Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Toxins (Basel) ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057952

RESUMEN

Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.


Asunto(s)
Abrina , Ricina , Espectrometría Raman , Ricina/análisis , Abrina/análisis , Espectrometría Raman/métodos , Glicoproteínas/análisis , Límite de Detección , Humanos , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/toxicidad
2.
ACS Sens ; 9(7): 3773-3782, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918891

RESUMEN

Exposure to mustard gas can cause damage or death to human beings, depending on the concentration and duration. Thus, developing high-performance mustard-gas sensors is highly needed for early warning. Herein, ultrathin WO3 nanosheet-supported Pd nanoparticles hybrids (WO3 NSs/Pd) are prepared as chemiresistive sulfur mustard simulant (e.g., 2-chloroethyl ethyl sulfide, 2-CEES) gas sensors. As a result, the optimal WO3 NSs/Pd-2 (2 wt % of Pd)-based sensor exhibits a high response of 8.5 and a rapid response/recovery time of 9/92 s toward 700 ppb 2-CEES at 260 °C. The detection limit could be as low as 15 ppb with a response of 1.4. Moreover, WO3 NSs/Pd-2 shows good repeatability, 30-day operating stability, and good selectivity. In WO3 NSs/Pd-2, ultrathin WO3 NSs are rich in oxygen vacancies, offer more sites to adsorb oxygen species, and make their size close to or even within the thickness of the so-called electron depletion layer, thus inducing a large resistance change (response). Moreover, strong metal-support interactions (SMSIs) between WO3 NSs and Pd nanoparticles enhance the catalytic redox reaction performance, thereby achieving a superior sensing performance toward 2-CEES. These findings in this work provide a new approach to optimize the sensing performance of a chemiresistive sensor by constructing SMSIs in ultrathin metal oxides.


Asunto(s)
Gas Mostaza , Óxidos , Paladio , Tungsteno , Tungsteno/química , Paladio/química , Gas Mostaza/análisis , Gas Mostaza/química , Gas Mostaza/análogos & derivados , Óxidos/química , Límite de Detección , Nanopartículas del Metal/química , Nanoestructuras/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Técnicas Electroquímicas/métodos
3.
J Hazard Mater ; 472: 134604, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759283

RESUMEN

Of all chemical warfare agents (CWAs), only nerve and blood agents cause massive mortality at low concentrations. To better detect and discriminate nerve and blood agents, a reliable detection method is desirable. We report a series of fluorescent probes for nerve and blood agent detection. Among the tested probes, SR-Pip detected nerve and blood agents quickly (within 10 s for nerve agents and 1 min for blood agents). SR-Pip coupled with nerve agent produced a weak orange fluorescence with good sensitivity [limit of detection (LOD)= 5.5 µM]. Upon reaction with blood agent, the fluorescence of SR-Pip changed from orange fluorescence to blue fluorescence with detection limits as low as 9.6 nM. This probe effectively visualised different concentrations of nerve agents in living cells and mice. A portable test kit using SR-Pip instantly detected nerve and blood agents. To the best of our knowledge, SR-Pip is the first fluorescent probe for nerve and blood agent detection.


Asunto(s)
Sustancias para la Guerra Química , Colorantes Fluorescentes , Agentes Nerviosos , Animales , Colorantes Fluorescentes/química , Agentes Nerviosos/análisis , Agentes Nerviosos/toxicidad , Sustancias para la Guerra Química/análisis , Ratones , Humanos , Límite de Detección
4.
ACS Sens ; 9(5): 2325-2333, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38666660

RESUMEN

Organophosphorus nerve agents (OPNAs) pose a great threat to humanity. Possessing extreme toxicity, rapid lethality, and an unassuming appearance, these chemical warfare agents must be quickly and selectively identified so that treatment can be administered to those affected. Chromogenic detection is the most convenient form of OPNA detection, but current methods suffer from false positives. Here, nitrogenous base adducts of dirhodium(II,II) acetate were synthesized and used as chromogenic detectors of diethyl chlorophosphate (DCP), an OPNA simulant. UV-vis spectrophotometry was used to evaluate the sensitivity and selectivity of the complexes in the detection of DCP. Visual limits of detection (LOD) for DCP were as low as 1.5 mM DCP, while UV-vis-based LODs were as low as 0.113 µM. The dirhodium(II,II) complexes were also tested with several potential interferents, none of which produced a visual color change that could be mistaken for OPNA response. Ultimately, the Rh2(OAc)4(1,8-diazabicyclo[5.4.0]undec-7-ene)2 complex showed the best combination of detection capability and interferent resistance. These results, when taken together, show that dirhodium(II,II) paddlewheel complexes with nitrogenous base adducts can produce instant, selective, and sensitive detection of DCP. It is our aim to further explore and apply this new motif to produce even more capable OPNA sensors.


Asunto(s)
Agentes Nerviosos , Rodio , Rodio/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Complejos de Coordinación/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Límite de Detección , Compuestos Cromogénicos/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química
5.
J Forensic Sci ; 69(4): 1256-1267, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647068

RESUMEN

Pinacolyl alcohol (PA), a key forensic marker for the nerve agent Soman (GD), is a particularly difficult analyte to detect by various analytical methods. In this work, we have explored the reaction between PA and 1,1'-carbonyldiimidazole (CDI) to yield pinacolyl 1H-imidazole-1-carboxylate (PIC), a product that can be conveniently detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Regarding its GC-MS profile, this new carbamate derivative of PA possesses favorable chromatographic features such as a sharp peak and a longer retention time (RT = 16.62 min) relative to PA (broad peak and short retention time, RT = 4.1 min). The derivative can also be detected by LC-HRMS, providing an avenue for the analysis of this chemical using this technique where PA is virtually undetectable unless present in large concentrations. From a forensic science standpoint, detection of this low molecular weight alcohol signals the past or latent presence of the nerve agent Soman (GD) in a given matrix (i.e., environmental or biological). The efficiency of the protocol was tested separately in the analysis and detection of PA by EI-GC-MS and LC-HRMS when present at a 10 µg/mL in a soil matrix featured in the 44th PT and in a glycerol-rich liquid matrix featured in the 48th Official Organization for the Prohibition of Chemical Weapons (OPCW) Proficiency Test when present at a 5 µg/mL concentration. In both scenarios, PA was successfully transformed into PIC, establishing the protocol as an additional tool for the analysis of this unnatural and unique nerve agent marker by GC-MS and LC-HRMS.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Soman , Soman/análisis , Soman/análogos & derivados , Humanos , Cromatografía Liquida , Imidazoles/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Toxicología Forense/métodos , Sustancias para la Guerra Química/análisis , Espectrometría de Masas/métodos , Propanoles/química , Propanoles/análisis
6.
Forensic Sci Int ; 358: 112022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615427

RESUMEN

Since its first employment in World War I, chlorine gas has often been used as chemical warfare agent. Unfortunately, after suspected release, it is difficult to prove the use of chlorine as a chemical weapon and unambiguous verification is still challenging. Furthermore, similar evidence can be found for exposure to chlorine gas and other, less harmful chlorinating agents. Therefore, the current study aims to use untargeted high resolution mass spectrometric analysis of chlorinated biomarkers together with machine learning techniques to be able to differentiate between exposure of plants to various chlorinating agents. Green spire (Euonymus japonicus), stinging nettle (Urtica dioica), and feathergrass (Stipa tenuifolia) were exposed to 1000 and 7500 ppm chlorine gas and household bleach, pool bleach, and concentrated sodium hypochlorite. After sample preparation and digestion, the samples were analyzed by liquid chromatography high resolution tandem mass spectrometry (LC-HRMS/MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS). More than 150 chlorinated compounds including plant fatty acids, proteins, and DNA adducts were tentatively identified. Principal component analysis (PCA) and linear discriminant analysis (LDA) showed clear discrimination between chlorine gas and bleach exposure and grouping of the samples according to chlorine concentration and type of bleach. The identity of a set of novel biomarkers was confirmed using commercially available or synthetic reference standards. Chlorodopamine, dichlorodopamine, and trichlorodopamine were identified as specific markers for chlorine gas exposure. Fenclonine (Cl-Phe), 3-chlorotyrosine (Cl-Tyr), 3,5-dichlorotyrosine (di-Cl-Tyr), and 5-chlorocytosine (Cl-Cyt) were more abundantly present in plants after chlorine contact. In contrast, the DNA adduct 2-amino-6-chloropurine (Cl-Ade) was identified in both types of samples at a similar level. None of these chlorinated biomarkers were observed in untreated samples. The DNA adducts Cl-Cyt and Cl-Ade could clearly be identified even three months after the actual exposure. This study demonstrates the feasibility of forensic biomarker profiling in plants to distinguish between exposure to chlorine gas and bleach.


Asunto(s)
Biomarcadores , Cloro , Análisis de Componente Principal , Hipoclorito de Sodio , Espectrometría de Masas en Tándem , Cloro/análisis , Biomarcadores/análisis , Cromatografía Liquida , Análisis Discriminante , Hipoclorito de Sodio/química , Aductos de ADN/análisis , Desinfectantes/análisis , Sustancias para la Guerra Química/análisis , Ácidos Grasos/análisis , Proteínas de Plantas/análisis
7.
Photochem Photobiol Sci ; 23(4): 763-780, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519812

RESUMEN

Nerve agents are the most notorious substances, which can be fatal to an individual because they block the activity of acetylcholinesterase. Fighting against unpredictable terrorist assaults and wars requires the simple and quick detection of chemical warfare agent vapor. In the present contribution, we have introduced a rhodamine-based chemosensor, BDHA, for the detection of nerve gas-mimicking agents diethylchlorophosphate (DCP) and diethylcyanophosphonate (DCNP) and mustard gas-mimicking agent 2-chloroethyl ethyl sulfide (CEES), both in the liquid and vapor phase. Probe BDHA provides the ability for detection by the naked eye in terms of colorimetric and fluorometric changes. It has been revealed that the interaction between nerve agents mimics and probe BDHA facilitates spirolactam ring opening due to the phosphorylation process. Thus, the highly fluorescent and colored species developed while probe BDHA is colorless and non-fluorescent due to the intramolecular spirolactam ring. Moreover, probe BDHA can effectively recognize DCP, DCNP, and CEES in the µM range despite many toxic analytes and could be identified based on the response times and quantum yield values. Inexpensive, easily carried paper strips-based test kits were developed for the quick, on-location solid and vapor phase detection of these mustard gas imitating agents (CEES) and nerve gas mimicking agents (DCP and DCNP) without needing expensive equipment or skilled personnel. More remarkably, the test strips' color and fluorescence can be rapidly restored, exposing them to triethyl amine (TEA) for cyclic use, suggesting a potential application in the real-time identification of chemical warfare agents. To accomplish the on-location application of BDHA, we have experimented with soil samples to find traces of DCP. Therefore, the chromo-fluorogenic probe BDHA is a promising, instantaneous, and on-the-spot monitoring tool for the selective detection of DCP, DCNP, and CEES in the presence of others.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza/análogos & derivados , Agentes Nerviosos , Nitrofenoles , Organofosfatos , Compuestos Organofosforados , Sarín , Agentes Nerviosos/química , Acetilcolinesterasa , Colorantes Fluorescentes/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química
8.
Ecotoxicol Environ Saf ; 272: 116018, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325275

RESUMEN

Nerve agents (G- and V-series) are a group of extremely toxic organophosphorus chemical warfare agents that we have had the opportunity to encounter many times on a massive scale (Matsumoto City, Tokyo subway and Gulf War). The threat of using nerve agents in terrorist attacks or military operations is still present, even with establishing the Chemical Weapons Convention as the legal framework. Understanding their environmental sustainability and health risks is critical to social security. Due to the risk of contact with dangerous nerve agents and animal welfare considerations, in silico methods were used to assess hydrolysis and biodegradation safely. The environmental fate of the examined nerve agents was elucidated using QSAR models. The results indicate that the investigated compounds released into the environment hydrolyse at a different rate, from extremely fast (<1 day) to very slow (over a year); V-agents undergo slower hydrolysis compared to G-agents. V-agents turned out to be relatively challenging to biodegrade, the ultimate biodegradation time frame of which was predicted as weeks to months, while for G-agents, the overwhelming majority was classified as weeks. In silico methods for predicting various parameters are critical to preparing for the forthcoming application of nerve agents.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Animales , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/toxicidad , Agentes Nerviosos/toxicidad , Hidrólisis , Tokio
9.
Talanta ; 272: 125785, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394750

RESUMEN

Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.


Asunto(s)
Sustancias para la Guerra Química , Nanoestructuras , Agentes Nerviosos , Humanos , Agentes Nerviosos/toxicidad , Compuestos Organofosforados/toxicidad , Compuestos Organofosforados/química , Sustancias para la Guerra Química/análisis
10.
Macromol Rapid Commun ; 45(10): e2300730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407503

RESUMEN

Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.


Asunto(s)
Polímeros , Polímeros/química , Porosidad , Estructuras Metalorgánicas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Polvos/química , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Propiedades de Superficie
11.
Anal Methods ; 16(4): 515-523, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38205668

RESUMEN

Nerve agents are the most toxic chemical warfare agents that pose severe threat to human health and public security. In this work, we developed a novel fluorescent probe NZNN based on naphthylimide and o-phenylenediamine to detect nerve agent mimic diethylchlorophosphonate (DCP). DCP underwent a specific nucleophilic reaction with the o-phenylenediamine group of NZNN to produce a significant fluorescence turn-on response with high selectivity, exceptional linearity, bright fluorescence, rapid response (<6 s) and a low detection limit (30.1 nM). Furthermore, a portable sensing device was fabricated for real-time detection of DCP vapor with excellent performance. This portable and sensitive device is favorable for monitoring environmental pollution and defense against chemical warfare agents.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Fenilendiaminas , Humanos , Colorantes Fluorescentes , Sustancias para la Guerra Química/análisis , Compuestos Organofosforados
12.
J Chromatogr A ; 1716: 464645, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38219625

RESUMEN

Alkylphosphonofluoridic Acids (APFA) are the major thermal degradation products of G- and A-series nerve agents and thus play a vital role in the verification analysis of Chemical Weapons Convention. Present study focuses on the development of sample clean-up, derivatization procedures and gas chromatography tandem mass spectrometric analysis of APFA in aqueous samples. APFA were found to be much more delicate than the corresponding alkylphosphonic acids and thus required subtle optimizations. Retention of analytes on silica and polymer-based anion exchangers followed by elution under alkaline conditions yielded best recoveries. Elution under acidic conditions led to partial or complete degradation of the analytes to alkylphosphonic acids. Silylation reactions, particularly with MTBSTFA were found the best in terms of chromatographic responses and resolution of the derivative peaks. Methylations with diazomethane, which requires acidic reaction media, failed to produce desired yields of the derivatives. Under optimized conditions, the analytes produced the recoveries ranging from 76.9 to 94.5% with RSD ≤9.2%. The best LOD's in the tandem mass spectrometric analysis ranged from 13 to 56 ng/ml. The applicability of the method was tested by spiking the analytes in the retained aqueous samples received for the 52nd proficiency test conducted by the Organization for the Prohibition of Chemical Weapons (OPCW).


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Agentes Nerviosos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Sustancias para la Guerra Química/análisis , Límite de Detección , Espectrometría de Masas en Tándem , Ácidos , Agua/química
13.
Anal Bioanal Chem ; 416(9): 2173-2188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37702771

RESUMEN

The objective of the present review is to list, describe, compare, and critically analyze the main procedures developed in the last 20 years for the analysis of digested alkylated peptides, resulting from the adduction of albumin by different mustard agents, and that can be used as biomarkers of exposure to these chemical agents. While many biomarkers of sulfur mustard, its analogues, and nitrogen mustards can easily be collected in urine such as their hydrolysis products, albumin adducts require blood or plasma collection to be analyzed. Nonetheless, albumin adducts offer a wider period of detectability in human exposed patients than urine found biomarkers with detection up to 25 days after exposure to the chemical agent. The detection of these digested alkylated peptides of adducted albumin constitutes unambiguous proof of exposure. However, their determination, especially when they are present at very low concentration levels, can be very difficult due to the complexity of the biological matrices. Therefore, numerous sample preparation procedures to extract albumin and to recover alkylated peptides after a digestion step using enzymes have been proposed prior to the analysis of the targeted peptides by liquid chromatography coupled to mass spectrometry method with or without derivatization step. This review describes and compares the numerous procedures including a number of different steps for the extraction and purification of adducted albumin and its digested peptides described in the literature to achieve detection limits for biological samples exposed to sulfur mustard, its analogues, and nitrogen mustards in the ng/mL range.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Compuestos de Mostaza Nitrogenada , Humanos , Gas Mostaza/análisis , Monitoreo Biológico , Estudios Retrospectivos , Espectrometría de Masas en Tándem/métodos , Albúminas/química , Cromatografía Liquida , Compuestos de Mostaza Nitrogenada/análisis , Péptidos , Biomarcadores , Nitrógeno/análisis , Sustancias para la Guerra Química/análisis
14.
Molecules ; 28(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067417

RESUMEN

Dried urine spot (DUS) is a micro-sample collection technique, known for its advantages in handling, storage and shipping. It also uses only a small volume of urine, an essential consideration in working with small animals, or in acute medical situations. Alkyl-phosphonic acids are the direct and indicative metabolites of organophosphorus chemical warfare agents (OP-CWAs) and are present in blood and urine shortly after exposure. They are therefore crucially important for monitoring casualties in war and terror scenarios. We report here a new approach for the determination of the metabolites of five CWAs in urine using DUS. The method is based on a simple and rapid sample preparation, using only 50 µL of urine, spotted and dried on DBS paper, extracted using 300 µL methanol/water and analyzed via targeted LC-MS/MS. The detection limits for the five CWAs, sarin (GB), soman (GD), cyclosarin (GF), VX and RVX in human urine were from 0.5 to 5 ng/mL. Recoveries of (40-80%) were obtained in the range of 10-300 ng/mL, with a linear response (R2 > 0.964, R > 0.982). The method is highly stable, even with DUS samples stored up to 5 months at room temperature before analysis. It was implemented in a sarin in vivo exposure experiment on mice, applied for the time course determination of isopropyl methylphosphonic acid (IMPA, sarin hydrolysis product) in mice urine. IMPA was detectable even with samples drawn 60 h after the mice's (IN) exposure to 1 LD50 sarin. This method was also evaluated in a non-targeted screening for multiple potential CWA analogs (LC-Orbitrap HRMS analysis followed by automatic peak detection and library searches). The method developed here is applicable for rapid CWA casualty monitoring.


Asunto(s)
Sustancias para la Guerra Química , Ratones , Humanos , Animales , Sustancias para la Guerra Química/análisis , Sarín/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Compuestos Organofosforados/análisis
15.
ACS Sens ; 8(8): 2945-2951, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37581255

RESUMEN

Chemical weapons continue to be an ongoing threat that necessitates the improvement of existing detection technologies where new technologies are absent. Lower limits of detection will facilitate early warning of exposure to chemical weapons and enable more rapid deployment of countermeasures. Here, we evaluate two colorimetric gas detection tubes, developed by Draeger Inc., for sarin and sulfur mustard chemical warfare agents and determine their limits of detection using active chemical agent. Being that commercial companies are only able to use chemical agent simulants during sensor development, it is imperative to determine limits of detection using active agent. The limit of detection was determined based on the absence of a reasonably perceptible color response at incrementally lower concentrations. A chemical vapor generator was constructed to produce stable and quantifiable concentrations of chemical agent vapor, with the presence of chemical agent verified and monitored by a secondary detector. The limits of detection of the colorimetric gas detection tubes were determined to be 0.0046 ± 0.0002 and 2.1 ± 0.3 mg/m3 for sarin and sulfur mustard, respectively. The response of the sarin detection tube was readily observable with little issue. The sulfur mustard detection tube exhibited a weaker response to active agent compared to the simulant that was used during development, which will affect their concept of operations in real-world detection scenarios.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Sustancias para la Guerra Química/análisis , Gas Mostaza/análisis , Sarín , Límite de Detección , Colorimetría , Gases
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122936, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37269661

RESUMEN

Despite the largely tranquil environment in which humans live, a chemical terrorism attack is still a public safety problem, for which the capacity to quickly and accurately detect chemical warfare agents (CWAs) constitute a significant barrier. In this study, a straightforward fluorescent probe based on dinitrophenylhydrazine has been synthesised. It exhibits great selectivity and sensitivity for the nerve agent mimicking dimethyl chlorophosphate (DMCP) in the MeOH solution. Dinitrophenylhydrazine-oxacalix[4]arene (DPHOC), a 2,4-dinitrophenylhydrazine (2,4-DNPH) derivative, was synthesised and characterized with NMR and ESI-MS. Photophysical behavior, specially spectrofluorometric analysis was introduced to investigate the sensing phenomena of DPHOC toward dimethyl chlorophosphate (DMCP). The LOD of DPHOC toward DMCP was determined to be 2.1 µM, with a linear range from 5 to 50 µM (R2 = 0.99933). Moreover, DPHOC has been proven to be a promising probe toward the real time detection of DMCP.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Humanos , Agentes Nerviosos/análisis , Colorantes Fluorescentes/química , Dimiristoilfosfatidilcolina , Compuestos Organofosforados/análisis , Sustancias para la Guerra Química/análisis
17.
Anal Methods ; 15(23): 2861-2867, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37264865

RESUMEN

Sulfur mustard (SM) is an important chemical warfare agent (CWA) and has been used frequently in various conflicts. It is important to develop a facile, rapid, sensitive and selective detection method for SM. In this work, we constructed a novel fluorescent probe PCS capable of generating active sensing species for rapid and selective detection of SM and its simulant CEES (2-chloroethyl ethyl sulfide). PCS exhibits excellent chemical and photostability and can generate reactive species in situ for rapid (within 90 s, at 60 °C) and selective detection of SM and CEES in solution with high sensitivity (∼nM level). Moreover, PCS could enable the detection of mustards in situ. A test strip with PCS and KOH was prepared and realized the sensitive and selective detection of CEES in the gas phase. In addition, the PCS probe can realize facile and rapid detection of CEES-contaminated surfaces by spraying its sensing system (ethanol solution containing PCS and KOH). The sensing mechanism was well demonstrated through the separation and characterization of the sensing product.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Gas Mostaza/análisis , Gas Mostaza/química , Colorantes Fluorescentes , Sustancias para la Guerra Química/análisis
18.
Anal Chem ; 95(20): 7924-7932, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37167435

RESUMEN

Complex mixtures, characterized by high density of compounds, challenge trace detection and identification. This is further exacerbated in nontargeted analysis, where a compound of interest may be well hidden under thousands of matrix compounds. We studied the effect of matrix complexity on nontargeted detection (peak picking) by LC-MS/MS (Orbitrap) analysis. A series of ∼20 drugs, V-type chemical warfare agents and pesticides, simulating toxic unknowns, were spiked at various concentrations in several complex matrices including urine, rosemary leaves, and soil extracts. Orbitrap "TraceFinder" software was used to explore their peak intensities in relation to the matrix (peak location in an intensity-sorted list). Average practical detection limits of nontargets were determined. While detection among the first 10,000 peaks was achieved at 0.3-1 ng/mL levels in the extract, for the more realistic "top 1000" list, much higher concentrations were required, approaching 10-30 ng/mL. A negative power law functional dependence between the peak location in an intensity-sorted suspect list and the nontarget concentration is proposed. Controlled complexity was explored with a series of urine dilutions, resulting in an excellent correlation between the power law coefficient and dilution factor. The intensity distribution of matrix peaks was found to spread (unevenly) on a broad range, fitting well the Weibull distribution function with all matrices and extracts. The quantitative approach demonstrated here gives a measure of the actual capabilities and limitations of LC-MS in the analysis of nontargets in complex matrices. It may be used to estimate and compare the complexity of matrices and predict the typical detection limits of unknowns.


Asunto(s)
Sustancias para la Guerra Química , Plaguicidas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Plaguicidas/análisis , Sustancias para la Guerra Química/análisis , Programas Informáticos , Sustancias Peligrosas/análisis , Cromatografía Líquida de Alta Presión/métodos
19.
Analyst ; 148(11): 2582-2593, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37159231

RESUMEN

Diethyl cyanophosphonate (DCNP), a simulant of Tabun, is a common pollutant in pharmaceutical waste and poses a high risk to living organisms. Herein, we demonstrate a compartmental ligand-derived trinuclear zinc(II) cluster [Zn3(LH)2(CH3COO)2] as a probe for the selective detection and degradation of DCNP. It consists of two pentacoordinated Zn(II) [4.4.3.01,5]tridecane cages bridged through a hexacoordinated Zn(II) acetate unit. The structure of the cluster has been elucidated by spectrometric, spectroscopic, and single-crystal X-ray diffraction studies. The cluster shows a two-fold increased emission as compared to the compartmental ligand (at λexc = 370 nm and λem = 463 nm) due to the chelation-enhanced fluorescence effect and acts as a turn-off signal in the presence of DCNP. It can detect DCNP at nano levels up to 186 nM (LOD). The direct bond formation between DCNP and Zn(II) via the -CN group degrades it to inorganic phosphates. The mechanism of the interaction and degradation is supported by spectrofluorimetric experiments, NMR titration (1H and 31P), time of flight mass spectrometry and density functional theory calculations. The applicability of the probe has been further tested by the bio-imaging of zebrafish larvae, analysis of high-protein food products (meat and fish) and vapour phase detection by paper strips.


Asunto(s)
Sustancias para la Guerra Química , Animales , Sustancias para la Guerra Química/análisis , Zinc/análisis , Pez Cebra , Ligandos , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...