.


Asunto(s)
Proteínas Arqueales/metabolismo , División Celular , Eliminación de Gen , Sulfolobus acidocaldarius/genética , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Datos de Secuencia Molecular , Transporte de Proteínas , Sulfolobus acidocaldarius/fisiología , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
14.
Mol Microbiol ; 91(4): 716-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24330313

RESUMEN

Microbes have evolved sophisticated mechanisms of motility allowing them to respond to changing environmental conditions. While this cellular process is well characterized in bacteria, the mode and mechanisms of motility are poorly understood in archaea. This study examines the motility of individual cells of the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Specifically, we investigated motility of cells producing exclusively the archaeal swimming organelle, the archaellum. Archaella are structurally and in sequence similar to bacterial type IV pili involved in surface motility via pilus extension-retraction cycles and not to rotating bacterial flagella. Unexpectedly, our studies reveal a novel type of behaviour for type IV pilus like structures: archaella rotate and their rotation drives swimming motility. Moreover, we demonstrate that temperature has a direct effect on rotation velocity explaining temperature-dependent swimming velocity.


Asunto(s)
Extensiones de la Superficie Celular/fisiología , Sulfolobus acidocaldarius/fisiología , Extensiones de la Superficie Celular/efectos de la radiación , Locomoción/efectos de la radiación , Sustancias Macromoleculares/metabolismo , Sulfolobus acidocaldarius/efectos de la radiación , Temperatura
15.
ISME J ; 7(10): 1886-98, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23657363

RESUMEN

Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators.


Asunto(s)
Biopelículas , Crenarchaeota/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Crenarchaeota/genética , Crenarchaeota/metabolismo , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Eliminación de Secuencia , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/fisiología
16.
Mol Cell ; 49(6): 1069-82, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23416110

RESUMEN

Superfamily ATPases in type IV pili, type 2 secretion, and archaella (formerly archaeal flagella) employ similar sequences for distinct biological processes. Here, we structurally and functionally characterize prototypical superfamily ATPase FlaI in Sulfolobus acidocaldarius, showing FlaI activities in archaeal swimming-organelle assembly and movement. X-ray scattering data of FlaI in solution and crystal structures with and without nucleotide reveal a hexameric crown assembly with key cross-subunit interactions. Rigid building blocks form between N-terminal domains (points) and neighboring subunit C-terminal domains (crown ring). Upon nucleotide binding, these six cross-subunit blocks move with respect to each other and distinctly from secretion and pilus ATPases. Crown interactions and conformations regulate assembly, motility, and force direction via a basic-clamp switching mechanism driving conformational changes between stable, backbone-interconnected moving blocks. Collective structural and mutational results identify in vivo functional components for assembly and motility, phosphate-triggered rearrangements by ATP hydrolysis, and molecular predictors for distinct ATPase superfamily functions.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Arqueales/química , Sulfolobus acidocaldarius/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Flagelos/enzimología , Flagelos/ultraestructura , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Sulfolobus acidocaldarius/ultraestructura , Propiedades de Superficie
17.
Environ Microbiol ; 14(12): 3188-202, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23078543

RESUMEN

Archaea display a variety of type IV pili on their surface and employ them in different physiological functions. In the crenarchaeon Sulfolobus acidocaldarius the most abundant surface structure is the aap pilus (archaeal adhesive pilus). The construction of in frame deletions of the aap genes revealed that all the five genes (aapA, aapX, aapE, aapF, aapB) are indispensible for assembly of the pilus and an impact on surface motility and biofilm formation was observed. Our analyses revealed that there exists a regulatory cross-talk between the expression of aap genes and archaella (formerly archaeal flagella) genes during different growth phases. The structure of the aap pilus is entirely different from the known bacterial type IV pili as well as other archaeal type IV pili. An aap pilus displayed 3 stranded helices where there is a rotation per subunit of ∼138° and a rise per subunit of ∼5.7 Å. The filaments have a diameter of ∼110 Å and the resolution was judged to be ∼9 Å. We concluded that small changes in sequence might be amplified by large changes in higher-order packing. Our finding of an extraordinary stability of aap pili possibly represents an adaptation to harsh environments that S. acidocaldarius encounters.


Asunto(s)
Fimbrias Bacterianas/fisiología , Sulfolobus acidocaldarius/citología , Sulfolobus acidocaldarius/fisiología , Adhesividad , Biopelículas , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/ultraestructura , Microscopía Electrónica de Transmisión , Mutación , Sulfolobus acidocaldarius/genética
18.
Mol Microbiol ; 86(1): 24-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22845497

RESUMEN

The ability of microorganisms to sense and respond to sudden changes in their environment is often based on regulatory systems comprising reversible protein phosphorylation. The archaellum (former: archaeal flagellum) is used for motility in Archaea and therefore functionally analogous to the bacterial flagellum. In contrast with archaellum-mediated movement in certain members of the Euryarchaeota, this process, including its regulation, remains poorly studied in crenarchaeal organisms like Sulfolobus species. Recently, it was shown in Sulfolobus acidocaldarius that tryptone limiting conditions led to the induction of archaella expression and assembly. Here we have identified two proteins, the FHA domain-containing protein ArnA and the vWA domain-containing protein ArnB that are involved in regulating archaella expression in S. acidocaldarius. Both proteins are phosphorylated by protein kinases in vitro and interact strongly in vivo. Phenotypic analyses revealed that these two proteins are repressors of archaella expression. These results represent the first step in understanding the networks that underlie regulation of cellular motility in Crenarchaeota and emphasize the importance of protein phosphorylation in the regulation of cellular processes in the Archaea.


Asunto(s)
Proteínas Arqueales/biosíntesis , Regulación de la Expresión Génica Arqueal , Proteínas Represoras/metabolismo , Sulfolobus acidocaldarius/genética , Flagelos/fisiología , Locomoción , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Sulfolobus acidocaldarius/fisiología
19.
Extremophiles ; 15(6): 711-2, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21912952

RESUMEN

The thermoacidophiles Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 are considered key model organisms representing a major phylum of the Crenarchaeota. Because maintaining current, accurate genome information is indispensable for modern biology, we have updated gene function annotation using the arCOGs database, plus other available functional, structural and phylogenetic information. The goal of this initiative is continuous improvement of genome annotation with the support of the Sulfolobus research community.


Asunto(s)
Genoma Arqueal , Sulfolobus acidocaldarius/fisiología , Sulfolobus solfataricus/fisiología , Sistemas de Lectura Abierta , Filogenia , Sulfolobus acidocaldarius/clasificación , Sulfolobus acidocaldarius/genética , Sulfolobus solfataricus/clasificación , Sulfolobus solfataricus/genética , Transcripción Genética
20.
PLoS One ; 5(11): e14104, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21124788

RESUMEN

BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.


Asunto(s)
Aclimatación/fisiología , Biopelículas/crecimiento & desarrollo , Calor , Sulfolobus/fisiología , Aclimatación/efectos de los fármacos , Acetilglucosamina/análisis , Biopelículas/efectos de los fármacos , Ecosistema , Matriz Extracelular/metabolismo , Galactosa/análisis , Glucosa/análisis , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Hierro/farmacología , Manosa/análisis , Microscopía Confocal , Microscopía Electrónica de Rastreo , Polisacáridos/metabolismo , Especificidad de la Especie , Sulfolobus/clasificación , Sulfolobus/ultraestructura , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/fisiología , Sulfolobus solfataricus/metabolismo , Sulfolobus solfataricus/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...