Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.891
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000201

RESUMEN

Pulmonary alveolar proteinosis (PAP) is an ultra-rare disease caused by impaired pulmonary surfactant clearance due to the dysfunction of alveolar macrophages or their signaling pathways. PAP is categorized into autoimmune, congenital, and secondary PAP, with autoimmune PAP being the most prevalent. This article aims to present a comprehensive review of PAP classification, pathogenesis, clinical presentation, diagnostics, and treatment. The literature search was conducted using the PubMed database and a total of 67 articles were selected. The PAP diagnosis is usually based on clinical symptoms, radiological imaging, and bronchoalveolar lavage, with additional GM-CSF antibody tests. The gold standard for PAP treatment is whole-lung lavage. This review presents a summary of the most recent findings concerning pulmonary alveolar proteinosis, pointing out specific features that require further investigation.


Asunto(s)
Proteinosis Alveolar Pulmonar , Proteinosis Alveolar Pulmonar/terapia , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/patología , Humanos , Lavado Broncoalveolar , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/uso terapéutico , Macrófagos Alveolares/metabolismo
2.
Cell Mol Life Sci ; 81(1): 287, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970705

RESUMEN

Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRß, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRß as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.


Asunto(s)
Homeostasis , Receptores X del Hígado , Macrófagos Alveolares , Neumonía , Surfactantes Pulmonares , Transducción de Señal , Animales , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Surfactantes Pulmonares/metabolismo , Ratones , Neumonía/metabolismo , Neumonía/patología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Pulmón/metabolismo , Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Asma/metabolismo , Asma/patología , Asma/genética , Colesterol/metabolismo , Metabolismo de los Lípidos , Fagocitosis
3.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L232-L249, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860845

RESUMEN

COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the ß-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population (Krt8+ and Cldn4+). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from ß-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.NEW & NOTEWORTHY COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that ß-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.


Asunto(s)
COVID-19 , Estrés del Retículo Endoplásmico , Endorribonucleasas , Homeostasis , Virus de la Hepatitis Murina , SARS-CoV-2 , Animales , Ratones , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , COVID-19/complicaciones , Virus de la Hepatitis Murina/patogenicidad , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/patología , Chaperón BiP del Retículo Endoplásmico , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/complicaciones , Surfactantes Pulmonares/metabolismo , Respuesta de Proteína Desplegada , Betacoronavirus , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/virología , Insuficiencia Respiratoria/patología , Modelos Animales de Enfermedad , eIF-2 Quinasa/metabolismo , Humanos
4.
Biomed Chromatogr ; 38(9): e5937, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38922717

RESUMEN

Dexamethasone, a glucocorticoid commonly used in pediatric patients, has potent anti-inflammatory and immunosuppressive properties. However, it is associated with side effects such as reduced lung function and decreased immunity. Pulmonary surfactant lipids are closely linked to lung disease and play a role in reducing surface tension, immune response and antiviral activity. The dysregulation of lipid metabolism is closely associated with lung disease. Hence, untargeted lipidomics may be instrumental in elucidating the effects of dexamethasone on pulmonary surfactant lipids. We obtained surfactant lipid samples from the bronchoalveolar lavage fluid of young mice injected subcutaneously with dexamethasone and conducted a comprehensive lipidomic analysis, comparing them with a control group. We observed a decrease in lipids, such as phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine, and an increase in ceramide, fatty acid, diacylglycerol and monoglyceride, which may impact lung health. This study revealed the influence of dexamethasone on pulmonary surfactant lipids, offering new insights into adverse reactions in clinical settings.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Dexametasona , Lipidómica , Lípidos , Surfactantes Pulmonares , Animales , Lipidómica/métodos , Dexametasona/farmacología , Surfactantes Pulmonares/análisis , Surfactantes Pulmonares/metabolismo , Ratones , Líquido del Lavado Bronquioalveolar/química , Lípidos/química , Lípidos/análisis , Ratones Endogámicos C57BL , Metabolismo de los Lípidos/efectos de los fármacos , Masculino
5.
Immun Inflamm Dis ; 12(6): e1302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860749

RESUMEN

BACKGROUND: Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE: This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING: In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION: Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.


Asunto(s)
COVID-19 , Proteínas Asociadas a Surfactante Pulmonar , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/inmunología , Humanos , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Biomarcadores , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Pronóstico , Pulmón/patología , Pulmón/metabolismo
6.
J Clin Invest ; 134(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690742

RESUMEN

The discovery and replacement of lung surfactant have helped increase survival rates for neonatal respiratory distress syndrome in extremely premature infants.


Asunto(s)
Recien Nacido Prematuro , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Humanos , Recién Nacido , Recien Nacido Extremadamente Prematuro , Surfactantes Pulmonares/metabolismo , Historia del Siglo XX
7.
Biophys J ; 123(12): 1519-1530, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38664968

RESUMEN

The type II pneumocytes of the lungs secrete a mixture of lipids and proteins that together acts as a surfactant. The material forms a thin film on the surface of the liquid layer that lines the alveolar air sacks. When compressed by the decreasing alveolar surface area during exhalation, the films reduce surface tension to exceptionally low levels. Pulmonary surfactant is essential for preserving the integrity of the barrier between alveolar air and capillary blood during normal breathing. This review focuses on the major biophysical processes by which endogenous pulmonary surfactant achieves its function and the mechanisms involved in those processes. Vesicles of pulmonary surfactant adsorb rapidly from the alveolar liquid to form the interfacial film. Interfacial insertion, which requires the hydrophobic surfactant protein SP-B, proceeds by a process analogous to the fusion of two vesicles. When compressed, the adsorbed film desorbs slowly. Constituents remain at the surface at high interfacial concentrations that reduce surface tensions well below equilibrium levels. We review the models proposed to explain how pulmonary surfactant achieves both the rapid adsorption and slow desorption characteristic of a functional film.


Asunto(s)
Surfactantes Pulmonares , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/química , Humanos , Animales , Modelos Biológicos , Adsorción , Fenómenos Biofísicos , Tensión Superficial
8.
PLoS One ; 19(3): e0297889, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483982

RESUMEN

OBJECTIVE: Surfactant-specific proteins (SP) are responsible for the functional and structural integrity as well as for the stabilization of the intra-alveolar surfactant. Morphological lung maturation starts in rat lungs after birth. The aim of this study was to investigate whether the expression of the hydrophilic SP-A and the hydrophobic SP-B is associated with characteristic postnatal changes characterizing morphological lung maturation. METHODS: Stereological methods were performed on the light microscope. Using immunohistochemical and molecular biological methods (Western Blot, RT-qPCR), the SP-A and SP-B of adult rat lungs and of those with different postnatal developmental stages (3, 7, 14 and 21 days after birth) were characterized. RESULTS: As signs of alveolarization the total septal surface and volume increased and the septal thickness decreased. The significantly highest relative surface fraction of SP-A labeled alveolar epithelial cells type II (AEII) was found together with the highest relative SP-A gene expression before the alveolarization (3th postnatal day). With the downregulation of SP-A gene expression during and after alveolarization (between postnatal days 7 and 14), the surface fraction of the SP-A labeled AEII also decreased, so they are lowest in adult animals. The surface fraction of SP-B labeled AEII and the SP-B gene expression showed the significantly highest levels in adults, the protein expression increased also significantly at the end of morphological lung maturation. There were no alterations in the SP-B expression before and during alveolarization until postnatal day 14. The protein expression as well as the gene expression of SP-A and SP-B correlated very well with the total surface of alveolar septa independent of the postnatal age. CONCLUSION: The expression of SP-A and SP-B is differentially associated with morphological lung maturation and correlates with increased septation of alveoli as indirect clue for alveolarization.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Ratas , Animales , Tensoactivos/metabolismo , Surfactantes Pulmonares/metabolismo , Pulmón/metabolismo , Alveolos Pulmonares , Proteínas Asociadas a Surfactante Pulmonar/genética , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Lipoproteínas/metabolismo
9.
Protein Sci ; 33(1): e4835, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984447

RESUMEN

Pulmonary surfactant (PS) is a lipid-protein complex that forms films reducing surface tension at the alveolar air-liquid interface. Surfactant protein C (SP-C) plays a key role in rearranging the lipids at the PS surface layers during breathing. The N-terminal segment of SP-C, a lipopeptide of 35 amino acids, contains two palmitoylated cysteines, which affect the stability and structure of the molecule. The C-terminal region comprises a transmembrane α-helix that contains a ALLMG motif, supposedly analogous to a well-studied dimerization motif in glycophorin A. Previous studies have demonstrated the potential interaction between SP-C molecules using approaches such as Bimolecular Complementation assays or computational simulations. In this work, the oligomerization state of SP-C in membrane systems has been studied using fluorescence spectroscopy techniques. We have performed self-quenching and FRET assays to analyze dimerization of native palmitoylated SP-C and a non-palmitoylated recombinant version of SP-C (rSP-C) using fluorescently labeled versions of either protein reconstituted in different lipid systems mimicking pulmonary surfactant environments. Our results reveal that doubly palmitoylated native SP-C remains primarily monomeric. In contrast, non-palmitoylated recombinant SP-C exhibits dimerization, potentiated at high concentrations, especially in membranes with lipid phase separation. Therefore, palmitoylation could play a crucial role in stabilizing the monomeric α-helical conformation of SP-C. Depalmitoylation, high protein densities as a consequence of membrane compartmentalization, and other factors may all lead to the formation of protein dimers and higher-order oligomers, which could have functional implications under certain pathological conditions and contribute to membrane transformations associated with surfactant metabolism and alveolar homeostasis.


Asunto(s)
Proteína C Asociada a Surfactante Pulmonar , Surfactantes Pulmonares , Proteína C Asociada a Surfactante Pulmonar/química , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Lípidos/química , Tensoactivos
10.
Lab Chip ; 24(2): 197-209, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38093669

RESUMEN

This paper introduces a two-inlet, one-outlet lung-on-a-chip device with semi-circular cross-section microchannels and computer-controlled fluidic switching that enables a broader systematic investigation of liquid plug dynamics in a manner relevant to the distal airways. A leak-proof bonding protocol for micro-milled devices facilitates channel bonding and culture of confluent primary small airway epithelial cells. Production of liquid plugs with computer-controlled inlet channel valving and just one outlet allows more stable long-term plug generation and propagation compared to previous designs. The system also captures both plug speed and length as well as pressure drop concurrently. In one demonstration, the system reproducibly generates surfactant-containing liquid plugs, a challenging process due to lower surface tension that makes the plug formation less stable. The addition of surfactant decreases the pressure required to initiate plug propagation, a potentially significant effect in diseases where surfactant in the airways is absent or dysfunctional. Next, the device recapitulates the effect of increasing fluid viscosity, a challenging analysis due to higher resistance of viscous fluids that makes plug formation and propagation more difficult particularly in airway-relevant length scales. Experimental results show that increased fluid viscosity decreases plug propagation speed for a given air flow rate. These findings are supplemented by computational modeling of viscous plug propagation that demonstrates increased plug propagation time, increased maximum wall shear stress, and greater pressure differentials in more viscous conditions of plug propagation. These results match physiology as mucus viscosity is increased in various obstructive lung diseases where it is known that respiratory mechanics can be compromised due to mucus plugging of the distal airways. Finally, experiments evaluate the effect of channel geometry on primary human small airway epithelial cell injury in this lung-on-a-chip. There is more injury in the middle of the channel relative to the edges highlighting the role of channel shape, a physiologically relevant parameter as airway cross-sectional geometry can also be non-circular. In sum, this paper describes a system that pushes the device limits with regards to the types of liquid plugs that can be stably generated for studies of distal airway fluid mechanical injury.


Asunto(s)
Microfluídica , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Pulmón/metabolismo , Tensoactivos , Dispositivos Laboratorio en un Chip
11.
Curr Biol ; 33(23): R1242-R1245, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052177

RESUMEN

Clearance of liquid and gas filling of airways is vital for animal respiration. New research shows that a surfactant film of exosomal-derived lipids is built at the air-liquid interface of Drosophila airways before gas filling. Coordinated lysosomal and vesicular pathways synergize to assemble this lipid layer, which is essential for respiration and survival.


Asunto(s)
Surfactantes Pulmonares , Animales , Surfactantes Pulmonares/metabolismo , Sistema Respiratorio , Respiración , Lípidos
12.
Cell Mol Biol Lett ; 28(1): 90, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936104

RESUMEN

BACKGROUND: The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation. METHOD: GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling. RESULTS: Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations. CONCLUSIONS: In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.


Asunto(s)
Surfactantes Pulmonares , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Cuerpos Lamelares , Lípidos , Surfactantes Pulmonares/metabolismo , ARN , Tensoactivos , Pez Cebra/metabolismo
13.
Biomaterials ; 303: 122404, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992600

RESUMEN

Idiopathic pulmonary fibrosis (IPF) stands as a highly heterogeneous and deadly lung disease, yet the available treatment options remain limited. Combining myofibroblast inhibition with ROS modulation in damaged AECs offers a comprehensive strategy to halt IPF progression, but delivering drugs separately to these cell types is challenging. Inspired by the successful application of pulmonary surfactant (PS) replacement therapy in lung disease treatment, we have developed PS nano-biomimetic liposomes (PSBs) to utilize its natural transport pathway for targeting AECs while reducing lung tissue clearance. In this collaborative pulmonary drug delivery system, PSBs composed of DPPC/POPG/DPPG/CHO (20:9:5:4) were formulated for inhalation. These PSBs loaded with ROS-scavenger astaxanthin (AST) and anti-fibrosis drug pirfenidone (PFD) were aerosolized for precise quantification and mimicking patient inhalation. Through aerosol inhalation, the lipid membrane of PSBs gradually fused with natural PS, enabling AST delivery to AECs by hitchhiking with PS circulation. Simultaneously, PFD was released within the PS barrier, effectively penetrating lung tissue to exert therapeutic effects. In vivo results have shown that PSBs offer numerous therapeutic advantages in mice with IPF, particularly in terms of lung function recovery. This approach addresses the challenges of drug delivery to specific lung cells and offers potential benefits for IPF patients.


Asunto(s)
Fibrosis Pulmonar Idiopática , Surfactantes Pulmonares , Humanos , Ratones , Animales , Surfactantes Pulmonares/uso terapéutico , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacología , Liposomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Aerosoles y Gotitas Respiratorias , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Piridonas/farmacología
14.
Chem Rev ; 123(23): 13209-13290, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37862151

RESUMEN

Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.


Asunto(s)
Surfactantes Pulmonares , Recién Nacido , Humanos , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Fosfolípidos/química , Tensoactivos , Tensión Superficial , Fenómenos Químicos
15.
PLoS One ; 18(8): e0289530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37556489

RESUMEN

BACKGROUND: Studies have shown that the release of endogenous glutamate (Glu) participates in lung injury by activating N-methyl-D-aspartate receptor (NMDAR), but the mechanism is still unclear. This study was to investigate the effects and related mechanisms of Glu on the lipid synthesis of pulmonary surfactant (PS) in isolated rat lung tissues. METHODS: The cultured lung tissues of adult SD rats were treated with Glu. The amount of [3H]-choline incorporation into phosphatidylcholine (PC) was detected. RT-PCR and Western blot were used to detect the changes of mRNA and protein expression of cytidine triphosphate: phosphocholine cytidylyltransferase alpha (CCTα), a key regulatory enzyme in PC biosynthesis. Western blot was used to detect the expression of NMDAR1, which is a functional subunit of NMDAR. Specific protein 1 (Sp1) expression plasmids were used. After transfected with Sp1 expression plasmids, the mRNA and protein levels of CCTα were detected by RT-PCR and Western blot in A549 cells. After treated with NMDA and MK-801, the mRNA and protein levels of Sp1 were detected by RT-PCR and Western blot in A549 cells. RESULTS: Glu decreased the incorporation of [3H]-choline into PC in a concentration- and time- dependent manner. Glu treatment significantly reduced the mRNA and protein levels of CCTα in lungs. Glu treatment up-regulated NMDAR1 protein expression, and the NMDAR blocker MK-801 could partially reverse the reduction of [3H]-choline incorporation induced by Glu (10-4 mol/L) in lungs. After transfected with Sp1 plasmid for 30 h, the mRNA and protein expression levels of CCTα were increased and the protein expression of Sp1 was also up-regulated. After A549 cells were treated with NMDA, the level of Sp1 mRNA did not change significantly, but the expression of nucleus protein in Sp1 was significantly decreased, while the expression of cytoplasmic protein was significantly increased. However, MK-801could reverse these changes. CONCLUSIONS: Glu reduced the biosynthesis of the main lipid PC in PS and inhibited CCTα expression by activating NMDAR, which were mediated by the inhibition of the nuclear translocation of Sp1 and the promoter activity of CCTα. In conclusion, NMDAR-mediated Glu toxicity leading to impaired PS synthesis may be a potential pathogenesis of lung injury.


Asunto(s)
Lesión Pulmonar , Surfactantes Pulmonares , Factor de Transcripción Sp1 , Animales , Ratas , Colina/metabolismo , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Maleato de Dizocilpina , Ácido Glutámico , N-Metilaspartato , Fosfatidilcolinas , Surfactantes Pulmonares/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo
16.
Hum Mol Genet ; 32(18): 2842-2855, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37471639

RESUMEN

Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).


Asunto(s)
Neoplasias Pulmonares , Surfactantes Pulmonares , Humanos , Estudio de Asociación del Genoma Completo , Pulmón/metabolismo , Genotipo , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Catepsina H/genética , Catepsina H/metabolismo
17.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511463

RESUMEN

The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Surfactantes Pulmonares , Surfactantes Pulmonares/metabolismo , Tensoactivos/farmacología , Nicotiana/metabolismo , Pulmón/metabolismo
18.
Sci Total Environ ; 892: 164732, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290642

RESUMEN

Short-term high-concentration exposure to airborne fine particulate matter (PM2.5) is strongly associated with the risk of acute lung injury (ALI). It has been recently reported that exosomes (Exos) involve in the progression of respiratory diseases. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbate PM2.5-induced ALI remains largely unaddressed. In the present study, we firstly investigated the effect of macrophage-derived exosomal tumor necrosis factor α (TNF-α) on pulmonary surfactant proteins (SPs) expression in epithelial MLE-12 cells after PM2.5 exposure. The higher levels of exosomes in the bronchoalveolar lavage fluid (BALF) of PM2.5-induced ALI mice were found. BALF-exosomes significantly up-regulated SPs expression in MLE-12 cells. Moreover, we found that remarkably high expression of TNF-α in exosomes secreted by PM2.5-treated RAW264.7 cells. Exosomal TNF-α promoted thyroid transcription factor-1 (TTF-1) activation and SPs expression in MLE-12 cells. Furthermore, intratracheal instillation of macrophage-derived TNF-α-containing exosomes increased epithelial cell SPs expression in the lungs of mice. Taken together, these results suggest that macrophages-secreted exosomal TNF-α can trigger epithelial cell SPs expression, which provides new insight and potential target in the mechanism of epithelial cell dysfunction in PM2.5-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Surfactantes Pulmonares , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Material Particulado/toxicidad , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
19.
Immunol Rev ; 317(1): 166-186, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37144896

RESUMEN

The pulmonary surfactant system of the lung is a lipid and protein complex, which regulates the biophysical properties of the alveoli to prevent lung collapse and the innate immune system in the lung. Pulmonary surfactant is a lipoprotein complex consisting of 90% phospholipids and 10% protein, by weight. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), exist at very high concentrations in the extracellular alveolar compartments. We have reported that one of the most dominant molecular species of PG, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and PI inhibit inflammatory responses induced by multiple toll-like receptors (TLR2/1, TLR3, TLR4, and TLR2/6) by interacting with subsets of multiprotein receptor components. These lipids also exert potent antiviral effects against RSV and influenza A, in vitro, by inhibiting virus binding to host cells. POPG and PI inhibit these viral infections in vivo, in multiple animal models. Especially noteworthy, these lipids markedly attenuate SARS-CoV-2 infection including its variants. These lipids are natural compounds that already exist in the lung and, thus, are less likely to cause adverse immune responses by hosts. Collectively, these data demonstrate that POPG and PI have strong potential as novel therapeutics for applications as anti-inflammatory compounds and preventatives, as treatments for broad ranges of RNA respiratory viruses.


Asunto(s)
COVID-19 , Surfactantes Pulmonares , Animales , Humanos , Fosfolípidos/metabolismo , Surfactantes Pulmonares/uso terapéutico , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Receptor Toll-Like 2 , SARS-CoV-2 , Pulmón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Fosfatidilgliceroles/uso terapéutico , Fosfatidilgliceroles/farmacología
20.
J Appl Physiol (1985) ; 134(3): 558-568, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701481

RESUMEN

Investigation of the pathophysiology of lung impairment and protection in very preterm neonates at birth requires adequate experimental models. This study aimed to elucidate the efficacy and mechanism of perinatal pharmacotherapeutic action in postnatal survival of very preterm rabbits. Pregnant New Zealand White rabbits on 25-day gestation (term 31 days) were given dexamethasone (D), or sham injection as control (C), and cesarean delivered 24 hours later on day 26. Newborns were anesthetized, intratracheally intubated, randomly received either saline or porcine surfactant (S), allocated to four groups (C, S, D, and DS), and ventilated with low tidal volume. Under the identical protocol, another four groups were added with nitric oxide (N) inhalation (CN, SN, DN, and DSN). Survival length, lung mechanics, histopathology, and pathobiology of lung tissue were measured for benefits and injury patterns. DSN had the longest median survival time (ST50, 10.3 h), whereas C had the shortest (3.5 h), with remaining groups in-between. The survival was mainly benefited by S, when additive effects with D and/or N were discernible, by improved lung mechanics and alveolar aeration, ameliorated lung injury severity and pneumothorax, and augmented lung phospholipid pools, with DSN being the most optimal. Variable mRNA expression profiles of alveolar epithelia-associated cytokines and inflammatory mediators further characterized injury and response patterns as phenotyping conditioned in pharmacotherapeutic actions. In conclusion, the combined regimens of perinatal medications achieved remarkable survival in very preterm rabbits with lung protective ventilation strategy, offering a unique model in investigation of very preterm birth-associated respiratory physiology and morbidities.NEW & NOTEWORTHY By establishing a very preterm rabbit model with 26-day gestation (term 31 days), optimal survival length for 50% of animals in groups was achieved by comparing regimens of combined antenatal glucocorticoids, postnatal surfactant and inhaled nitric oxide, with a low tidal volume ventilation strategy. The efficacies of pharmacotherapeutic action were associated with significantly improved lung mechanics, ameliorated lung injury and pneumothorax, and enhanced surfactant phospholipid metabolism, along with variable mRNA expression profiles characterizing the response patterns.


Asunto(s)
Lesión Pulmonar , Neumotórax , Nacimiento Prematuro , Surfactantes Pulmonares , Animales , Femenino , Humanos , Recién Nacido , Embarazo , Conejos , Animales Recién Nacidos , Recien Nacido Extremadamente Prematuro , Pulmón , Óxido Nítrico/metabolismo , Fosfolípidos/metabolismo , Surfactantes Pulmonares/metabolismo , Respiración Artificial , ARN Mensajero/metabolismo , Tensoactivos/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...