Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
Anal Bioanal Chem ; 416(18): 4219-4225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847872

RESUMEN

Canines are widely used for real-time detection of explosives and have proven to be on par with instrumental methods. Canines are thought to rely largely upon detection of volatile chemical constituents of the explosives, though not necessarily the explosive itself. Hence, it is crucial to understand the odor available to them as generated by training aids. Previous studies have established that the Training Aid Delivery Device (TADD) developed by SciK9 is a reliable training aid that reduces cross-contamination and doubles as a storage device. A TADD comprises a standardized container, a synthetic membrane, a membrane holder, and a lid. In the work presented, activated charcoal strips were placed above and below the TADD membrane to determine the relative amounts of volatiles emitted by dynamite (i.e., ethylene glycol dinitrate (EGDN) and trinitroglycerin (NG)). The strips were eluted and the extracts tested using gas chromatography-mass spectrometry in negative ion chemical ionization mode. A series of t-tests at 95% confidence level were performed to determine any differences in vapor composition above and below the membranes. Nine synthetic membranes and six glass fiber membranes were tested in this study. It was expected that the relative concentration of volatiles would remain the same on both sides of the membrane; however, selective removal of nitroglycerin by some membranes was observed. Synthetic membranes with larger pore sizes showed no alteration in the vapor composition. Both synthetic and glass fiber membranes did not show a significant change in relative concentration of the other volatile compound in dynamite, i.e., EGDN. Out of all the membranes tested, three synthetic membranes and four glass fiber membranes showed selective alteration in odor availability of nitroglycerin in dynamite. For training purposes, membranes that do not alter the vapor composition should be used in the training aid.


Asunto(s)
Sustancias Explosivas , Odorantes , Odorantes/análisis , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Animales , Perros , Membranas Artificiales , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis
2.
Luminescence ; 39(5): e4775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745525

RESUMEN

A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol-NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence-time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0-240.0 and 1.1 mg⋅L-1, respectively, in optimized concentrations 1.5 × 10-3 mol⋅L-1 luminol and 1.0 × 10-2 mol⋅L-1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl- ions is due to quench of chemiluminescence reaction of the luminol-NaClO.


Asunto(s)
Mediciones Luminiscentes , Luminol , Teléfono Inteligente , Mediciones Luminiscentes/métodos , Mediciones Luminiscentes/instrumentación , Luminol/química , Sustancias Explosivas/análisis , Luminiscencia , Límite de Detección
3.
Macromol Rapid Commun ; 45(10): e2300730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407503

RESUMEN

Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.


Asunto(s)
Polímeros , Polímeros/química , Porosidad , Estructuras Metalorgánicas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Polvos/química , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Propiedades de Superficie
4.
Chemosphere ; 340: 139796, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586488

RESUMEN

Here, lab-made graphite and polylactic acid (Gpt-PLA) biocomposite materials were used to additively manufacture electrodes via the fused deposition modeling (FDM) technique for subsequent determination of the explosive 2,4,6-trinitrotoluene (TNT, considered a persistent organic pollutant). The surface of the 3D-printed material was characterized by SEM and Raman, which revealed high roughness and the presence of defects in the graphite structure, which enhanced the electrochemical response of TNT. The 3D-printed Gpt-PLA electrode coupled to square wave voltammetry (SWV) showed suitable performance for fastly determining the explosive residues (around 7 s). Two reduction processes at around -0.22 V and -0.36 V were selected for TNT detection, with linear ranges between 1.0 and 10.0 µM. Moreover, detection limits of 0.52 and 0.66 µM were achieved for both reduction steps. The proposed method was applied to determine TNT in different environmental water samples (tap water, river water, and seawater) without a dilution step (direct analysis). Recovery values between 98 and 106% confirmed the accuracy of the analyses. Additionally, adequate selectivity was achieved even in the presence of other explosives commonly used by military agencies, metallic ions commonly found in water, and also some electroactive camouflage species. Such results indicate that the proposed device is promising to quantify TNT residues in environmental samples, a viable on-site analysis strategy.


Asunto(s)
Sustancias Explosivas , Grafito , Trinitrotolueno , Trinitrotolueno/análisis , Grafito/química , Sustancias Explosivas/análisis , Poliésteres , Electrodos , Agua , Impresión Tridimensional , Técnicas Electroquímicas/métodos
5.
Chemosphere ; 340: 139807, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574087

RESUMEN

Polymeric porous adsorbents are reported for removal of explosives, namely picric acid, 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN) and their subsequent quantification using direct analysis with ambient plasma mass spectrometry. The adsorbents are obtained by functionalization of short-chain poly(2-oxazoline)s with methyl ester side chains using 4-(aminomethyl)pyridine with a degree of functionalization equal to 0, 5, 10, and 20%. The subsequent step consist of cross-linking using a high internal phase emulsion procedure by further side-chain amidation with diethylenetriamine as crosslinker. Picric acid, RDX, and PETN were chosen as the model compounds as they belong to three different groups of explosives, in particular nitroaromatics, nitroamines, and nitrate esters, respectively. The adsorption isotherms, kinetics, as well as the influence of pH and temperature on the adsorption process was investigated. The porous adsorbents showed the highest maximum adsorption capacity towards picric acid, reaching 334 mg g-1, while PETN (80 mg g-1) and RDX (17.4 mg g-1) were less efficiently adsorbed. Subsequent quantification of the adsorbed explosives is performed by a specially designed ambient mass spectrometry setup equipped with a thermal heater. The obtained limits of detection were found to be 20-times improved compared to direct analysis of analyte solutions. The effectiveness of the proposed analytical setup is confirmed by successful quantification of the explosives in river water samples. The research clearly shows that functional porous adsorbents coupled directly with ambient mass spectrometry can be used for rapid quantification of explosives, which can be, e.g., used for tracking illegal manufacturing sites of these compounds.


Asunto(s)
Sustancias Explosivas , Tetranitrato de Pentaeritritol , Trinitrotolueno , Sustancias Explosivas/análisis , Trinitrotolueno/análisis , Porosidad , Triazinas/análisis , Tetranitrato de Pentaeritritol/análisis
6.
Sensors (Basel) ; 23(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37447704

RESUMEN

Microfluidic technology is a powerful tool to enable the rapid, accurate, and on-site analysis of forensically relevant evidence on a crime scene. This review paper provides a summary on the application of this technology in various forensic investigation fields spanning from forensic serology and human identification to discriminating and analyzing diverse classes of drugs and explosives. Each aspect is further explained by providing a short summary on general forensic workflow and investigations for body fluid identification as well as through the analysis of drugs and explosives. Microfluidic technology, including fabrication methodologies, materials, and working modules, are touched upon. Finally, the current shortcomings on the implementation of the microfluidic technology in the forensic field are discussed along with the future perspectives.


Asunto(s)
Ciencias Forenses , Microfluídica , Humanos , Sustancias Explosivas/análisis , Ciencias Forenses/instrumentación , Ciencias Forenses/métodos , Microfluídica/métodos , Microfluídica/tendencias , Técnicas de Química Analítica , ADN/análisis , Drogas Ilícitas/análisis , Animales
7.
Talanta ; 264: 124763, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290336

RESUMEN

Peroxide-based explosives (PBEs) are increasingly common in criminal and terrorist activity due to their easy synthesis and high explosive power. The rise in terrorist attacks involving PBEs has heightened the importance of detecting trace amounts of explosive residue or vapors. This paper aims to provide a review on the developments of techniques and instruments for detecting PBEs over the past ten years, specifically discussing advancements in ion mobility spectrometry, ambient mass spectrometry, fluorescence techniques, colorimetric methods, and electrochemical methods. We provide examples to illustrate their evolution and focus on new strategies for improving detection performance, specifically in terms of sensitivity, selectivity, high-throughput, and wide explosives coverage. Finally, we discuss future prospects for PBE detection. It is hoped this treatment will serve as a guide to the novitiate and as aid memoire to the researchers.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/análisis , Peróxidos , Espectrometría de Masas , Gases , Espectrometría de Movilidad Iónica
8.
Environ Sci Technol ; 57(1): 666-673, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36445010

RESUMEN

Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.


Asunto(s)
Sustancias Explosivas , Nanopartículas del Metal , Contaminantes Químicos del Agua , Purificación del Agua , Sustancias Explosivas/análisis , Sustancias Explosivas/metabolismo , Percloratos/análisis , Percloratos/metabolismo , Nitratos/análisis , Nitratos/metabolismo , Contaminantes Químicos del Agua/análisis , Paladio/análisis , Reactores Biológicos/microbiología
9.
Sci Total Environ ; 857(Pt 2): 159385, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36243074

RESUMEN

Amine/hydrazone functionalized dual ligand Cd(II)/Zn(II) based metal-organic frameworks (MOFs) denoted as CdMOF- and ZnMOF-NH2, respectively were synthesized via a simple conventional high-yield reflux method using low-cost and readily available starting materials, i.e., a Schiff base linker, 4-pyridylcarboxaldehydeisonicotinoylhydrazone (L1) and 2-aminoterephthalic acid (H2ata) linker. Crystallographic and thermogravimetric studies confirmed the formation of MOFs with good crystallinity and thermal stability. Photoluminescence studies point out that both MOFs can be used efficiently for fast sensing of 2,4,6-trinitrophenol (TNP) in water with noticeable turn-off quenching response. Their limits of detection (LODs) for TNP were 7 ppb and 10 ppb, respectively with enhanced selectivity toward TNP (over other nitro explosives) as verified by competitive nitro explosive tests. Density functional theory calculations and spectral overlap were used to assess the sensing mechanism. These MOF-based fluorescent sensing systems for TNP are demonstrated to have easy recoverability and high sensitivity.


Asunto(s)
Sustancias Explosivas , Estructuras Metalorgánicas , Cadmio , Espectrometría de Fluorescencia , Agua , Hidrazonas , Aminas , Sustancias Explosivas/análisis , Zinc/química
10.
Anal Methods ; 14(35): 3467-3473, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36052824

RESUMEN

Here, we have synthesised three luminescent Al MOFs i.e., Al-NTP, Al-FDA, and Al-TDA, using common metal ions (AlCl3·6H2O) with different carboxylic acid organic linkers (5-nitroisophthalic acid, 2,5-furan dicarboxylic acid, and 2,5-thiophenedicarboxylic acid) in a semi-aqueous medium. The structural analysis of Al-MOFs has been confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and absorption spectroscopy. Afterward, the optical properties of all three Al-MOFs were confirmed using photoluminescence spectroscopy and demonstrated for the detection of nitroaromatic explosives. We have observed host-guest interaction through a quenching mechanism. Among the three synthesised Al-MOFs, Al-NTP MOF exhibit 0.014 ppm lowest limit of detection in chloroform at room temperature. Our comparative study results reveal that the selection of the organic linker and solvent plays a critical role in MOF based sensing applications.


Asunto(s)
Sustancias Explosivas , Cloroformo , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Furanos , Polvos , Solventes
11.
Anal Chem ; 94(35): 12008-12015, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36001409

RESUMEN

As a highly deployed field instrument for the detection of narcotics, explosives, and chemical warfare agents, drift tube ion mobility spectrometry relies heavily upon the performance of the ionization source and mechanism of ion beam modulation. For this instrumental platform, ion chemistry plays a critical role in the performance of the instrument from a sensitivity and selectivity perspective; however, a range of instrumental components also occupy pivotal roles. Most notably, the mechanism of ion modulation or ion gating is a primary contributor to peak width in a drift tube ion mobility experiment. Unfortunately, physical ion gates rarely perform perfectly, and in addition to serving as physical impediments to ion transmission, their modulation also has undesirable field effects. Using a recently developed modulated, non-radioactive X-ray source, we detail the performance of an ion mobility spectrometry (IMS) system that is free of a gating structure and utilizes the pulsed nature of the modulated X-ray source (MXS) for both ion generation and initiation of the IMS experiment. After investigating the influence of pulse duration and spatial X-ray beam width on the analytical performance of the instrument, the possibility of using multiplexing with a shutterless system is explored. By increasing ion throughput, the observed multiplexing gain compared to a signal-averaged spectrum approaches the theoretical maximum and illustrates the capability of the MXS-IMS system to realize significant signal to noise improvements.


Asunto(s)
Sustancias Explosivas , Espectrometría de Movilidad Iónica , Sustancias Explosivas/análisis , Espectrometría de Movilidad Iónica/métodos , Rayos X
12.
Chemosphere ; 307(Pt 4): 136108, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35995197

RESUMEN

Explosives are powerful destructive weapons used by criminals and terrorists across the globe and their use within military installation sites poses serious environmental health problems. Existing colorimetric sensors for triacetone triperoxide (TATP) relies on detecting its hydrolysed H2O2 form. However, such detection strategy limits the practicability for on-site TATP sensing. In this work, we have developed a novel peroxidase mimic catalytic colorimetric sensor for direct recognition of TATP. Ceria (Ce)-doped Fe3O4 nanoparticles (CeFe3O4) were synthesized via the hot-injection organic synthetic route in the presence of metal precursors and organic ligands. Thereafter, the organic-capped CeFe3O4 nanoparticles were surface-functionalized with amphiphilic polymers (Amp-poly) to render the nanoparticle stable, compact and biocompatible. Thiolated γ-cyclodextrin (γ-CD) was adsorbed on the Amp-poly-CeFe3O4 nanocomposite (NC) surface to form a γ-CD-Amp-poly-CeFe3O4 NC. γ-CD served both as a receptor and as a catalytic enhancer for TATP. Hemin (H), used as a catalytic signal amplifier was adsorbed on the γ-CD-Amp-poly-CeFe3O4 NC surface to form a γ-CD-Amp-poly-CeFe3O4-H NC that served as a functional nanozyme for the enhanced catalytic colorimetric detection of TATP. Under optimum experimental reaction conditions, TATP prepared in BIS-TRIS-Trisma Ac-KAc-NAc buffer, pH 3, was selectively and ultrasensitively detected without the need for acid hydrolysis based on the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 in the presence of the γ-CD-Amp-poly-CeFe3O4-H hybrid nanozyme. The obtained limit of detection of ∼0.05 µg/mL when compared with other published probes demonstrated superior sensitivity. The developed peroxidase mimic γ-CD-Amp-poly-CeFe3O4-H catalytic colorimetric sensor was successfully applied to detect TATP in soil, river water and tap water samples.


Asunto(s)
Sustancias Explosivas , Nanocompuestos , gamma-Ciclodextrinas , Adenosina Monofosfato , Colorimetría , Sustancias Explosivas/análisis , Hemina , Compuestos Heterocíclicos con 1 Anillo , Peróxido de Hidrógeno/análisis , Ligandos , Fenómenos Magnéticos , Peroxidasa , Peróxidos , Polímeros , Suelo , Agua
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121627, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35853251

RESUMEN

Picric acid (2,4,6-trinitrophenol, PA) is a common constituent of many powerful explosives, thus, development of the chemical probes for trace level detection of PA is a crucial current challenge in both public security and environmental protection. In this work, the applicability of the new perovskite-type oxide SmFeO3 nanoparticles as an inorganic fluorescence turn-on probe for the selective and sensitive recognition of PA in organic and aqueous media was investigated. The synthesis of nanoparticles SmFeO3 was carried out using the surfactant-assisted templating approach which proceeds through the sol-gel process based on nonionic surfactant Triton X-100. The synthesized SmFeO3 nanoparticles exhibited strong solvent-dependent emission at 330 nm wavelength with absorption maxima at 225 nm. Among the tested explosives, the probe showed the highest sensitivity and selectivity for detecting PA in water and water/acetonitrile mixture. The response time for detecting PA was less than 5 s. The limits of detection for PA in acetonitrile and water/acetonitrile mixture were 2.1 µM and 1.1 µM, respectively. Furthermore, to investigate the nature of the fluorescence turn-on sensing mechanism, the experimental data of the dynamic light scattering (DLS) technique and zeta-potential were used. Both techniques confirmed the aggregation-induced emission (AIE) mechanism for detection of PA with the synthesized turn-on probe. The results of the present work will have a considerable impact on the development and applications of a new class of inorganic fluorescence turn-on probes for the detection of PA.


Asunto(s)
Sustancias Explosivas , Nanopartículas , Acetonitrilos , Compuestos de Calcio , Sustancias Explosivas/análisis , Colorantes Fluorescentes , Óxidos , Picratos , Samario , Espectrometría de Fluorescencia/métodos , Tensoactivos , Titanio , Agua
14.
Talanta ; 249: 123653, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691127

RESUMEN

Illegal explosives are a threat to aviation, transport sector, critical infrastructure and generally to public safety. Their detection requires extremely sensitive instruments with efficient workflows that allow large throughput of items. In this study, we built a trace explosives detection instrument that requires minimal sample treatment and reaches ultra-low picogram level detection limits for many common explosives. The instrument is based on thermal desorption of filters, which allows analysis of liquid and solid phase samples, and subsequent selective atmospheric pressure chemical ionization and detection with a mass spectrometer. We performed experiments to scope the optimal ionization chemistry for the system and selected Br- as the reagent ion, and measured the limit of detection for 14 different explosives that were generally in the picogram range. Finally, we demonstrate the usability of the system by sampling air to a filter from a storage room known to contain explosives, from which we detect four different explosives.


Asunto(s)
Sustancias Explosivas , Presión Atmosférica , Fenómenos Químicos , Sustancias Explosivas/análisis , Indicadores y Reactivos , Espectrometría de Masas/métodos
15.
Sci Total Environ ; 842: 156864, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35752239

RESUMEN

Millions of tonnes of dumped ammunition and explosive remnants of war remain in nature both on land and at sea. It is well known that the ordnance could represent a definite explosive risk if disturbed, and that some of the constituents in the ammunition could be harmful to humans and the environment. Nevertheless, a tacit assumption by decision makers is that, if left alone, the ammunition will slowly become harmless over time. Explosive remnants of war, however, represent not only an environmental risk but also a security and safety risk, as members of the public could come into contact with them, and fear is growing that ageing munitions could explode and/or be misused. In recent years, several concerns have been raised regarding the presence of dumped ammunition and explosive remnants of war, the potential dangers they represent, and the fact that the deterioration rate of the explosives could be significantly lower than previously assumed. In the present work, thermal and impact sensitivity studies of high explosives extracted from explosive remnants of war were performed, to determine whether or not the explosives have deteriorated to such a degree that a noteworthy decrease in performance and/or impact sensitivity can be recorded. The thermal behaviour of the explosives was studied using thermogravimetry analysis, and the impact sensitivity was determined using a fallhammer machine and the Bruceton test procedure. The thermal and impact sensitivity results obtained in the analysis indicated no deterioration of high explosives in the examined explosive remnants of war that would denote any significant reduction in performance and/or impact sensitivity.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/análisis , Humanos
16.
Talanta ; 245: 123414, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487080

RESUMEN

Detection of low-volatile explosives in concentrations below 10-14 g/cm3 is a great challenge for portable ion mobility spectrometers (IMS) and field asymmetric IMS (FAIMS). We study the capabilities of FAIMS detector with ultraviolet laser ionization combined with organic additives (dopants) toluene and 1-methylnaphtalene to sense nitro-explosives: trinitrotoluene (TNT) and low-volatile cyclonite (RDX) and nitropentaerythritol (PETN). Differential mobility coefficients were measured for target ion peaks of TNT, RDX and PETN. Presence of dopants in the sample results in multiple growth of ion yield at laser intensities lower than 2 × 107 W/cm2. Limits of detection with dopant-assisted laser ionization were determined: 4.7 × 10-16 g/cm3 for RDX and 9.8 × 10-15 g/cm3 for PETN. Obtained results propose a way to further improve sensitivity of detectors along with improvement of portability of current laser-based FAIMS prototypes by using less powerful and smaller lasers.


Asunto(s)
Sustancias Explosivas , Tetranitrato de Pentaeritritol , Trinitrotolueno , Sustancias Explosivas/análisis , Gases , Espectrometría de Movilidad Iónica/métodos , Rayos Láser , Tetranitrato de Pentaeritritol/análisis , Trinitrotolueno/análisis
17.
An Acad Bras Cienc ; 94(suppl 1): e20210810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35442299

RESUMEN

It is estimated that the explosive Hudson volcano eruption in Southern Chile injected approximately 2.7 km3 of basalt and trachyandesite tephra into the troposphere between August 8-15, 1991. The Hudson signal has been detected in Antarctica at the eastern sector and in South Pole snow. In this work, we track the Hudson volcanic plume using a dispersion model, remote sensing, and a re-analysis of a high-resolution ice core analysis from the Detroit Plateau in the Antarctic Peninsula and sedimentary records from shallow lakes from King George Island (KGI). The Hudson eruption imprint in these records is confirmed by using a weekly resolved aerosol concentration database from KGI demonstrating that the regional impact of Hudson eruption predominates over the Mount Pinatubo/Phillippines volcanic signal, dated from June 1991, in terms of particulate matter depositions. The aerosol elemental composition of Ca, Fe, Ti, Si, Al, Zn, and Pb increases from 2 to 3 orders of magnitude in background level during the days following the eruption of the Hudson volcano.


Asunto(s)
Sustancias Explosivas , Erupciones Volcánicas , Aerosoles/análisis , Regiones Antárticas , Sustancias Explosivas/análisis , Material Particulado/análisis
18.
Anal Chem ; 94(14): 5463-5468, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357149

RESUMEN

This study presents the rapid surface detection of explosives by employing atmospheric pressure arc desorption/ionization mass spectrometry (APADI-MS) using point-to-plane arc discharge. In APADI, neutral explosives readily bind to the gas-phase nitrate ion, NO3-, induced by arc discharge to form anionic adducts [M+NO3]-. This avoids the need for inorganic anionic additives such as NO3-, NO2-, Cl-, acetate, and trifluoroacetate for unique explosive ionization pathways and simplifies mass spectra. The analytical performance of APADI was thoroughly evaluated for the rapid detection of 10 explosives at levels in the range of 800 fg-1 µg. Arc-induced nitrogen oxide anions promoted the formation of characteristic adducts, such as [M+NO3]-, and improved the instrument response for all the explosives tested. APADI showed considerable sensitivity in the negative ion mode with limits of detection in the low picogram range, particularly when explosives were analyzed on a copper or aluminum foil substrate. APADI coupled with an Orbitrap mass spectrometer displayed a good linear response for the studied explosives. The linearity and intraday and interday precisions were evaluated, demonstrating the feasibility and robustness of APADI-MS for the detection of trace explosives on solid surfaces. The mechanisms of APADI for explosive ionization and desorption were examined and verified by performing density functional theory calculations.


Asunto(s)
Sustancias Explosivas , Aniones , Presión Atmosférica , Sustancias Explosivas/análisis , Indicadores y Reactivos , Espectrometría de Masas/métodos , Nitratos/análisis
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120994, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176646

RESUMEN

Rapid detection of 2,4,6-trinitrophenol (TNP) in real samples has recently attained considerable attention from the perspective of national security, human health, and environmental safety. In this context, cost-effective and convenient detection of TNP explosive was accomplished through two new fluorescein based sensors F2 and F3. Sensors displayed effective fluorescence quenching response towards TNP in the aqueous medium. Highly sensitive fluorescence detection of TNP explosive (detection limit, 0.73 (F2) and 1.7 nM (F3)) was governed by ground-state charge transfer complex formation, facilitated by favorable H-bonding between sensor and TNP explosive. Fluorescence quenching mechanism for the detection of TNP explosive was investigated through UV-Visible absorption, dynamic light scattering (DLS), density functional theory (DFT) calculations, the Benesi-Hildebrand, and Job's plots. Advantageously, sensors displayed selective and immediate colorimetric recognition of TNP explosive. Importantly, sensors exhibited quick response time towards TNP even in the presence of potential interferences that make them highly suitable for practical applications. Sensors were successfully applied for fluorescent and colorimetric detection of TNP explosive in industrial water samples and fabrication of logic gates. Further, convenient contact mode and instant surface sensing of TNP explosive were achieved through the fabrication of fluorescent strips and explosive responsive test kits.


Asunto(s)
Sustancias Explosivas , Colorimetría , Sustancias Explosivas/análisis , Fluoresceína , Colorantes Fluorescentes , Humanos , Picratos , Espectrometría de Fluorescencia , Agua
20.
Anal Methods ; 14(5): 581-587, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994748

RESUMEN

Improvement of the particle collection efficiency of sampling wipes is desirable for optimizing the performance of many wipe-based chemical analysis techniques used for trace chemical screening applications. In this note, commercially available Teflon coated fiberglass and calendered Nomex sampling wipes were modified by mechanically scoring the wipe surface to produce topography that promoted enhanced and localized particle collection. Wipe surface modifications improved particle collection efficiency, relative to unmodified wipes, by factors of 3 to 13 depending on sampling conditions, wipe type, and surface sampled. Improvements were demonstrated for both model polystyrene latex microspheres and inkjet printed explosive particles. The modifications also concentrated particles into pre-defined locations on the wipe which can be engineered to ensure maximum overlap with the thermal desorber of a trace contraband detection system allowing for more effective analysis of collected trace residues.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...