Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Nat Commun ; 13(1): 5133, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050397

RESUMEN

DNA end resection is delicately regulated through various types of post-translational modifications to initiate homologous recombination, but the involvement of SUMOylation in this process remains incompletely understood. Here, we show that MRE11 requires SUMOylation to shield it from ubiquitin-mediated degradation when resecting damaged chromatin. Upon DSB induction, PIAS1 promotes MRE11 SUMOylation on chromatin to initiate DNA end resection. Then, MRE11 is deSUMOylated by SENP3 mainly after it has moved away from DSB sites. SENP3 deficiency results in MRE11 degradation failure and accumulation on chromatin, causing genome instability. We further show that cancer-related MRE11 mutants with impaired SUMOylation exhibit compromised DNA repair ability. Thus, we demonstrate that MRE11 SUMOylation in coordination with ubiquitylation is dynamically controlled by PIAS1 and SENP3 to facilitate DNA end resection and maintain genome stability.


Asunto(s)
Cromatina , Proteína Homóloga de MRE11 , Sumoilación , Ubiquitinación , Cisteína Endopeptidasas/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Inestabilidad Genómica , Homeostasis , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación/genética , Sumoilación/fisiología , Ubiquitinación/genética , Ubiquitinación/fisiología
2.
Nat Commun ; 13(1): 281, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022408

RESUMEN

SUMOylation is a post-translational modification of proteins that regulates these proteins' localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma.


Asunto(s)
Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Mutación , Sumoilación/fisiología , Animales , Biomarcadores de Tumor , Liasas de Carbono-Nitrógeno/genética , Liasas de Carbono-Nitrógeno/metabolismo , Cromatina , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Inestabilidad Genómica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional , Sumoilación/efectos de los fármacos , Sumoilación/genética , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Sci ; 113(2): 622-633, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839558

RESUMEN

Small ubiquitin-like modifier (SUMO)ylation is one of the posttranslational modifications and is implicated in many tumor types. Modulation of SUMOylation can affect tumor progression, but the underlying mechanisms remain unclear. Here, we show that, for the first time, in uveal melanoma (UM), the most common intraocular malignancy in adults, global SUMOylation is upregulated and participates in tumor growth. Inhibition of SUMOylation in UM is sufficient to reduce tumor growth both in vitro and in vivo. Furthermore, we found that retinoblastoma protein (Rb) is a target protein and a critical downstream effector of the upregulated SUMOylation activity in UM. Increased SUMOylation of the Rb protein leads to its hyperphosphorylation and inactivation in UM cells, promoting UM cell proliferation. In summary, our results provide novel insight into the mechanism underlying SUMOylation-regulated tumor growth in UM.


Asunto(s)
Melanoma/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Sumoilación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Úvea/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Melanoma/patología , Ratones , Fosforilación , Proteína SUMO-1/metabolismo , Sumoilación/efectos de los fármacos , Neoplasias de la Úvea/patología
4.
Sci Rep ; 11(1): 24105, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916557

RESUMEN

Thyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)-/- mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Sumoilación/fisiología , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores alfa de Hormona Tiroidea/fisiología , Adipocitos/patología , Adipocitos/fisiología , Tejido Adiposo Blanco/citología , Animales , Proteína de Unión a CREB/metabolismo , Proliferación Celular , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones , Ratones Mutantes , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología
5.
Front Immunol ; 12: 750969, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858407

RESUMEN

The COVID-19 is an infectious disease caused by SARS-CoV-2 infection. A large number of clinical studies found high-level expression of pro-inflammatory cytokines in patients infected with SARS-CoV-2, which fuels the rapid development of the disease. However, the specific molecular mechanism is still unclear. In this study, we found that SARS-CoV-2 Nsp5 can induce the expression of cytokines IL-1ß, IL-6, TNF-α, and IL-2 in Calu-3 and THP1 cells. Further research found that Nsp5 enhances cytokine expression through activating the NF-κB signaling pathway. Subsequently, we investigated the upstream effectors of the NF-κB signal pathway on Nsp5 overexpression and discovered that Nsp5 increases the protein level of MAVS. Moreover, Nsp5 can promote the SUMOylation of MAVS to increase its stability and lead to increasing levels of MAVS protein, finally triggering activation of NF-κB signaling. The knockdown of MAVS and the inhibitor of SUMOylation treatment can attenuate Nsp5-mediated NF-κB activation and cytokine induction. We identified a novel role of SARS-CoV-2 Nsp5 to enhance cytokine production by activating the NF-κB signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteasas 3C de Coronavirus/inmunología , Citocinas/biosíntesis , FN-kappa B/metabolismo , SARS-CoV-2/inmunología , Sumoilación/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Interleucina-1beta/biosíntesis , Interleucina-2/biosíntesis , Interleucina-6/biosíntesis , Transducción de Señal/fisiología , Sumoilación/efectos de los fármacos , Células THP-1 , Factor de Necrosis Tumoral alfa/biosíntesis , Células Vero
6.
PLoS Pathog ; 17(12): e1010123, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871326

RESUMEN

RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.


Asunto(s)
Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sumoilación/fisiología , Replicación Viral/fisiología , Línea Celular , Humanos
7.
Cell Rep ; 37(8): 110034, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818558

RESUMEN

Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Cisteína Endopeptidasas/metabolismo , ADN/metabolismo , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Sumoilación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Neurovirol ; 27(4): 531-541, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34342851

RESUMEN

The conjugation of small ubiquitin-like modifier (SUMO) proteins to substrates is a well-described post-translational modification that regulates protein activity, subcellular localization, and protein-protein interactions for a variety of downstream cellular activities. Several studies describe SUMOylation as an essential post-translational modification for successful viral infection across a broad range of viruses, including RNA and DNA viruses, both enveloped and un-enveloped. These viruses include but are not limited to herpes viruses, human immunodeficiency virus-1, and coronaviruses. In addition to the SUMOylation of viral proteins during infection, evidence shows that viruses manipulate the SUMO pathway for host protein SUMOylation. SUMOylation of host and viral proteins greatly impacts host innate immunity through viral manipulation of the host SUMOylation machinery to promote viral replication and pathogenesis. Other post-translational modifications like phosphorylation can also modulate SUMO function. For example, phosphorylation of COUP-TF interacting protein 2 (CTIP2) leads to its SUMOylation and subsequent proteasomal degradation. The SUMOylation of CTIP2 and subsequent degradation prevents CTIP2-mediated recruitment of a multi-enzymatic complex to the HIV-1 promoter that usually prevents the transcription of integrated viral DNA. Thus, the "SUMO switch" could have implications for CTIP2-mediated transcriptional repression of HIV-1 in latency and viral persistence. In this review, we describe the consequences of SUMO in innate immunity and then focus on the various ways that viral pathogens have evolved to hijack the conserved SUMO machinery. Increased understanding of the many roles of SUMOylation in viral infections can lead to novel insight into the regulation of viral pathogenesis with the potential to uncover new targets for antiviral therapies.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Inmunidad Innata/fisiología , Sumoilación/fisiología , Virosis/inmunología , Virosis/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional , Proteína SUMO-1/inmunología , Proteína SUMO-1/metabolismo
9.
Nat Commun ; 12(1): 4794, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373456

RESUMEN

The cellular NLRP3 protein level is crucial for assembly and activation of the NLRP3 inflammasome. Various posttranslational modifications (PTMs), including phosphorylation and ubiquitination, control NLRP3 protein degradation and inflammasome activation; however, the function of small ubiquitin-like modifier (SUMO) modification (called SUMOylation) in controlling NLRP3 stability and subsequent inflammasome activation is unclear. Here, we show that the E3 SUMO ligase tripartite motif-containing protein 28 (TRIM28) is an enhancer of NLRP3 inflammasome activation by facilitating NLRP3 expression. TRIM28 binds NLRP3, promotes SUMO1, SUMO2 and SUMO3 modification of NLRP3, and thereby inhibits NLRP3 ubiquitination and proteasomal degradation. Concordantly, Trim28 deficiency attenuates NLRP3 inflammasome activation both in vitro and in vivo. These data identify a mechanism by which SUMOylation controls the cellular NLRP3 level and inflammasome activation, and reveal correlations and interactions of NLRP3 SUMOylation and ubiquitination during inflammasome activation.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sumoilación/fisiología , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
10.
Nat Commun ; 12(1): 4582, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321470

RESUMEN

SAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.


Asunto(s)
Ciclo Celular/fisiología , VIH-1/fisiología , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Sumoilación/fisiología , Sustitución de Aminoácidos , Células HEK293 , Infecciones por VIH/virología , Humanos , Lisina , Mutación , Fosforilación , Proteína 1 que Contiene Dominios SAM y HD/química , Células U937
11.
Plant Sci ; 310: 110987, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34315601

RESUMEN

Gene transcription is critical for various cellular processes and is precisely controlled at multiple levels, and posttranslational modification (PTM) is a fast and powerful way to regulate transcription factors (TFs). SUMOylation, which conjugates small ubiquitin-related modifier (SUMO) molecules to protein substrates, is a crucial PTM that modulates the activity, stability, subcellular localization, and partner interactions of TFs in plant cells. Here, we summarize the mechanisms of SUMOylation in the regulation of transcription in plant development and stress responses. We also discuss the crosstalk between SUMOylation and other PTMs, as well as the potential functions of SUMOylation in the regulation of transcription-associated complexes on plant chromatin. This summary and perspective will improve understanding of the molecular mechanism of PTMs in plant transcription regulation.


Asunto(s)
Sumoilación/fisiología , Células Vegetales/metabolismo , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Sumoilación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Semin Cancer Biol ; 76: 301-309, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33812985

RESUMEN

Ras proteins are small GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. Mutations or deregulated activities of Ras are frequently the driving force for oncogenic transformation and tumorigenesis. Posttranslational modifications play a crucial role in mediating the stability, activity, or subcellular localization/trafficking of numerous cellular regulators including Ras proteins. A series of recent studies reveal that Ras proteins are also regulated by sumoylation. All three Ras protein isoforms (HRas, KRas, and NRas) are modified by SUMO3. The conserved lysine42 appears to be the primary site for mediating sumoylation. Expression of KRasV12/R42 mutants compromised the activation of the Raf/MEK/ERK signaling axis, leading to a reduced rate of cell migration and invasion in vitro in multiple cell lines. Moreover, treatment of transformed pancreatic cells with a SUMO E2 inhibitor blocks cell migration in a concentration-dependent manner, which is associated with a reduced level of both KRas sumoylation and expression of mesenchymal cell markers. Furthermore, mouse xenograft experiments reveal that expression of a SUMO-resistant mutant appears to suppress tumor development in vivo. Combined, these studies indicate that sumoylation functions as an important mechanism in mediating the roles of Ras in cell proliferation, differentiation, and malignant transformation and that the SUMO-modification system of Ras oncoproteins can be explored as a new druggable target for various human malignancies.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transducción de Señal/fisiología , Sumoilación/fisiología , Proteínas ras/metabolismo , Animales , Humanos
13.
FASEB J ; 35(4): e21510, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710677

RESUMEN

Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Animales , Endopeptidasas/metabolismo , Humanos , Proteína SUMO-1/metabolismo
14.
Mol Cell Biol ; 41(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33526451

RESUMEN

The nuclear and subnuclear compartmentalization of the telomerase-associated protein and H/ACA ribonucleoprotein component dyskerin is an important although incompletely understood aspect of H/ACA ribonucleoprotein function. Four SUMOylation sites were previously identified in the C-terminal nuclear/nucleolar localization signal (N/NoLS) of dyskerin. We found that a cytoplasmic localized C-terminal truncation variant of dyskerin lacking most of the C-terminal N/NoLS represents an under-SUMOylated variant of dyskerin compared to wild-type dyskerin. We demonstrate that mimicking constitutive SUMOylation of dyskerin using a SUMO3 fusion construct can drive nuclear accumulation of this variant and that the SUMO site K467 in this N/NoLS is particularly important for the subnuclear localization of dyskerin to the nucleolus in a mature H/ACA complex assembly- and SUMO-dependent manner. We also characterize a novel SUMO-interacting motif in the mature H/ACA complex component GAR1 that mediates the interaction between dyskerin and GAR1. Mislocalization of dyskerin, either in the cytoplasm or excluded from the nucleolus, disrupts dyskerin function and leads to reduced interaction of dyskerin with the telomerase RNA. These data indicate a role for dyskerin C-terminal N/NoLS SUMOylation in regulating the nuclear and subnuclear localization of dyskerin, which is essential for dyskerin function as both a telomerase-associated protein and as an H/ACA ribonucleoprotein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Sumoilación/fisiología , Núcleo Celular/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Humanos , Señales de Localización Nuclear/genética , Proteínas Nucleares/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Telomerasa/metabolismo
15.
Ecotoxicol Environ Saf ; 211: 111909, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33450536

RESUMEN

Paraquat (PQ) herbicide causes damage to green plant tissues by inducing the production of toxic reactive oxygen species (ROS). SUMOylation is an important post-translational modification that enables plants to defend against multiple stresses. However, it is still unknown whether the SUMOylation is involved in PQ resistance response in crops. Herein, we showed that a maize SUMO conjugating enzyme gene (ZmSCE1b) functioned in PQ resistance. The quantitative real-time PCR (qRT-PCR) analysis revealed that this gene was significantly up-regulated upon PQ exposure. The overexpression of ZmSCE1b increased the levels of SUMO conjugates and improved PQ resistance in transgenic Arabidopsis. The ZmSCE1b-transgenic plants showed lower levels of ROS and lipid peroxidation, as well as higher antioxidant enzyme activities, upon PQ exposure. Furthermore, Western blotting showed that levels of SUMOylation in these transgenic plants were significantly elevated. In addition, the abundance of transcripts of several defense-related genes was apparently up-regulated in the over-expressing lines using qRT-PCR. Collectively, our results manifested the effect of overexpression of ZmSCE1b in improving resistance to PQ, possibly by regulating the levels of SUMO conjugates, antioxidant machinery, and expression of defense genes. Findings of this study can facilitate the understanding of the regulatory mechanisms underlying the involvement of SCE-mediated SUMOylation in PQ resistance response in crop plants. Meanwhile, ZmSCE1b could be utilized for engineering PQ-resistant crops in phytoremediation.


Asunto(s)
Herbicidas/toxicidad , Paraquat/toxicidad , Proteínas de Plantas/metabolismo , Sumoilación/fisiología , Zea mays/enzimología , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Herbicidas/metabolismo , Peroxidación de Lípido , Plantas Modificadas Genéticamente/metabolismo , Sustancias Protectoras/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Zea mays/metabolismo
16.
Plant Commun ; 2(1): 100091, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33511343

RESUMEN

The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species. The functional connection between the global regulation of gene expression and chromatin-associated SUMOylation in plant cells is unknown. Here, we uncovered a genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in Arabidopsis thaliana grown at room temperature, exposed to heat stress, and exposed to heat stress followed by recovery. The small ubiquitin-like modifier (SUMO)-associated chromatin sites, characterized by whole-genome ChIP-seq, were generally associated with active chromatin markers. In response to heat stress, chromatin-associated SUMO signals increased at promoter-transcriptional start site regions and decreased in gene bodies. RNA-seq analysis supported the role of chromatin-associated SUMOylation in transcriptional activation during rapid responses to high temperature. Changes in SUMO signals on chromatin were associated with the upregulation of heat-responsive genes and the downregulation of growth-related genes. Disruption of the SUMO ligase gene SIZ1 abolished SUMO signals on chromatin and attenuated rapid transcriptional responses to heat stress. The SUMO signal peaks were enriched in DNA elements recognized by distinct groups of transcription factors under different temperature conditions. These observations provide evidence that chromatin-associated SUMOylation regulates the transcriptional switch between development and heat stress response in plant cells.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Cromatina/metabolismo , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Sumoilación/fisiología , Activación Transcripcional/fisiología , Cromatina/genética , Respuesta al Choque Térmico/genética , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Sumoilación/genética
17.
J Neurochem ; 156(2): 145-161, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538470

RESUMEN

SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.


Asunto(s)
Sumoilación/fisiología , Sinapsis/metabolismo , Animales , Humanos
18.
Am J Pathol ; 190(12): 2464-2477, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33222991

RESUMEN

Heat shock proteins (HSPs) are emerging as valuable potential molecular targets in breast cancer therapy owing to their diverse functions in cancer cells. This study investigated the potential role of heat shock protein 27 (HSP27, also known as HSPB1) in breast cancer through heat shock protein B8 (HSPB8). The correlation between HSP27 and HSPB8 was identified by using co-immunoprecipitation, immunoprecipitation, and SUMOylation assays. Through gain- and loss-of-function approaches in MCF-7 cells, the effect of HSP27 on HSPB8 expression, SUMOylation level, and protein stability of HSPB8, as well as on cell proliferation, migration, and stemness, was elucidated. A mouse xenograft model of breast cancer cells was established to verify the function of HSP27 in vivo. Results indicate that HSP27 and HSPB8 were highly expressed in breast cancer tissues and MCF-7 cells. HSP27 was also found to induce the SUMOylation of HSPB8 at the 106 locus and subsequently increased its protein stability, which resulted in accelerated proliferation, migration, and stemness of breast cancer cells in vitro along with increased tumor metastasis of breast cancer in vivo. However, these results could be reversed by the knockdown of HSPB8. Overall, HSP27 induces SUMOylation of HSPB8 to promote HSPB8 expression, thereby endorsing proliferation and metastasis of breast cancer cells. This study may provide insight for the development of new targets for breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Progresión de la Enfermedad , Proteínas de Choque Térmico HSP27/metabolismo , Metástasis de la Neoplasia/patología , Animales , Neoplasias de la Mama/metabolismo , Proliferación Celular/fisiología , Femenino , Proteínas de Choque Térmico/genética , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Sumoilación/fisiología
19.
Neurobiol Dis ; 146: 105133, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049318

RESUMEN

Dendritic spines are specialized structures involved in neuronal processes on which excitatory synaptic contact occurs. The microtubule cytoskeleton is vital for maintaining spine morphology and mature synapses. Spastin is related to microtubule-severing proteases and is involved in synaptic bouton formation. However, it is not yet known if spastin can be modified by Small Ubiquitin-like Modifier (SUMO) or how this modification regulates dendritic spines. Spastin was shown to be SUMOylated at K427, and its deSUMOylation promoted microtubule stability. In addition, SUMOylation of spastin was shown to affect signalling pathways associated with long term synaptic depression. SUMOylated spastin promoted the development of dendrites and dendritic spines. Moreover, SUMOylated spastin regulated endocytosis and affected the transport of the AMPA receptor, GluA1. Our findings suggest that SUMOylation of spastin promotes GluA1 internalization and regulates dendritic spine morphology through targeting of microtubule dynamics.


Asunto(s)
Espinas Dendríticas/metabolismo , Microtúbulos/metabolismo , Receptores AMPA/metabolismo , Espastina/metabolismo , Sumoilación/fisiología , Animales , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/metabolismo , Ratas Sprague-Dawley , Espastina/farmacología , Sinapsis/fisiología
20.
Aging Cell ; 19(10): e13222, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827359

RESUMEN

Sumoylation is one of the key regulatory mechanisms in eukaryotes. Our previous studies reveal that sumoylation plays indispensable roles during lens differentiation (Yan et al. 2010. Proc Natl Acad Sci USA. 107:21034-21039; Gong et al. 2014. Proc Natl Acad Sci USA. 111:5574-5579). Whether sumoylation is implicated in cataractogenesis, a disease largely derived from aging, remains elusive. In the present study, we have examined the changing patterns of the sumoylation ligases and de-sumoylation enzymes (SENPs) and their substrates including Pax6 and other proteins in cataractous lenses of different age groups from 50 to 90 years old. It is found that compared with normal lenses, sumoylation ligases 1 and 3, de-sumoylation enzymes SENP3/7/8, and p46 Pax6 are clearly increased. In contrast, Ubc9 is significantly decreased. Among different cataract patients from 50s to 70s, male patients express more sumoylation enzymes and p46 Pax6. Ubc9 and SENP6 display age-dependent increase. The p46 Pax6 displays age-dependent decrease in normal lens, remains relatively stable in senile cataracts but becomes di-sumoylated in complicated cataracts. In contrast, sumoylation of p32 Pax6 is observed in senile cataracts and increases its stability. Treatment of rat lenses with oxidative stress increases Pax6 expression without sumoylation but promotes apoptosis. Thus, our results show that the changing patterns in Ubc9, SENP6, and Pax6 levels can act as molecular markers for senile cataract and the di-sumoylated p46 Pax6 for complicated cataract. Together, our results reveal the presence of molecular signature for both senile and complicated cataracts. Moreover, our study indicates that sumoylation is implicated in control of aging and cataractogenesis.


Asunto(s)
Catarata/metabolismo , Catarata/patología , Sumoilación/fisiología , Envejecimiento/fisiología , Apoptosis , Catarata/enzimología , Diferenciación Celular/fisiología , Femenino , Humanos , Cristalino/enzimología , Cristalino/metabolismo , Cristalino/patología , Ligasas/metabolismo , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...