Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.638
Filtrar
1.
Sci Rep ; 14(1): 10124, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698114

RESUMEN

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Asunto(s)
Cobre , Fermentación , Sulfuro de Hidrógeno , Metalotioneína , Odorantes , Saccharomyces cerevisiae , Vitis , Vino , Vino/análisis , Cobre/metabolismo , Vitis/microbiología , Saccharomyces cerevisiae/metabolismo , Sulfuro de Hidrógeno/metabolismo , Odorantes/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfitos/farmacología , Control de Plagas/métodos
2.
Planta ; 259(6): 142, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702456

RESUMEN

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno , Fosfolipasa D , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Prolina/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Peroxidación de Lípido
3.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673925

RESUMEN

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Asunto(s)
Células Endoteliales , Sulfuro de Hidrógeno , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Fosforilación/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Animales , Ratas , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratas Sprague-Dawley , Hipoxia de la Célula , Proliferación Celular/efectos de los fármacos , Tirosina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Inductores de la Angiogénesis/farmacología , Inductores de la Angiogénesis/metabolismo , Serina/metabolismo , Hipoxia/metabolismo
4.
Aging (Albany NY) ; 16(7): 6521-6536, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613798

RESUMEN

Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.


Asunto(s)
Lesión Pulmonar Aguda , Compuestos Alílicos , Sulfuro de Hidrógeno , Lipopolisacáridos , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Transducción de Señal , Sulfuros , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , FN-kappa B/metabolismo , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Compuestos Alílicos/farmacología , Compuestos Alílicos/uso terapéutico , Sulfuros/farmacología , Sulfuros/uso terapéutico , Masculino , Sulfuro de Hidrógeno/metabolismo , Ratones , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ajo/química , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Suplementos Dietéticos
5.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648493

RESUMEN

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Asunto(s)
Azufre , Azufre/metabolismo , Anaerobiosis , Sulfuro de Hidrógeno/metabolismo , Fenoles/metabolismo , Compuestos de Bencidrilo/metabolismo
6.
Ecotoxicol Environ Saf ; 276: 116307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593497

RESUMEN

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.


Asunto(s)
Sulfuro de Hidrógeno , Plantas , Transducción de Señal , Tiocianatos , Sulfuro de Hidrógeno/metabolismo , Tiocianatos/metabolismo , Plantas/metabolismo , Gasotransmisores/metabolismo , Cloroplastos/metabolismo , Inactivación Metabólica
7.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674008

RESUMEN

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Asunto(s)
Antibacterianos , Ciprofloxacina , Cisteína , Escherichia coli , Glutatión , Homeostasis , Cisteína/metabolismo , Ciprofloxacina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Homeostasis/efectos de los fármacos , Glutatión/metabolismo , Antibacterianos/farmacología , Medios de Cultivo/química , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Mutación , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
8.
J Mater Chem B ; 12(17): 4248-4261, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602387

RESUMEN

Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 µM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.


Asunto(s)
Antiinflamatorios no Esteroideos , Diclofenaco , Sulfuro de Hidrógeno , Profármacos , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis química , Sulfuro de Hidrógeno/metabolismo , Animales , Humanos , Diclofenaco/farmacología , Células HeLa , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Ratas , Nanomedicina Teranóstica , Inflamación/tratamiento farmacológico , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/síntesis química , Ratones , Células RAW 264.7 , Sistemas de Liberación de Medicamentos , Edema/tratamiento farmacológico , Edema/inducido químicamente
9.
Anal Chem ; 96(18): 7005-7013, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657082

RESUMEN

Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.


Asunto(s)
Arilamina N-Acetiltransferasa , Carcinoma Hepatocelular , Colorantes Fluorescentes , Sulfuro de Hidrógeno , Neoplasias Hepáticas , Fotones , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Arilamina N-Acetiltransferasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Animales , Ratones , Células Hep G2 , Imagen Óptica
10.
Commun Biol ; 7(1): 466, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632386

RESUMEN

Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.


Asunto(s)
Sulfuro de Hidrógeno , Reishi , Celulosa/metabolismo , Reishi/genética , Carbono/metabolismo , Transducción de Señal , Sulfuro de Hidrógeno/metabolismo
11.
Pharmacol Res ; 203: 107180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599468

RESUMEN

Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.


Asunto(s)
Sulfuro de Hidrógeno , Mitocondrias , Enfermedades Mitocondriales , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Humanos , Animales , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Suplementos Dietéticos , Transducción de Señal/efectos de los fármacos
12.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643323

RESUMEN

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Asunto(s)
Curcumina , Sulfuro de Hidrógeno , Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Curcumina/farmacología , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , ARN , Oxígeno/metabolismo , Metiltransferasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
13.
Physiol Plant ; 176(2): e14291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628053

RESUMEN

Priming plants with chemical agents has been extensively investigated as a means for improving their tolerance to many biotic and abiotic stresses. Earlier, we showed that priming young avocado (Persea americana Mill cv. 'Hass') trees with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, improves the response of photosynthesis to simulated frost (cold followed by high light) conditions. In the current study, we performed a transcriptome analysis to gain insight into the molecular response of avocado 'Hass' leaves to frost, with or without NaHS priming. The analysis revealed 2144 (down-regulated) and 2064 (up-regulated) differentially expressed genes (DEGs) common to both non-primed and primed trees. Non-primed trees had 697 (down) and 559 (up) unique DEGs, while primed trees exhibited 1395 (down) and 1385 (up) unique DEGs. We focus on changes in the expression patterns of genes encoding proteins involved in photosynthesis, carbon cycle, protective functions, biosynthesis of isoprenoids and abscisic acid (ABA), as well as ABA-regulated genes. Notably, the differential expression results depict the enhanced response of primed trees to the frost and highlight gene expression changes unique to primed trees. Amongst these are up-regulated genes encoding pathogenesis-related proteins, heat shock proteins, enzymes for ABA metabolism, and ABA-induced transcription factors. Extending the priming experiments to field conditions, which showed a benefit to the physiology of trees following chilling, suggests that it can be a possible means to improve trees' response to cold stress under natural winter conditions.


Asunto(s)
Sulfuro de Hidrógeno , Persea , Persea/genética , Sulfuros/farmacología , Sulfuro de Hidrógeno/metabolismo , Perfilación de la Expresión Génica , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas
14.
PLoS One ; 19(4): e0300261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568919

RESUMEN

Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.


Asunto(s)
Sulfuro de Hidrógeno , Ratas , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Línea Celular , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Apoptosis
15.
J Nanobiotechnology ; 22(1): 205, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658965

RESUMEN

The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Sulfuro de Hidrógeno , Mitocondrias , Nanopartículas , Terapia Fototérmica , Profármacos , Tirapazamina , Terapia Fototérmica/métodos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Cobre/química , Cobre/farmacología , Ratones , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Tirapazamina/farmacología , Tirapazamina/química , Nanopartículas/química , Ácido Hialurónico/química , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos
16.
J Med Chem ; 67(9): 7431-7442, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38664896

RESUMEN

Since hydrogen sulfide (H2S) is an important endogenous gaseous mediator, therapeutic manipulation of H2S is promising for anticancer treatment. In this work, we develop a novel theranostic nanoplatform with H2S-specific and photocontrolled synergistic activation for imaging-guided H2S depletion and downregulation along with promoted photothermal therapy. Such a nanoplatform is fabricated by integration of a H2S-responsive molecule probe that can generate a cystathionine-ß-synthase (CBS) inhibitor AOAA and a photothermal transducer into an NIR-light-responsive container. Our nanoplatform can turn on NIR fluorescence specifically in H2S-rich cancers, guiding further laser irradiation. Furthermore, prominent conversion of photoenergy into heat guarantees special container melting with controllable AOAA release for H2S-level downregulation. This smart regulation of the endogenous H2S level amplifies the PTT therapeutic effect, successfully suppressing colorectal tumor in living mice under NIR fluorescence imaging guidance. Thus, we believe that this nanoplatform may provide a powerful tool toward H2S-concerned cancer treatment with an optimized diagnostic and therapeutic effect.


Asunto(s)
Neoplasias Colorrectales , Regulación hacia Abajo , Sulfuro de Hidrógeno , Terapia Fototérmica , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Animales , Terapia Fototérmica/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Humanos , Ratones , Regulación hacia Abajo/efectos de los fármacos , Cistationina betasintasa/metabolismo , Cistationina betasintasa/antagonistas & inhibidores , Imagen Óptica , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Rayos Infrarrojos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos
17.
Redox Biol ; 72: 103125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574432

RESUMEN

Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.


Asunto(s)
Sulfuro de Hidrógeno , Activación de Macrófagos , Macrófagos , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Animales , Ratones , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Activación de Macrófagos/efectos de los fármacos , Lipopolisacáridos , Inflamación/metabolismo , Cistationina gamma-Liasa/metabolismo , Sulfuros/farmacología , Interferón gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Proteómica/métodos
18.
Int Immunopharmacol ; 132: 111990, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574702

RESUMEN

Hydrogen sulfide (H2S), recognized as the third gasotransmitter, plays a pivotal role in the pathophysiological processes of various diseases. Cystathionine γ-lyase (CSE) is the main enzyme for H2S production in the skin. However, effects and mechanisms of H2S in diabetic skin wound healing remain unclear. Our findings revealed a decrease in plasma H2S content in diabetic patients with skin wounds. CSE knockout (KO) diabetic mice resulted in delayed wound healing, reduced blood perfusion, and CD31 expression around the wounds. It also led to increased infiltration of inflammatory cells and M1-type macrophages, decreased collagen levels, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression. Additionally, there were enhanced expressions of necroptosis related proteins, including receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like protein (MLKL). In comparison, sodium hydrosulfide (NaHS), H2S donor, accelerated skin wound healing in leptin receptor deficiency (db/db) mice. This acceleration was accompanied by increased blood perfusion and CD31 expression, reduced infiltration of inflammatory cells and M1-type macrophages, elevated collagen levels, α-SMA, and PCNA expressions, and decreased necroptosis-related protein expressions together with nuclear factor-κB (NF-κB) p65 phosphorylation. In conclusion, H2S regulates macrophage polarization and necroptosis, contributing to the acceleration of diabetic skin wound healing. These findings offer a novel strategy for the treatment of diabetic skin wounds.


Asunto(s)
Cistationina gamma-Liasa , Diabetes Mellitus Experimental , Sulfuro de Hidrógeno , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis , Piel , Sulfuros , Cicatrización de Heridas , Animales , Sulfuro de Hidrógeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Piel/patología , Piel/metabolismo , Piel/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/genética , Masculino , Ratones , Humanos , Necroptosis/efectos de los fármacos , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
19.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654065

RESUMEN

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Asunto(s)
Dominio Catalítico , Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/química , Cristalografía por Rayos X , Especificidad por Sustrato , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálisis
20.
Adv Sci (Weinh) ; 11(18): e2303901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445847

RESUMEN

Oxidative stress induced by excess reactive oxygen species (ROS) is a primary pathogenic cause of acute kidney injury (AKI). Development of an effective antioxidation system to mitigate oxidative stress for alleviating AKI remains to be investigated. This study presents the synthesis of an ultra-small Platinum (Pt) sulfur cluster (Pt5.65S), which functions as a pH-activatable prefabricated nanozyme (pre-nanozyme). This pre-nanozyme releases hydrogen sulfide (H2S) and transforms into a nanozyme (Ptzyme) that mimics various antioxidant enzymes, including superoxide dismutase and catalase, within the inflammatory microenvironment. Notably, the Pt5.65S pre-nanozyme exhibits an endo-exogenous synergy-enhanced antioxidant therapeutic mechanism. The Ptzyme reduces oxidative damage and inflammation, while the released H2S gas promotes proneurogenesis by activating Nrf2 and upregulating the expression of antioxidant molecules and enzymes. Consequently, the Pt5.65S pre-nanozyme shows cytoprotective effects against ROS/reactive nitrogen species (RNS)-mediated damage at remarkably low doses, significantly improving treatment efficacy in mouse models of kidney ischemia-reperfusion injury and cisplatin-induced AKI. Based on these findings, the H2S-generating pre-nanozyme may represent a promising therapeutic strategy for mitigating inflammatory diseases such as AKI and others.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Sulfuro de Hidrógeno , Estrés Oxidativo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Animales , Estrés Oxidativo/efectos de los fármacos , Ratones , Sulfuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Antioxidantes/metabolismo , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA