Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
PLoS One ; 19(6): e0304782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833447

RESUMEN

PURPOSE: Pathological angiogenesis and vascular instability are observed in diabetic retinopathy (DR), diabetic macular edema (DME), and wet age-related macular degeneration (wAMD). Many receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptors (VEGFRs) contribute to angiogenesis, whereas the RTK TIE2 is important for vascular stability. Pan-VEGFR tyrosine kinase inhibitors (TKIs) such as vorolanib, sunitinib, and axitinib are of therapeutic interest over current antibody treatments that target only one or two ligands. This study compared the anti-angiogenic potential of these TKIs. METHODS: A kinase HotSpot™ assay was conducted to identify TKIs inhibiting RTKs associated with angiogenesis and vascular stability. Half-maximal inhibitory concentration (IC50) for VEGFRs and TIE2 was determined for each TKI. In vitro angiogenesis inhibition was investigated using a human umbilical vein endothelial cell sprouting assay, and in vivo angiogenesis was studied using the chorioallantoic membrane assay. Melanin binding was assessed using a melanin-binding assay. Computer modeling was conducted to understand the TIE2-axitinib complex as well as interactions between vorolanib and VEGFRs. RESULTS: Vorolanib, sunitinib, and axitinib inhibited RTKs of interest in angiogenesis and exhibited pan-VEGFR inhibition. HotSpot™ assay and TIE2 IC50 values showed that only axitinib potently inhibited TIE2 (up to 89%). All three TKIs effectively inhibited angiogenesis in vitro. In vivo, TKIs were more effective at inhibiting VEGF-induced angiogenesis than the anti-VEGF antibody bevacizumab. Of the three TKIs, only sunitinib bound melanin. TKIs differ in their classification and binding to VEGFRs, which is important because type II inhibitors have greater selectivity than type I TKIs. CONCLUSIONS: Vorolanib, sunitinib, and axitinib exhibited pan-VEGFR inhibition and inhibited RTKs associated with pathological angiogenesis. Of the three TKIs, only axitinib potently inhibited TIE2 which is an undesired trait as TIE2 is essential for vascular stability. The findings support the use of vorolanib for therapeutic inhibition of angiogenesis observed in DR, DME, and wAMD.


Asunto(s)
Inhibidores de la Angiogénesis , Axitinib , Células Endoteliales de la Vena Umbilical Humana , Imidazoles , Indazoles , Indoles , Inhibidores de Proteínas Quinasas , Pirroles , Receptores de Factores de Crecimiento Endotelial Vascular , Sunitinib , Axitinib/farmacología , Humanos , Sunitinib/farmacología , Inhibidores de la Angiogénesis/farmacología , Imidazoles/farmacología , Pirroles/farmacología , Indoles/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Indazoles/farmacología , Animales , Inhibidores de Proteínas Quinasas/farmacología , Receptor TIE-2/metabolismo , Receptor TIE-2/antagonistas & inhibidores , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo
2.
Anticancer Res ; 44(6): 2377-2392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821582

RESUMEN

BACKGROUND/AIM: Oral squamous cell carcinoma (OSCC) is characterized by early metastasis, clinical resistance and poor prognosis. Recently, we showed that aggressive OSCC cells co-express endothelial cell markers and can form tube-like structures, known as vasculogenic mimicry (VM), a process associated with poor prognosis in head and neck cancers. Given the limited success of current antiangiogenic therapy in treating OSCC, this study sought to explore the efficiency of these drugs in targeting an ex vivo model of VM. MATERIALS AND METHODS: OSCC cell lines from the tongue and floor of the mouth in addition to human endothelial cells were used. The treatments comprised a set of clinically relevant antiangiogenic drugs: sorafenib, sunitinib, and axitinib, which were administered in different doses. Multiple ex vivo approaches including cell tubulogenesis, proliferation, apoptosis, and migration assays were used. RESULTS: Although these drugs inhibited the formation of endothelial cell capillaries, they showed clear differential effects on OSCC cell-derived VM and cell morphology. Sorafenib inhibited the tubulogenesis of aggressive OSCC cells compared with the limited effect of sunitinib and axitinib. Furthermore, our data consistently demonstrated a preferential efficacy of certain drugs over others. Sorafenib and sunitinib exhibited anti-cancer effects on tumor cell proliferation, apoptosis, and cell migration, compared with the limited effect of axitinib. CONCLUSION: The antiangiogenic drugs, except sorafenib, had limited effect on VM formation in vitro and exhibited varying anti-cancer effects on OSCC cells. These data support the notion that VM formation may in part explain the development of drug resistance in OSCC cells.


Asunto(s)
Inhibidores de la Angiogénesis , Axitinib , Movimiento Celular , Proliferación Celular , Neoplasias de la Boca , Neovascularización Patológica , Sorafenib , Sunitinib , Humanos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/irrigación sanguínea , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Sunitinib/farmacología , Sunitinib/uso terapéutico , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Axitinib/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Células Endoteliales/metabolismo , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico
3.
BMC Cancer ; 24(1): 650, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802739

RESUMEN

OBJECTIVE: This study aimed to explore the effect of CD276 expression on the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cell and animal models and the potential mechanisms involved. METHODS: CD276 expression levels of ccRCC and normal samples were analyzed via online databases and real-time quantitative PCR (RT-qPCR). CD276 was knocked down in ccRCC cell models (sunitinib-resistant 786-O/R cells and sunitinib-sensitive 786-O cells) using shRNA transfection, and the cells were exposed to a sunitinib (2 µM) environment. Cells proliferation was then analyzed using MTT assay and colony formation experiment. Alkaline comet assay, immunofluorescent staining, and western blot experiments were conducted to assess the DNA damage repair ability of the cells. Western blot was also used to observe the activation of FAK-MAPK pathway within the cells. Finally, a nude mouse xenograft model was established and the nude mice were orally administered sunitinib (40 mg/kg/d) to evaluate the in vivo effects of CD276 knockdown on the therapeutic efficacy of sunitinib against ccRCC. RESULTS: CD276 was significantly upregulated in both ccRCC clinical tissue samples and cell models. In vitro experiments showed that knocking down CD276 reduced the survival rate, IC50 value, and colony-forming ability of ccRCC cells. Knocking down CD276 increased the comet tail moment (TM) values and γH2AX foci number, and reduced BRCA1 and RAD51 protein levels. Knocking down CD276 also decreased the levels of p-FAK, p-MEK, and p-ERK proteins. CONCLUSION: Knocking down CD276 effectively improved the sensitivity of ccRCC cell and animal models to sunitinib treatment.


Asunto(s)
Carcinoma de Células Renales , Daño del ADN , Reparación del ADN , Resistencia a Antineoplásicos , Neoplasias Renales , Ratones Desnudos , Sunitinib , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Animales , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Ratones , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Antígenos B7
4.
Cancer Lett ; 593: 216963, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768682

RESUMEN

Neoadjuvant tyrosine kinase inhibitor (TKI) therapy is an important treatment option for advanced renal cell carcinoma (RCC). Many RCC patients may fail to respond or be resistant to TKI therapy. We aimed to explore the key mechanisms of neoadjuvant therapy résistance. We obtained tumor samples from matched pre-treatment biopsy and post-treatment surgical samples and performed single-cell RNA sequencing. Sunitinib-resistant ccRCC cell lines were established. Ferroptosis was detected by ferrous ion and lipid peroxidation levels. Tumor growth and resistance to Sunitinib was validated in vitro and vivo. Immunohistochemistry was used to validate the levels key genes and lipid peroxidation. Multi-center cohorts were included, including TCGA, ICGC, Checkmate-025 and IMmotion151 clinical trial. Survival analysis was performed to identify the associated clinical and genomic variables. Intratumoral heterogeneity was first described in the whole neoadjuvant management. The signature of endothelial cells was correlated with drug sensitivity and progression-free survival. Ferroptosis was shown to be the key biological program in malignant cell resistance. We observed tissue lipid peroxidation was negatively correlated with IL6 and tumor response. TKI-resistant cell line was established. SLC7A11 knockdown promoted cell growth and lipid peroxidation, increased the ferroptosis level, and suppressed the growth of tumor xenografts significantly (P < 0.01). IL6 could reverse the ferroptosis and malignant behavior caused by SLC7A11 (-) via JAK2/STAT3 pathway, which was rescued by the ferroptosis inducer Erastin. Our data indicate that ferroptosis is a novel strategy for advanced RCC treatment, which activated by IL6, providing a new idea for resistance to TKIs.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Células Renales , Resistencia a Antineoplásicos , Ferroptosis , Neoplasias Renales , Terapia Neoadyuvante , Sunitinib , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Neoplasias Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Terapia Neoadyuvante/métodos , Sunitinib/farmacología , Animales , Línea Celular Tumoral , Ratones , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Proteínas Quinasas/farmacología , Peroxidación de Lípido/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Femenino , Masculino , Terapia Molecular Dirigida , Interleucina-6/metabolismo , Interleucina-6/genética , Progresión de la Enfermedad
5.
Biochem Pharmacol ; 224: 116247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697311

RESUMEN

Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Fosfatasa 6 de Especificidad Dual , Glucólisis , Neoplasias Renales , Proteínas Proto-Oncogénicas c-akt , Sunitinib , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Sunitinib/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Antineoplásicos/farmacología , Ratones , Ratones Desnudos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino
6.
PLoS Comput Biol ; 20(5): e1012088, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701089

RESUMEN

Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and post-surgery monitoring of the disease. Here we used a mouse model of spontaneous metastasis occurring after surgical removal of orthotopically implanted primary tumors to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel mathematical kinetics-pharmacodynamics model predictive of perioperative disease progression. Longitudinal measurements of presurgical primary tumor size and postsurgical metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-linear mixed-effects modeling approach quantified inter-animal variabilities in metastatic dynamics and survival, and machine-learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery and treatment cessation. Machine learning algorithms that included support vector machines, random forests, and artificial neural networks, confirmed a lack of definitive biomarkers, which shows the value of preclinical modeling studies to identify potential failures that should be avoided clinically.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Automático , Terapia Neoadyuvante , Terapia Neoadyuvante/métodos , Animales , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Ratones , Humanos , Metástasis de la Neoplasia , Biomarcadores de Tumor/metabolismo , Sunitinib/farmacología , Sunitinib/uso terapéutico , Línea Celular Tumoral , Biología Computacional , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Modelos Biológicos
7.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693863

RESUMEN

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Resistencia a Antineoplásicos , Neoplasias Renales , Sunitinib , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Sunitinib/farmacología , Sunitinib/uso terapéutico , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Tirosina Quinasa del Receptor Axl , Pirroles/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proliferación Celular/efectos de los fármacos , Indoles/farmacología
8.
Cancer Invest ; 42(4): 278-296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644691

RESUMEN

This study aims to develop a prognostic signature based on m6A-related lncRNAs for clear cell renal cell carcinoma (ccRCC). Differential expression analysis and Pearson correlation analysis were used to identify m6A-related lncRNAs associated with patient outcomes in The Cancer Genome Atlas (TCGA) database. Our approach led to the development of an m6A-related lncRNA risk score (MRLrisk), formulated using six identified lncRNAs: NFE4, AL008729.2, AL139123.1, LINC02154, AC124854.1 and ARHGAP31-AS1. Higher MRLrisk was identified as a risk factor for patients' prognosis in ccRCC. Furthermore, an MRLrisk-based nomogram was developed and demonstrated as a reliable tool for prognosis prediction in ccRCC. Enrichment analysis and tumor mutation signature studies were conducted to investigate MRLrisk-related biological phenotypes. The tumor immune dysfunction and exclusion (TIDE) score was employed to infer patients' response to immunotherapy, indicating a negative correlation between high MRLrisk and immunotherapy response. Our focus then shifted to LINC02154 for deeper exploration. We assessed LINC02154 expression in 28 ccRCC/normal tissue pairs and 3 ccRCC cell lines through quantitative real-time polymerase chain reaction (qRT-PCR). Functional experiments, including EdU incorporation, flow cytometry and transwell assays, were performed to assess the role of LINC02154 in ccRCC cell functions, discovering that its downregulation hinders cancer cell proliferation and migration. Furthermore, the influence of LINC02154 on ccRCC cells' sensitivity to Sunitinib was explored using CCK-8 assays, demonstrating that decreased LINC02154 expression increases Sunitinib sensitivity. In summary, this study successfully developed an MRLrisk model with significant prognostic value for ccRCC and established LINC02154 as a critical biomarker and prospective therapeutic target in ccRCC management.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , ARN Largo no Codificante/genética , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Pronóstico , Progresión de la Enfermedad , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Biomarcadores de Tumor/genética , Sunitinib/uso terapéutico , Sunitinib/farmacología , Masculino , Femenino , Movimiento Celular/genética , Adenosina/análogos & derivados
9.
Eur J Med Res ; 29(1): 236, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622715

RESUMEN

Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients' overall survival were analyzed. QRT-PCR experiments were performed to detect hub genes' expression and distribution, siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evaluate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal cancer cells' neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Sunitinib/farmacología , Sunitinib/uso terapéutico , Multiómica , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Pronóstico , Microambiente Tumoral , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
10.
ESMO Open ; 9(5): 102994, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642472

RESUMEN

BACKGROUND: Nivolumab plus cabozantinib (NIVO + CABO) was approved for first-line treatment of advanced renal cell carcinoma (aRCC) based on superiority versus sunitinib (SUN) in the phase III CheckMate 9ER trial (18.1 months median survival follow-up per database lock date); efficacy benefit was maintained with an extended 32.9 months of median survival follow-up. We report updated efficacy and safety after 44.0 months of median survival follow-up in intent-to-treat (ITT) patients and additional subgroup analyses, including outcomes by International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) prognostic risk score. PATIENTS AND METHODS: Patients with treatment-naïve aRCC received NIVO 240 mg every 2 weeks plus CABO 40 mg once daily or SUN 50 mg for 4 weeks (6-week cycles), until disease progression/unacceptable toxicity (maximum NIVO treatment, 2 years). Primary endpoint was progression-free survival (PFS) per blinded independent central review (BICR). Secondary endpoints were overall survival (OS), objective response rate (ORR) per BICR, and safety and tolerability. RESULTS: Overall, 323 patients were randomised to NIVO + CABO and 328 to SUN. Median PFS was improved with NIVO + CABO versus SUN [16.6 versus 8.4 months; hazard ratio (HR) 0.59; 95% confidence interval (CI) 0.49-0.71]; median OS favoured NIVO + CABO versus SUN (49.5 versus 35.5 months; HR 0.70; 95% CI 0.56-0.87). ORR (95% CI) was higher with NIVO + CABO versus SUN [56% (50% to 62%) versus 28% (23% to 33%)]; 13% versus 5% of patients achieved complete response, and median duration of response was 22.1 months versus 16.1 months, respectively. PFS and OS favoured NIVO + CABO over SUN across intermediate, poor and intermediate/poor IMDC risk subgroups; higher ORR and complete response rates were seen with NIVO + CABO versus SUN regardless of IMDC risk subgroup. Any-grade (grade ≥3) treatment-related adverse events occurred in 97% (67%) versus 93% (55%) of patients treated with NIVO + CABO versus SUN. CONCLUSIONS: After extended follow-up, NIVO + CABO maintained survival and response benefits; safety remained consistent with previous follow-ups. These results continue to support NIVO + CABO as a first-line treatment for aRCC. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03141177.


Asunto(s)
Anilidas , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Células Renales , Neoplasias Renales , Nivolumab , Piridinas , Sunitinib , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/mortalidad , Sunitinib/uso terapéutico , Sunitinib/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Neoplasias Renales/mortalidad , Masculino , Anilidas/uso terapéutico , Anilidas/farmacología , Femenino , Persona de Mediana Edad , Nivolumab/uso terapéutico , Nivolumab/farmacología , Piridinas/uso terapéutico , Piridinas/farmacología , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Estudios de Seguimiento , Supervivencia sin Progresión
11.
Methods Mol Biol ; 2777: 191-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478345

RESUMEN

Nanoparticle drug delivery has been promoted as an effective mode of delivering antineoplastic therapeutics. However, most nanoparticle designs fail to consider the multifaceted tumor microenvironment (TME) that produce pro-tumoral niches, which are often resistant to chemo- and targeted therapies. In order to target the chemoresistant cancer stem-like cells (CSCs) and their supportive TME, in this chapter we describe a nanoparticle-based targeted co-delivery that addresses the paracrine interactions between CSC and non-cancerous mesenchymal stem cells (MSCs) in the TME. Carcinoma-activated MSCs have been shown to increase the chemoresistance and metastasis of CSC. Yet their contributions to protect the CSC TME have not yet been systematically investigated in the design of nanoparticles for drug delivery. Therefore, we describe the fabrication of degradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (120-200 nm), generated with an electrospraying process that encapsulates both a conventional chemotherapeutic, paclitaxel, and a targeted tyrosine kinase inhibitor, sunitinib, to limit MSC interactions with CSC. In the 3D hetero-spheroid model that comprises both CSCs and MSCs, the delivery of sunitinib as a free drug disrupted the MSC-protected CSC stemness and migration. Therefore, this chapter describes the co-delivery of paclitaxel and sunitinib via PLGA nanoparticles as a potential targeted therapy strategy for targeting CSCs. Overall, nanoparticles can provide an effective delivery platform for targeting CSCs and their TME together. Forthcoming studies can corroborate similar combined therapies with nanoparticles to improve the killing of CSC and chemoresistant cancer cells, thereby improving treatment efficiency.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico , Glicoles , Sunitinib/farmacología , Ácido Láctico , Antineoplásicos/farmacología , Paclitaxel/farmacología , Línea Celular Tumoral , Portadores de Fármacos , Neoplasias/tratamiento farmacológico
12.
Bioorg Chem ; 145: 107234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412650

RESUMEN

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Asunto(s)
Antineoplásicos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Sunitinib/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
13.
Eur J Pharmacol ; 967: 176393, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325792

RESUMEN

Sunitinib (SUN) is the first-line targeted therapeutic drug for advanced renal cell carcinoma (RCC). However, SUN resistance is frequently observed to result in tumor metastasis, with a poor survival rate. Therefore, finding an effective and safe adjuvant to reduce drug resistance is important for RCC treatment. Pterostilbene (PTE) and 6-shogaol (6-S) are natural phytochemicals found in edible sources and have potential applications against various cancers. However, the biological mechanisms of PTE and 6-S in SUN-resistant RCC are still unclear. Accordingly, this study investigated the regulatory effects of PTE and 6-S on cell survival, drug resistance, and cell invasion in 786-O and SUN-resistant 786-O (786-O SUNR) cells, respectively. The results demonstrated that PTE and 6-S induced apoptosis in both cell lines by upregulating the Bax/Bcl-2 ratio. Additionally, PTE and 6-S increased SUN sensitivity by inhibiting the expression of the RLIP76 transport protein, reduced cell invasion and downregulated MMP expression in both 786-O and 786-O SUNR cells. Mechanistically, PTE, and 6-S significantly and dose-dependently suppressed the RLIP76-initiated Ras/ERK and Akt/mTOR pathways. In summary, PTE and 6-S induce apoptosis, enhance SUN sensitivity, and inhibit migration in both 786-O and 786-O SUNR cells. These novel findings demonstrate the potential of PTE and 6-S as target therapeutic adjuvants for RCC treatment.


Asunto(s)
Carcinoma de Células Renales , Catecoles , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Sunitinib/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Renales/patología , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral
14.
Eur J Pharmacol ; 969: 176437, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417608

RESUMEN

Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Sunitinib/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Reposicionamiento de Medicamentos , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo
15.
Cell Cycle ; 23(1): 56-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38389126

RESUMEN

AXL plays crucial roles in the tumorigenesis, progression, and drug resistance of neoplasms; however, the mechanisms associated with AXL overexpression in tumors remain largely unknown. In this study, to investigate these molecular mechanisms, wildtype and mutant proteins of arrestin domain-containing protein 3 (ARRDC3) and AXL were expressed, and co-immunoprecipitation analyses were performed. ARRDC3-deficient cells generated using the CRISPR-Cas9 system were treated with different concentrations of the tyrosine kinase inhibitor sunitinib and subjected to cell biological, molecular, and pharmacological experiments. Furthermore, immunohistochemistry was used to analyze the correlation between ARRDC3 and AXL protein expressions in renal cancer tissue specimens. The experimental results demonstrated that ARRDC3 interacts with AXL to promote AXL ubiquitination and degradation, followed by the negative regulation of downstream signaling mechanisms, including the phosphorylation of protein kinase B and extracellular signal-regulated kinase. Notably, ARRDC3 deficiency decreased the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cells in a manner dependent on the regulation of AXL stability. Overall, our results suggest that ARRDC3 is a negative regulator of AXL and can serve as a novel predictor of sunitinib therapeutic response in patients with ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Arrestinas/metabolismo , Arrestinas/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sunitinib/farmacología , Sunitinib/uso terapéutico
16.
BMC Cancer ; 24(1): 175, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317072

RESUMEN

BACKGROUND: Targeted drugs are the main methods of RCC treatment. However, drug resistance is common in RCC patients, in-depth study of the drug-resistant mechanism is essential. METHODS: We constructed sunitinib resistant and Twist overexpressed A498 cells, and studied its mechanisms in vitro and in vivo. RESULTS: In cell research, we found that either sunitinib resistance or Twist overexpression can activate Wnt/ß-catenin and EMT signaling pathway, and the sunitinib resistance may work through ß-catenin/TWIST/TCF4 trimer. In zebrafish research, we confirmed the similarity of Twist overexpression and sunitinib resistance, and the promoting effect of Twist overexpression on drug resistance. CONCLUSIONS: Sunitinib resistance and Twist overexpression can activate Wnt/ß-catenin signaling pathway and EMT to promote the growth and metastasis of RCC cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Pez Cebra/metabolismo , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Proliferación Celular
17.
Aging (Albany NY) ; 16(3): 2679-2701, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305803

RESUMEN

Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Ácido Tióctico/análogos & derivados , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Sunitinib/farmacología , Sunitinib/uso terapéutico , Cobre , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Apoptosis
18.
Apoptosis ; 29(5-6): 681-692, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38281281

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is the most common histopathologic type of renal cell carcinoma. PANoptosis, a cell death pathway that involves an interplay between pyroptosis, apoptosis and necroptosis, is associated with cancer immunity and development. However, the prognostic significance of PANoptosis in KIRC remains unclear. RNA-sequencing expression and mutational profiles from 532 KIRC samples and 72 normal samples with sufficient clinical data were retrieved from the Cancer Genome Atlas (TCGA) database. A prognostic model was constructed using differentially expressed genes (DEGs) related to PANoptosis in the TCGA cohort and was validated in a Gene Expression Omnibus (GEO) cohorts. Incorporating various clinical features, the risk model remained an independent prognostic factor in multivariate analysis, and it demonstrated superior performance compared to unsupervised clustering of the 21 PANoptosis-related genes alone. Further mutational analysis showed fewer VHL and more BAP1 alterations in the high-risk group, with alterations in both genes also associated with patient prognosis. The high-risk group was characterized by an unfavorable immune microenvironment, marked by reduced levels of CD4 + T cells and natural killer cells, but increased M2 macrophages and regulatory T cells. Finally, the risk model was predictive of response to immune checkpoint blockade, as well as sensitivity to sunitinib and paclitaxel. The PANoptosis-related risk model developed in this study enables accurate prognostic prediction in KIRC patients. Its associations with the tumor immune microenvironment and drug efficacy may offer potential therapeutic targets and inform clinical decisions.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Piroptosis , Microambiente Tumoral , Femenino , Humanos , Masculino , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/diagnóstico , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/diagnóstico , Mutación , Pronóstico , Piroptosis/genética , Sunitinib/uso terapéutico , Sunitinib/farmacología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Necroptosis/genética , Apoptosis/genética
19.
Cell Cycle ; 23(1): 43-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38263737

RESUMEN

Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Carcinoma de Células Renales/patología , Antígeno B7-H1 , Neoplasias Renales/patología , Proteínas Quinasas Activadas por AMP , Línea Celular Tumoral , Resistencia a Antineoplásicos
20.
Investig Clin Urol ; 65(1): 84-93, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38197755

RESUMEN

PURPOSE: Vascular endothelial growth factor tyrosine kinase inhibitors (TKIs) have been the standard of care for advanced and metastatic clear cell renal cell carcinoma (ccRCC). However, the therapeutic effect of TKI monotherapy remains unsatisfactory given the high rates of acquired resistance to TKI therapy despite favorable initial tumor response. MATERIALS AND METHODS: To define the TKI-resistance mechanism and identify new therapeutic target for TKI-resistant ccRCC, an integrative differential gene expression analysis was performed using acquired resistant cohort and a public dataset. Sunitinib-resistant RCC cell lines were established and used to test their malignant behaviors of TKI resistance through in vitro and in vivo studies. Immunohistochemistry was conducted to compare expression between the tumor and normal kidney and verify expression of pathway-related proteins. RESULTS: Integrated differential gene expression analysis revealed increased interferon-induced transmembrane protein 3 (IFITM3) expression in post-TKI samples. IFITM3 expression was increased in ccRCC compared with the normal kidney. TKI-resistant RCC cells showed high expression of IFITM3 compared with TKI-sensitive cells and displayed aggressive biologic features such as higher proliferative ability, clonogenic survival, migration, and invasion while being treated with sunitinib. These aggressive features were suppressed by the inhibition of IFITM3 expression and promoted by IFITM3 overexpression, and these findings were confirmed in a xenograft model. IFITM3-mediated TKI resistance was associated with the activation of TRAF6 and MAPK/AP-1 pathways. CONCLUSIONS: These results demonstrate IFITM3-mediated activation of the TRAF6/MAPK/AP-1 pathways as a mechanism of acquired TKI resistance, and suggest IFITM3 as a new target for TKI-resistant ccRCC.


Asunto(s)
Carcinoma de Células Renales , Resistencia a Antineoplásicos , Proteínas de la Membrana , Proteínas de Unión al ARN , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Sunitinib/farmacología , Factor 6 Asociado a Receptor de TNF , Factor de Transcripción AP-1 , Factor A de Crecimiento Endotelial Vascular , /farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA