Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Cancer ; 155(6): 1101-1111, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688826

RESUMEN

Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.


Asunto(s)
Carcinogénesis , Neoplasias Inducidas por Radiación , Animales , Ratones , Neoplasias Inducidas por Radiación/mortalidad , Neoplasias Inducidas por Radiación/genética , Neoplasias Inducidas por Radiación/etiología , Humanos , Carcinogénesis/efectos de la radiación , Mutación , Relación Dosis-Respuesta en la Radiación , Modelos Teóricos , Supervivientes a la Bomba Atómica , Especificidad de la Especie , Radiación Ionizante , Femenino , Masculino
2.
Health Phys ; 126(6): 424-425, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568175

RESUMEN

This note deals with epidemiological data interpretation supporting the linear no-threshold model, as opposed to emerging evidence of adaptive response and hormesis from molecular biology in vitro and animal models. Particularly, the US-Japan Radiation Effects Research Foundation's lifespan study of atomic bomb survivors is scrutinized. We stress the years-long lag of the data processing after data gathering and evolving statistical models and methodologies across publications. The necessity of cautious interpretation of radiation epidemiology results is emphasized.


Asunto(s)
Modelos Estadísticos , Humanos , Supervivientes a la Bomba Atómica/estadística & datos numéricos , Relación Dosis-Respuesta en la Radiación , Animales , Estados Unidos/epidemiología , Exposición a la Radiación/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología
3.
Front Public Health ; 12: 1335097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38299079

RESUMEN

Even today when nearly 80 years have passed after the atomic bomb (A-bomb) was dropped, there are still debates about the exact doses received by the A-bomb survivors. While initial airborne kerma radiation (or energy spectrum of emitted radiation) can be measured with sufficient accuracy to assess the radiation dose to A-bomb survivors, it is not easy to accurately assess the neutron dose including appropriate weighting of neutron absorbed dose. Particularly, possible post-explosion exposure due to the radioactive particles generated through neutron activation have been almost neglected so far, mainly because of a large uncertainty associated to the behavior of those particles. However, it has been supposed that contribution of such non-initial radiation exposure from the neutron-induced radioactive particles could be significant, according to the findings that the stable chromosomal aberration rates which indicate average whole-body radiation doses were found to be more than 30% higher for those exposed indoors than for those outdoors even at the same initial dose estimated for the Life Span Study. In this Mini Review article, the authors explain that such apparently controversial observations can be reasonably explained by assuming a higher production rate of neutron-induced radioactive particles in the indoor environment near the hypocenter.


Asunto(s)
Supervivientes a la Bomba Atómica , Radiometría , Humanos , Explosiones , Aberraciones Cromosómicas , Neutrones
5.
Radiat Res ; 201(1): 71-76, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989111

RESUMEN

The numbers of naive T cells that react to novel pathogens not yet encountered by an immune system, decrease during aging, mainly due to age-associated involution of the thymus. CD45RA+ naive CD4 T cells consist of heterogeneous populations, including highly CXCR3-expressing cells that appear during the homeostatic proliferation of naive T cells and exhibit enhanced type-1 inflammatory phenotypes. Based on previous evidence of radiation-associated reductions in thymic function and peripheral blood naive CD4 T cells, we hypothesized that the homeostatic proliferation of naive CD4 T cells compensates for deficits in peripheral T-cell populations after radiation injury, which may increase the proportion of CXCR3high cells in naive CD4 T cells and enhance inflammation. The statistical models employed in this study revealed positive associations between the number of CXCR3high naive CD4 T cells and age as well as radiation dose among 580 Hiroshima atomic bomb survivors. In addition, the CXCR3high cells in these survivors increased not only with the levels of homeostatic cytokines, IL6 and IL7, but also with those of inflammatory indicators, CXCL10 and CRP. These results suggest that thymic T-cell production deficiency due to radiation and aging results in enhanced homeostatic proliferation that drives the appearance of CXCR3high naive CD4 T cells poised for an inflammatory response. Molecular mechanisms and clinical relevance of increasing CXCR3high cells in naive CD4 T populations should be further investigated in the context of inflammatory disease development long after radiation exposure.


Asunto(s)
Linfocitos T CD4-Positivos , Síndromes de Inmunodeficiencia , Exposición a la Radiación , Timo/anomalías , Humanos , Receptores de Quimiocina , Supervivientes a la Bomba Atómica , Envejecimiento , Receptores CXCR3
6.
Int J Radiat Biol ; 100(1): 61-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37772764

RESUMEN

PURPOSE: Risk analyses, based on relative biological effectiveness (RBE) estimates for neutrons relative to gammas, were performed; and the change in the curvature of the risk to dose response with increasing neutron RBE was analyzed using all solid cancer mortality data from the Radiation Effect Research Foundation (RERF). Results were compared to those based on incidence data. MATERIALS AND METHODS: This analysis is based on RERF mortality data with separate neutron and gamma doses for colon doses, from which organ averaged doses could be calculated. A model for risk ratio variation with RBE was developed. RESULTS: The best estimate of the neutron RBE considering mortality data was 200 (95% confidence interval (CI): 50-1010) for colon dose using the weighted-dose approach and for organ averaged dose 110 (95% CI: 30-350). The ERR risk ratios for all solid cancers combined, for the best fitting neutron RBE estimate and the neutron RBE of 10 result in a ratio of 0.54 (95% CI: 0.17-0.85) for colon dose and 0.55 (95% CI: 0.18-0.87) for organ averaged dose. The risk to dose response curvature became significantly negative (concave down) with increasing RBE, at a neutron RBE of 170 using colon dose and at an RBE of 90 using organ averaged dose for males when fitting a linear-quadratic dose response. For females, the curvature decreased toward linearity with increasing neutron RBE and remained significantly positive until RBE of 80 and 40 using colon and organ averaged dose, respectively. For higher neutron RBEs, no significant conclusion could be drawn about the shape of the dose-response curve. CONCLUSIONS: Application of neutron RBE values higher than 10 results in substantially reduced cancer mortality risk estimates and a significant reduction in curvature of the risk to dose responses for males. Using mortality data, the best fitting neutron RBE is much higher than when incidence data is used. The neutron RBE ranges covered by the overlap in the CIs from both the mortality and incidence analyses are 50-190 using colon dose and in all cases, the best fitting neutron RBE and lower 95% CI are higher than the value of 10 traditionally applied by the RERF. Therefore, it is recommended to consider uncertainties in neutron RBE values when calculating radiation risks and discussing the shape of dose responses using Japanese A-bomb survivors data.


Asunto(s)
Supervivientes a la Bomba Atómica , Neoplasias Inducidas por Radiación , Masculino , Femenino , Humanos , Efectividad Biológica Relativa , Neoplasias Inducidas por Radiación/etiología , Japón/epidemiología , Neutrones
7.
Ann ICRP ; 52(1-2): 17-22, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143299

RESUMEN

The most recent publicly available data on all solid cancer incidence from the Life Span Study (LSS) of Japanese A-bomb survivors provides colon dose contributions weighted with a relative biological effectiveness (RBE) of 10 for neutrons, relative to gammas. However, there is evidence from several investigations that the neutron RBE for A-bomb survivors may be higher than 10. The change in the shape of the corresponding dose-response curves was evaluated by Hafner and co-workers in a previous study by applying sex-specific linear-quadratic dose models to previous LSS data for all solid cancer incidence that include separate neutron and gamma absorbed doses for several organs, in contrast to the most recent data. The resulting curvature change became significantly negative for males at an RBE of 140 for colon, 100 for liver, and 80 for organ averaged dose. For females, the corresponding RBE values were 110, 80, and 60 for colon, liver, and organ averaged doses. The present study compares three different methods to calculate the 95% confidence intervals in an analysis of the curvature with increasing RBE. Further, the impact of a higher neutron RBE on the work of the International Commission on Radiological Protection, and the importance of including uncertainties and performing sensitivity analysis of different parameters in radiation risk assessment are discussed.


Asunto(s)
Neoplasias Inducidas por Radiación , Masculino , Femenino , Humanos , Efectividad Biológica Relativa , Incidencia , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Supervivientes a la Bomba Atómica , Japón/epidemiología , Neutrones
8.
Sci Rep ; 13(1): 16304, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770483

RESUMEN

We model the effects of disease and other exogenous damage during human aging. Even when the exogenous damage is repaired at the end of acute disease, propagated secondary damage remains. We consider both short-term mortality effects due to (acute) exogenous damage and long-term mortality effects due to propagated damage within the context of a generic network model (GNM) of individual aging that simulates a U.S. population. Across a wide range of disease durations and severities we find that while excess short-term mortality is highest for the oldest individuals, the long-term years of life lost are highest for the youngest individuals. These appear to be universal effects of human disease. We support this conclusion with a phenomenological model coupling damage and mortality. Our results are consistent with previous lifetime mortality studies of atom bomb survivors and post-recovery health studies of COVID-19. We suggest that short-term health impact studies could complement lifetime mortality studies to better characterize the lifetime impacts of disease on both individuals and populations.


Asunto(s)
COVID-19 , Longevidad , Humanos , Envejecimiento , Supervivientes a la Bomba Atómica
9.
Radiat Environ Biophys ; 62(3): 317-329, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37296237

RESUMEN

A significant source of information on radiation-induced biological effects following in-utero irradiation stems from studies of atomic bomb survivors who were pregnant at the time of exposure in Hiroshima, and to a lesser extent, from survivors in Nagasaki. Dose estimates to the developing fetus for these survivors have been assigned in prior dosimetry systems of the Radiation Effects Research Foundation as the dose to the uterine wall within the non-pregnant adult stylized phantom, originally designed for the dosimetry system DS86 and then carried forward in DS02. In a prior study, a new J45 (Japanese 1945) series of high-resolution phantoms of the adult pregnant female at 8 weeks, 15 weeks, 25 weeks, and 38-weeks post-conception was presented. Fetal and maternal organ doses were estimated by computationally exposing the pregnant female phantom series to DS02 free-in-air cumulative photon and neutron fluences at three distances from the hypocenter at both Hiroshima and Nagasaki under idealized frontal (AP) and isotropic (ISO) particle incidence. In this present study, this work was extended using realistic angular fluences (480 directions) from the DS02 system for seven radiation source terms, nine different radiation dose components, and five shielding conditions. In addition, to explore the effects of fetal position within the womb, four new phantoms were created and the same irradiation scenarios were performed. General findings are that the current DS02 fetal dose surrogate overestimates values of fetal organ dose seen in the J45 phantoms towards the cranial end of the fetus, especially in the later stages of pregnancy. For example, for in-open exposures at 1000 m in Hiroshima, the ratio of J45 fetal brain dose to DS02 uterine wall dose is 0.90, 0.82, and 0.70 at 15 weeks, 25 weeks, and 38-weeks, respectively, for total gamma exposures, and are 0.64, 0.44, and 0.37 at these same gestational ages for total neutron exposures. For organs in the abdominal and pelvic regions of the fetus, dose gradients across gestational age flatten and later reverse, so that DS02 fetal dosimetry begins to underestimate values of fetal organ dose as seen in the J45 phantoms. For example, for the same exposure scenario, the ratios of J45 fetal kidney dose to DS02 uterine wall dose are about 1.09 from 15 to 38 weeks for total gamma dose, and are 1.30, 1.56, and 1.75 at 15 weeks, 25 weeks, and 38 weeks, respectively, for the total neutron dose. Results using the new fetal positioning phantoms show this trend reversing for a head-up, breach fetal position. This work supports previous findings that the J45 pregnant female phantom series offers significant opportunities for gestational age-dependent assessment of fetal organ dose without the need to invoke the uterine wall as a fetal organ surrogate.


Asunto(s)
Guerra Nuclear , Traumatismos por Radiación , Adulto , Femenino , Humanos , Embarazo , Supervivientes a la Bomba Atómica , Radiometría/métodos , Sobrevivientes , Feto , Japón
10.
Health Phys ; 125(4): 245-259, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358430

RESUMEN

ABSTRACT: Organ dosimetry data of the atomic bomb survivors and the resulting cancer risk models derived from these data are currently assessed within the DS02 dosimetry system developed through the Joint US-Japan Dosimetry Working Group. In DS02, the anatomical survivor models are limited to three hermaphroditic stylized phantoms-an adult (55 kg), a child (19.8 kg), and an infant (9.7 kg)-that were originally designed for the preceding DS86 dosimetry system. As such, organ doses needed for assessment of in-utero cancer risks to the fetus have continued to rely upon the use of the uterine wall in the adult non-pregnant stylized phantom as the dose surrogate for all fetal organs regardless of gestational age. To address these limitations, the Radiation Effects Research Foundation (RERF) Working Group on Organ Dose (WGOD) has established the J45 (Japan 1945) series of high-resolution voxel phantoms, which were derived from the UF/NCI series of hybrid phantoms and scaled to match mid-1940s Japanese body morphometries. The series includes male and female phantoms-newborn to adult-and four pregnant female phantoms at gestational ages of 8, 15, 25, and 38 wk post-conception. In previous studies, we have reported organ dose differences between those reported by the DS02 system and those computed by the WGOD using 3D Monte Carlo radiation transport simulations of atomic bomb gamma-ray and neutron fields for the J45 phantoms series in their traditional "standing" posture, with some variations in their facing direction relative to the bomb hypocenter. In this present study, we present the J45 pregnant female phantoms in both a "kneeling" and "lying" posture and assess the dosimetric impact of these more anatomically realistic survivor models in comparison to current organ doses given by the DS02 system. For the kneeling phantoms facing the bomb hypocenter, organ doses from bomb source photon spectra were shown to be overestimated by the DS02 system by up to a factor of 1.45 for certain fetal organs and up to a factor of 1.17 for maternal organs. For lying phantoms with their feet in the direction of the hypocenter, fetal organ doses from bomb source photon spectra were underestimated by the DS02 system by factors as low as 0.77, while maternal organ doses were overestimated by up to a factor of 1.38. Organs doses from neutron contributions to the radiation fields exhibited an increasing overestimation by the DS02 stylized phantoms as gestational age increased. These discrepancies are most evident in fetal organs that are more posterior within the mother's womb, such as the fetal brain. Further analysis revealed that comparison of these postures to the original standing posture indicate significant dose differences for both maternal and fetal organ doses depending on the type of irradiation. Results from this study highlight the degree to which the existing DS02 system can differ from organ dosimetry based upon 3D radiation transport simulations using more anatomically realistic models of those survivors exposed during pregnancy.


Asunto(s)
Supervivientes a la Bomba Atómica , Traumatismos por Radiación , Recién Nacido , Niño , Adulto , Embarazo , Humanos , Masculino , Femenino , Radiometría/métodos , Feto/efectos de la radiación , Postura
11.
Radiat Res ; 200(1): 96-101, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141253

RESUMEN

Following our previous report on the radiation dose-response for prostate cancer incidence rates in the Life Span Study (LSS) cohort of atomic bomb survivors, we reevaluated the radiation-related risk adjusting for differences in baseline cancer incidence rates among three subsets of the LSS cohort defined by the timing of their first participation in biennial health examinations offered to the Adult Health Study (AHS) sub-cohort members and prostate-specific-antigen (PSA) testing status for AHS participants: 1. non-AHS participants, 2. AHS participants before receiving PSA test, and 3. AHS participants after receiving PSA test. We found a 2.9-fold increase in the baseline incidence rates among AHS participants after receiving PSA test. After adjusting for the PSA-testing-status effects on the baseline rates the estimated excess relative risk (ERR) per Gy was 0.54 (95% CI: 0.15, 1.05), which was almost identical to the previously reported unadjusted ERR estimate (0.57, 95% CI: 0.21, 1.00). The current results confirmed that, while the PSA testing among AHS participants increased the baseline incidence rates, it did not impact the radiation risk estimate, strengthening the previously reported dose-response relationship for prostate cancer incidence in the LSS. As the use of PSA tests continue in screening and medical settings, analyses of possible effects of PSA testing should be an important aspect of future epidemiological studies of the association between radiation exposure and prostate cancer.


Asunto(s)
Neoplasias Inducidas por Radiación , Neoplasias de la Próstata , Adulto , Masculino , Humanos , Incidencia , Antígeno Prostático Específico , Supervivientes a la Bomba Atómica , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Sobrevivientes , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/etiología , Japón/epidemiología
12.
J Korean Med Sci ; 38(13): e110, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012689

RESUMEN

BACKGROUND: Atomic bombs dropped on Hiroshima and Nagasaki in Japan in August 1945 were estimated to have killed approximately 70,000 Koreans. In Japan, studies on the health status and mortality of atomic bomb survivors compared with the non-exposed population have been conducted. However, there have been no studies related to the mortality of Korean atomic bomb survivors. Therefore, we aimed to study the cause of death of atomic bomb survivors compared to that of the general population. METHODS: Of 2,299 atomic bomb survivors registered with the Korean Red Cross, 2,176 were included in the study. In the general population, the number of deaths by age group was calculated from 1992 to 2019, and 6,377,781 individuals were assessed. Causes of death were categorized according to the Korean Standard Classification of Diseases. To compare the proportional mortality between the two groups, the P value for the ratio test was confirmed, and the Cochran-Armitage trend test and χ² test were performed to determine the cause of death according to the distance from the hypocenter. RESULTS: Diseases of the circulatory system were the most common cause of death (25.4%), followed by neoplasms (25.1%) and diseases of the respiratory system (10.6%) in atomic bomb survivors who died between 1992 and 2019. The proportional mortality associated with respiratory diseases, nervous system diseases, and other diseases among atomic bomb survivors was higher than that of the general population. Of the dead people between 1992 and 2019, the age at death of survivors who were exposed at a close distance was younger than those who were exposed at a greater distance. CONCLUSION: Overall, proportional mortality of respiratory diseases and nervous system diseases was high in atomic bomb survivors, compared with the general population. Further studies on the health status of Korean atomic bomb survivors are needed.


Asunto(s)
Neoplasias Inducidas por Radiación , Neoplasias , Guerra Nuclear , Humanos , Supervivientes a la Bomba Atómica , Neoplasias/complicaciones , Factores de Riesgo , Japón/epidemiología , República de Corea/epidemiología , Neoplasias Inducidas por Radiación/epidemiología
13.
J Prev Med Public Health ; 56(1): 1-11, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36746417

RESUMEN

In 1945, atomic bombs were dropped on Hiroshima and Nagasaki. Approximately 70 000 Koreans are estimated to have been exposed to radiation from atomic bombs at that time. After Korea's Liberation Day, approximately 23 000 of these people returned to Korea. To investigate the long-term health and hereditary effects of atomic bomb exposure on the offspring, cohort studies have been conducted on atomic bomb survivors in Japan. This study is an ongoing cohort study to determine the health status of Korean atomic bomb survivors and investigate whether any health effects were inherited by their offspring. Atomic bomb survivors are defined by the Special Act On the Support for Korean Atomic Bomb Victims, and their offspring are identified by participating atomic bomb survivors. As of 2024, we plan to recruit 1500 atomic bomb survivors and their offspring, including 200 trios with more than 300 people. Questionnaires regarding socio-demographic factors, health behaviors, past medical history, laboratory tests, and pedigree information comprise the data collected to minimize survival bias. For the 200 trios, whole-genome analysis is planned to identify de novo mutations in atomic bomb survivors and to compare the prevalence of de novo mutations with trios in the general population. Active follow-up based on telephone surveys and passive follow-up with linkage to the Korean Red Cross, National Health Insurance Service, death registry, and Korea Central Cancer Registry data are ongoing. By combining pedigree information with the findings of trio-based whole-genome analysis, the results will elucidate the hereditary health effects of atomic bomb exposure.


Asunto(s)
Supervivientes a la Bomba Atómica , Guerra Nuclear , Humanos , Estudios de Cohortes , Sobrevivientes , Japón/epidemiología , República de Corea/epidemiología
14.
Cancer Epidemiol ; 83: 102341, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36812706

RESUMEN

BACKGROUND: Comparison of the estimated effect of atomic bomb radiation exposure on solid cancer incidence and solid cancer mortality in the RERF Life Span Study (LSS) reveals a difference in the magnitude and shape of the excess relative risk dose response. A possible contributing factor to this difference is pre-diagnosis radiation effect on post-diagnosis survival. Pre-diagnosis radiation exposure theoretically could influence post-diagnosis survival by affecting the genetic makeup and possibly aggressiveness of cancer, or by compromising tolerance for aggressive treatment for cancer. METHODS: We analyze the radiation effect on post-diagnosis survival in 20,463 LSS subjects diagnosed with first-primary solid cancer between 1958 and 2009 with particular attention to whether death was caused by the first-primary cancer, other cancer, or non-cancer diseases. RESULTS: From multivariable Cox regression analysis of cause-specific survival, the excess hazard at 1 Gy (EH1Gy) for death from the first primary cancer was not significantly different from zero - p = 0.23, EH1Gy = 0.038 (95 % CI: -0.023, 0.104). Death from other cancer and death from non-cancer diseases both were significantly associated with radiation dose: other cancer EH1Gy = 0.38 (95 % CI: 0.24, 0.53); non-cancer EH1Gy = 0.24 (95 % CI: 0.13, 0.36), both p < 0.001. CONCLUSION: There is no detectable large effect of pre-diagnosis radiation exposure on post-diagnosis death from the first primary cancer in A-bomb survivors. IMPACT: A direct effect of pre-diagnosis radiation exposure on cancer prognosis is ruled out as an explanation for the difference in incidence and mortality dose response in A-bomb survivors.


Asunto(s)
Neoplasias Inducidas por Radiación , Exposición a la Radiación , Humanos , Supervivientes a la Bomba Atómica , Neoplasias Inducidas por Radiación/etiología , Riesgo , Incidencia , Japón/epidemiología
15.
Radiat Res ; 199(2): 170-181, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602819

RESUMEN

The frequency of stable chromosome aberrations (sCA) in lymphocytes is a recognized radiation biological dosimeter. Its analysis can provide insights into factors that affect individual susceptibility as well as into the adequacy of radiation dose estimates used in studies of atomic bomb survivors. We analyzed the relationship between atomic bomb radiation exposure using the most recent DS02R1 dose estimates and the frequency of sCA as determined by FISH in 1,868 atomic bomb survivors. We investigated factors that may affect the background sCA rate and the shape and magnitude of the dose response. As in previous analyses of sCA in atomic bomb survivors that were based on Giemsa staining methods and used older DS86 dose estimates, the relationship between radiation dose and sCA rate was significant (P < 0.0001) with a linear-quadratic relationship at lower doses that did not persist at higher doses. As before, age at the time of the bombing and type of radiation shielding were significant dose-effect modifiers (P < 0.0001), but in contrast the difference in dose response by city was not so pronounced (P = 0.026) with a city effect not evident at doses below 1.25Gy. Background sCA rate increased with age at the time of examination (P < 0.0001), but neither sex, city, nor smoking was significantly associated with background rate. Based on FISH methods and recent dosimetry, the relationship between radiation dose and sCA frequency is largely consistent with previous findings, although the lesser importance of city as an effect modifier may reflect better dosimetry as well as more reproducible scoring of sCA. The persisting difference in sCA dose response by shielding category points to remaining problems with the accuracy or precision of radiation dose estimates in some A-bomb survivors.


Asunto(s)
Guerra Nuclear , Exposición a la Radiación , Humanos , Supervivientes a la Bomba Atómica , Radiometría/métodos , Exposición a la Radiación/efectos adversos , Aberraciones Cromosómicas , Sobrevivientes , Japón , Relación Dosis-Respuesta en la Radiación
16.
Int J Radiat Biol ; 99(8): 1139-1147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36525558

RESUMEN

PURPOSE: It has long been thought that the carcinogenic effect of radiation is due to the induction of oncogenic mutations, which means that a fraction of the irradiated individuals will be affected in a dose-dependent manner. This dogma was recently challenged because it was found that the model does not properly explain the life shortening effect of radiation which is seen as a parallel shift of mouse survival curves toward younger ages following an exposure to radiation. Specifically, according to the mutation induction theory, an irradiated mouse or human population evolves into two subpopulations with different mean lifespans, which would lead to a wider distribution of individual lifespans, and hence to a shallower slope in the survival curve, which is not what is observed. Instead, the parallel shift indicates that a large fraction of the irradiated mice are affected (but there are exceptions). Thus, it was thought important to pursue how the excess risk for cancer develops following an exposure to radiation. METHOD: In the present study, cancer mortality data from mice and atomic-bomb survivors is presented to understand the increasing patterns of cancer risks. RESULTS: In both species, it was found that cancer mortality starts to increase earlier in the exposed group. CONCLUSION: The results are consistent with the notion that in many irradiated organs (but not all) radiation-induced tissue damage can lead to the development of an altered microenvironment (most probably inflammation), which is favorable to the growth of spontaneously arising tumor cells and can lead to an earlier onset of the diseases or to an apparently increased risk of cancer.


Asunto(s)
Neoplasias Inducidas por Radiación , Guerra Nuclear , Humanos , Animales , Ratones , Supervivientes a la Bomba Atómica , Neoplasias Inducidas por Radiación/epidemiología , Sobrevivientes , Riesgo , Microambiente Tumoral
17.
Int J Radiat Biol ; 99(4): 629-643, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36154910

RESUMEN

PURPOSE: Development of a model characterizing risk variation with RBE to investigate how the incidence risk for all solid cancers combined varies with higher neutron RBEs and different organ dose types. MATERIAL AND METHODS: The model is based on RERF data with separate neutron and gamma dose information. RESULTS: For both additive and multiplicative linear excess risks per unit organ averaged dose, a reduction of 50% in the risk coefficient per weighted dose arises when a neutron RBE of 110 is used instead of 10. Considering risk per unit liver dose, this reduction occurs for an RBE of 130 and for risks per unit colon dose for an RBE of 190. The change in the shape of the dose response curve when using higher neutron RBEs is evaluated. The curvature changed and became significantly negative for males at an RBE of 140 for colon dose, 100 for liver dose and 80 for organ averaged dose. For females this is the case at an RBE of 110, 80 and 60, respectively. CONCLUSIONS: Uncertainties in neutron RBE values should be considered when radiation risks and the shape of dose responses are deduced from cancer risk data from the atomic bomb survivors.


Asunto(s)
Neoplasias Inducidas por Radiación , Masculino , Femenino , Humanos , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/epidemiología , Supervivientes a la Bomba Atómica , Pueblos del Este de Asia , Efectividad Biológica Relativa , Neutrones
18.
Radiat Res ; 197(5): 491-508, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35213725

RESUMEN

Recent analysis of all solid cancer incidence (1958-2009) in the Life Span Study (LSS) revealed evidence of upward curvature in the radiation dose response among males but not females. Upward curvature in sex-averaged excess relative risk (ERR) for all solid cancer mortality (1950-2003) was also observed in the 0-2 Gy dose range. As reasons for non-linearity in the LSS are not completely understood, we conducted dose-response analyses for all solid cancer mortality and incidence applying similar methods [1958-2009 follow-up, DS02R1 doses, including subjects not-in-city (NIC) at the time of the bombing] and statistical models. Incident cancers were ascertained from Hiroshima and Nagasaki cancer registries, while cause of death was ascertained from death certificates throughout Japan. The study included 105,444 LSS subjects who were alive and not known to have cancer before January 1, 1958 (80,205 with dose estimates and 25,239 NIC subjects). Between 1958 and 2009, there were 3.1 million person-years (PY) and 22,538 solid cancers for incidence analysis and 3.8 million PY and 15,419 solid cancer deaths for mortality analysis. We fitted sex-specific ERR models adjusted for smoking to both types of data. Over the entire range of doses, solid cancer mortality dose-response exhibited a borderline significant upward curvature among males (P = 0.062) and significant upward curvature among females (P = 0.010); for solid cancer incidence, as before, we found a significant upward curvature among males (P = 0.001) but not among females (P = 0.624). The sex difference in magnitude of dose-response curvature was statistically significant for cancer incidence (P = 0.017) but not for cancer mortality (P = 0.781). The results of analyses in the 0-2 Gy range and restricted lower dose ranges generally supported inferences made about the sex-specific dose-response shape over the entire range of doses for each outcome. Patterns of sex-specific curvature by calendar period (1958-1987 vs. 1988-2009) and age at exposure (0-19 vs. 20-83) varied between mortality and incidence data, particularly among females, although for each outcome there was an indication of curvature among 0-19-year-old male survivors in both calendar periods and among 0-19-year-old female survivors in the recent period. Collectively, our findings indicate that the upward curvature in all solid cancer dose response in the LSS is neither specific to males nor to incidence data; its evidence appears to depend on the composition of sites comprising all solid cancer group and age at exposure or time. Further follow up and site-specific analyses of cancer mortality and incidence will be important to confirm the emerging trend in dose-response curvature among young survivors and unveil the contributing factors and sites.


Asunto(s)
Neoplasias Inducidas por Radiación , Guerra Nuclear , Armas Nucleares , Adolescente , Adulto , Supervivientes a la Bomba Atómica , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Japón/epidemiología , Longevidad , Masculino , Neoplasias Inducidas por Radiación/etiología , Adulto Joven
19.
Radiat Res ; 197(4): 403-407, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35042238

RESUMEN

High-dose radiation in childhood such as is used in radiation therapy causes cognitive decline, but there is insufficient research on the cognitive effects of low- to medium-dose radiation. We aimed to reveal the association between atomic bomb radiation exposure in childhood and late-life neurocognitive function. In 2011 and 2013, we mailed the Neurocognitive Questionnaire (NCQ) to subjects who were 12 years old or younger at the time of the atomic bombing. We converted the four NCQ subscales (metacognition, emotional regulation, motivation/organization, and processing speed) to T scores and defined the highest 10% of the controls (exposure dose < 5 mGy) as impaired. We used a generalized linear mixed model to evaluate the effect of radiation exposure on T scores and percentage impaired. We enrolled 859 participants. At the time of the bombing, the mean (SD) age was 6.7 (3.8) years for the control (N = 390) and 6.1 (3.8) years for the exposed (N = 469). At the time of replying to the questionnaire, the mean age of all the participants was 73.7 (3.8) years of age. After adjusting for cofactors, older age was related to the decline of all neurocognitive subscales. Sex and education level had relevance to some of the subscales. For neurocognitive function, exposure dose was not related except to percentage impaired, motivation/organization. Late-life neurocognitive function in atomic bomb survivors exposed as children was associated with age, but not clearly with radiation dose. More studies are needed to evaluate the effect of low-dose radiation during childhood on long-term neurocognitive function.


Asunto(s)
Armas Nucleares , Exposición a la Radiación , Traumatismos por Radiación , Adulto , Anciano , Supervivientes a la Bomba Atómica , Niño , Humanos , Japón , Exposición a la Radiación/efectos adversos , Sobrevivientes
20.
Blood ; 139(2): 217-227, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34428282

RESUMEN

Epidemiological data have provided limited and inconsistent evidence on the relationship between radiation exposure and lymphoid neoplasms. We classified 553 lymphoid neoplasm cases diagnosed between 1950 and 1994 in the Life Span Study cohort of atomic bomb survivors into World Health Organization subtypes. Mature B-cell neoplasms represented 58%, mature T-cell and natural killer (NK)-cell neoplasms 20%, precursor cell neoplasms 5%, and Hodgkin lymphoma (HL) 3%, with the remaining 15% classified as non-Hodgkin lymphoid (NHL) neoplasms or lymphoid neoplasms not otherwise specified. We used Poisson regression methods to assess the relationship between radiation exposure and the more common subtypes. As in earlier reports, a significant dose response for NHL neoplasms as a group was seen for males but not females. However, subtype analyses showed that radiation dose was strongly associated with increased precursor cell neoplasms rates, with an estimated excess relative risk per Gy of 16 (95% Confidence interval: 7.0, >533) at age 50. The current data based primarily of tissue-based diagnoses suggest that the association between radiation dose and lymphoid neoplasms as a group is largely driven by the radiation effect on precursor cell neoplasms while presenting no evidence of a radiation dose response for major categories of mature cell neoplasms, either B- or T-/NK-cell, or more specific disease entities (diffuse large B-cell lymphoma, plasma cell myeloma, adult T-cell leukemia/lymphoma) or HL.


Asunto(s)
Supervivientes a la Bomba Atómica , Leucemia Linfoide/etiología , Linfoma/etiología , Neoplasias Inducidas por Radiación/etiología , Adolescente , Adulto , Femenino , Humanos , Incidencia , Leucemia Linfoide/patología , Linfoma/patología , Masculino , Persona de Mediana Edad , Neoplasias Inducidas por Radiación/patología , Ceniza Radiactiva/efectos adversos , Riesgo , Organización Mundial de la Salud , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...