Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(4): 1605-1620, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38179647

RESUMEN

Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.


Asunto(s)
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Senescencia de la Planta , Metilación de ADN/genética , Aminoácidos/metabolismo , Flores/genética , Flores/metabolismo
2.
Environ Toxicol ; 39(3): 1086-1098, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37815491

RESUMEN

Metabolic disorders are majorly associated with insulin resistance and an impaired glucose tolerance. Since, many of the currently available drugs exhibit adverse effects and are resistant to therapies, natural products are a promising alternate in the alleviation of complex metabolic disorders. In the current study, Syzygium cumini methanolic extract (SCE) was investigated for its anti-diabetic and anti-adipogenic potential using C57BL/6 mice fed on high fat diet (HFD). The HFD fed obese mice were treated with 200 mg/kg SCE and compared with positive controls Metformin, Pioglitazone and Sodium Orthovanadate. The biometabolites in SCE were characterized using Fourier transform infrared and gas chromatography and mass spectroscopy. A reduction in blood glucose levels with improved insulin sensitivity and glucose tolerance was observed in SCE-treated HFD obese mice. Histopathological and biochemical investigations showed a reduction in hepatic injury and nephrotoxicity in SCE-administered HFD mice. Results showed inhibition of PTP1B and an upregulation of IRS1 and PKB-mediated signaling in skeletal muscle. A significant decrease in lipid markers such as TC, TG, LDL-c and VLDL-c levels were observed with increased HDL-c in SCE-treated HFD mice. A significant decrease in weight and adiposity was observed in SCE-administered HFD mice in comparison to controls. This decrease could be due to the partial agonism of PPARγ and an increased expression of adiponectin, an insulin sensitizer. Hence, the dual-modulatory effect of SCE, partly due to the presence of 26% Pyrogallol, could be useful in the management of diabetes and its associated maladies.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Syzygium , Ratones , Animales , Dieta Alta en Grasa , PPAR gamma , Syzygium/química , Syzygium/metabolismo , Ratones Obesos , Ratones Endogámicos C57BL , Aumento de Peso , Insulina/metabolismo
3.
Homeopathy ; 113(2): 98-111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37857331

RESUMEN

BACKGROUND: The growing interest in identifying the mode of action of traditional medicines has strengthened its research. Syzygium jambolanum (Syzyg) is commonly prescribed in homeopathy and is a rich source of phytochemicals. OBJECTIVE: The present study aims to shed light on the anti-glycation molecular mechanism of Syzyg mother tincture (MT), 30c, and 200c on glycated human serum albumin (HSA) by multi-spectroscopic and microscopic approaches. METHODS: The phytochemicals and antioxidant potential of the Syzyg formulations were estimated by the high-performance liquid chromatography and spectroscopic technique, respectively. Glycation was initiated by incubating HSA with methylglyoxal, three Syzyg formulations, and the known inhibitor aminoguanidine in separate tubes at 37°C for 48 hours. The formation of glycation adducts was assessed by spectrofluorometer and affinity chromatography. The structural modifications were analyzed through circular dichroism, Fourier transform infrared spectroscopy, turbidity, 8-anilinonapthalene-1-sulfonic acid fluorescence, and nuclear magnetic resonance. Further, the formation of the aggregates was examined by thioflavin T, native-polyacrylamide gel electrophoresis, and transmission electron microscopy. Additionally, the functional modifications of glycated HSA were determined by esterase-like activity and antioxidant capacity. The binding analysis of Syzyg formulations with glycated HSA was evaluated by surface plasmon resonance (SPR). RESULTS: Syzyg formulations MT, 30c, and 200c contained gallic acid and ellagic acid as major phytochemicals, with concentrations of 16.02, 0.86, and 0.52 µg/mL, and 227.35, 1.35, and 0.84 µg/mL, respectively. Additionally, all three formulations had remarkable radical scavenging ability and could significantly inhibit glycation compared with aminoguanidine. Further, Syzyg formulations inhibited albumin's structural and functional modifications. SPR data showed that Syzyg formulations bind to glycated HSA with an equilibrium dissociation constant of 1.10 nM. CONCLUSION: Syzyg formulations inhibited the glycation process while maintaining the structural and functional integrity of HSA.


Asunto(s)
Guanidinas , Homeopatía , Syzygium , Humanos , Syzygium/metabolismo , Reacción de Maillard , Antioxidantes/farmacología , Albúmina Sérica/química , Albúmina Sérica/metabolismo
4.
Braz J Biol ; 83: e272466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851769

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by hippocampal, and cortical neuron deterioration, oxidative stress, and severe cognitive dysfunction. Aluminum is a neurotoxin inducer for cognitive impairments associated with AD. The treatment approaches for AD are unsatisfactory. Boswellia papyrifera and Syzygium aromaticum are known for their pharmacological assets, including antioxidant activity. Therefore, the current study explored the possible mitigating effects of a combination of Boswellia papyrifera and Syzygium aromaticum against aluminum chloride (AlCl3) induced AD. The AD model was established using AlCl3 (100 mg/kg), and the rats were orally administrated with Boswellia papyrifera or Syzygium aromaticum or a combination of them daily for 8 weeks. The Y-maze test was used to test cognition in the rats, while acetylcholinesterase (AChE) and oxidative stress markers were estimated in homogenates of the cerebral cortex and hippocampus. Also, the histopathological examination of the cortex and hippocampus were investigated. The results revealed that administration of either B. papyrifera or S. aromaticum extracts significantly improved the cognitive functions of AD rats, enhanced AChE levels, increased oxidative enzymes levels, including SOD and GSH, and reduced MDA levels in homogenates of the cerebral cortex and hippocampus and confirmed by improvement in histological examination. However, using a combination therapy gave better results compared to a single treatment. In conclusion, the present study provided primary evidence for using a combination of B. papyrifera and S. aromaticum to treat cognitive dysfunction associated with AlCl3 Induced AD by improving the AChE levels and modulating oxidative stress in the brain.


Asunto(s)
Enfermedad de Alzheimer , Boswellia , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Syzygium , Masculino , Ratas , Animales , Cloruro de Aluminio/toxicidad , Cloruro de Aluminio/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Syzygium/metabolismo , Boswellia/metabolismo , Compuestos de Aluminio/toxicidad , Compuestos de Aluminio/uso terapéutico , Cloruros/toxicidad , Cloruros/uso terapéutico , Acetilcolinesterasa/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ratas Wistar , Estrés Oxidativo
5.
Plant Biotechnol J ; 21(11): 2307-2321, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37626478

RESUMEN

Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.


Asunto(s)
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Flores , Etilenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Daru ; 31(2): 183-192, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37639147

RESUMEN

BACKGROUND: Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES: This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS: The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS: CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION: Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.


Asunto(s)
Ansiolíticos , Aceites Volátiles , Syzygium , Animales , Aceite de Clavo/farmacología , Aceite de Clavo/metabolismo , Aceites Volátiles/farmacología , Pez Cebra , Syzygium/metabolismo , Ansiolíticos/farmacología , Ansiolíticos/metabolismo , Eugenol/farmacología , Eugenol/metabolismo
7.
Fish Shellfish Immunol ; 138: 108830, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244318

RESUMEN

This study evaluated the effects of jamun leaf extract (JLE) as a feed supplement on growth performance, haemato-immunological, oxidative stress-related parameters, and cytokine gene expression in Cyprinus carpio challenged with Aeromonas hydrophila.. Diets containing four different JLE concentrations, that is, 0 (basal diet), 5 (JLE5), 10 (JLE10), and 15 g kg-1 (JLE15), were fed to carp (6.17 ± 0.43 g) for eight weeks. Growth performance was significantly higher in JLE10. Haemato-immunological and antioxidant parameters were determined in fish at 48 h post-challenge with A. hydrohila. The cumulative survival was highest in JLE10 (69.69%) 14 days post-challenge. Serum protein (2.18 ± 0.06 g dL-1), lysozyme (32.38 ± 1.2 U mL-1), alternative complement pathway (70.43 ± 1.61 U mL-1), phagocytic activity (21.18 ± 0.48%), respiratory burst activity (0.289 ± 0.09 OD630nm), and immunoglobulin levels (6.67 ± 0.36 U mg mL-1) were significantly higher in JLE10 than in the control. Serum alanine aminotransferase (44.06 ± 1.62 Unit mL-1), aspartate aminotransferase (31.58 ± 1.82 Unit mL-1), and malondialdehyde (2.57 ± 0.26 nmol mL-1) levels were lower in JLE10 than in the control (p < 0.05), whereas myeloperoxidase activity was significantly higher in JLE5 and JLE10 than in the control. Superoxide dismutase levels in the serum were higher (p < 0.05) in JLE5 and JLE10 than in the other groups. Gene expression analysis revealed that the mRNA expression of pro-inflammatory cytokines TNF-α and IL-1ß was upregulated (p < 0.05) in the liver, head-kidney, and intestine of challenged carp in JLE10. The signalling molecule NF-κB p65 was upregulated in lymphoid organs in JLE10 but not in the liver. The anti-inflammatory cytokine IL-10 was significantly downregulated in challenged carp in JLE10 compared with that in the control. Quadratic regression analysis showed that optimal dietary JLE was estimated to be 9.03-10.15 g kg-1 to maximize the growth performance. Results of the present study revealed that dietary JLE at 10 g kg-1 can significantly improve the immunity and disease resistance of C. carpio. Thus, JLE is a promising food additive for carp aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Syzygium , Animales , Carpas/genética , Carpas/metabolismo , Syzygium/genética , Syzygium/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Antioxidantes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Extractos Vegetales/farmacología , Alimentación Animal/análisis , Aeromonas hydrophila/fisiología
8.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175851

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that causes a gradual loss of normal motor and cognitive function. The complex AD pathophysiology involves various factors such as oxidative stress, neuroinflammation, amyloid-beta (Aß) aggregation, disturbed neurotransmission, and apoptosis. The available drugs suffer from a range of side effects and are not able to cover different aspects of the disease. Therefore, finding a safer therapeutic approach that can affect multiple targets at a time is highly desirable. In the present study, the underlying neuroprotective mechanism of an important culinary spice, Syzygium aromaticum (Clove) extract, and major bioactive compounds were studied in hydrogen peroxide-induced oxidative stress in human neuroblastoma SH-SY5Y cell lines as a model. The extracts were subjected to GC-MS to identify important bioactive components. The extracts and key bio-actives reduced reactive oxygen species (ROS), restored mitochondrial membrane potential (MMP), and provided neuroprotection from H2O2-induced oxidative stress in cell-based assays due to the antioxidant action. They also reduced lipid peroxidation significantly and restored GSH content. Clove extracts have also displayed anti-acetylcholinesterase (AChE) activity, anti-glycation potential, and Aß aggregation/fibrilization inhibition. The multitarget neuroprotective approach displayed by Clove makes it a potential candidate for AD drug development.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Syzygium , Humanos , Fármacos Neuroprotectores/farmacología , Syzygium/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo
9.
Plant J ; 114(3): 636-650, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36808165

RESUMEN

Carnation (Dianthus caryophyllus L.) is a respiratory climacteric flower, comprising one of the most important cut flowers that is extremely sensitive to plant hormone ethylene. Ethylene signaling core transcription factor DcEIL3-1 plays a key role in ethylene induced petal senescence in carnation. However, how the dose of DcEIL3-1 is regulated in the carnation petal senescence process is still not clear. Here, we screened out two EBF (EIN3 Binding F-box) genes, DcEBF1 and DcEBF2, which showed quick elevation by ethylene treatment according to the ethylene induced carnation petal senescence transcriptome. Silencing of DcEBF1 and DcEBF2 accelerated, whereas overexpression of DcEBF1 and DcEBF2 delayed, ethylene induced petal senescence in carnation by influencing DcEIL3-1 downstream target genes but not DcEIL3-1 itself. Furthermore, DcEBF1 and DcEBF2 interact with DcEIL3-1 to degrade DcEIL3-1 via an ubiquitination pathway in vitro and in vivo. Finally, DcEIL3-1 binds to the promoter regions of DcEBF1 and DcEBF2 to activate their expression. In conclusion, the present study reveals the mutual regulation between DcEBF1/2 and DcEIL3-1 during ethylene induced petal senescence in carnation, which not only expands our understanding about ethylene signal regulation network in the carnation petal senescence process, but also provides potential targets with respect to breeding a cultivar of long-lived cut carnation.


Asunto(s)
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Fitomejoramiento , Etilenos/metabolismo , Flores/genética , Flores/metabolismo
10.
Physiol Rep ; 11(2): e15584, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695659

RESUMEN

The dried flower bud of Syzygium aromaticum L. (S. aromaticum) (Myrtaceae), cloves, have been used for their analgesic and anti-inflammatory activities. Peritoneal adhesion (PA) is the most common complication of abdominal and pelvic surgeries, which causes significant adverse effects and severe economic burden. The present study aimed to evaluate the preventive effect of S. extract (SAE) on PA formation in a rat model. Male Wistar 8-week-old rats were randomly divided into sham, control (received vehicle), and treatment (0.25%, 0.5%, and 1% w/v of SAE) groups. The adhesion and related factors were examined using the Nair scoring system and immunological and biochemical kits for the levels of inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor (TNF)-α], growth factors [transforming growth factor (TGF)-ß1 and vascular endothelial growth factor (VEGF)], oxidative [nitric oxide (NO) and malondialdehyde (MDA)], and anti-oxidative [glutathione (GSH)] factors. Our results figured out that the adhesion score and IL-6, TNF-α, TGF-ß1, VEGF, NO, and MDA levels were significantly increased, but the GSH level was decreased in the control group compared to the sham group (p < 0.001-0.05). On the other hand, the 0.25% SAE group had a lower adhesion score, and IL-6, TNF-α, TGF-ß1, VEGF, NO, and MDA levels were significantly decreased compared with the vehicle group, and the level of GSH was increased (p < 0.001-0.05). SAE could efficiently reduce adhesion score and regulate inflammatory cytokines, oxidative and anti-oxidative factors, and biomarkers of fibrosis and angiogenesis. Therefore, clove extract can be considered a potential candidate for PA management.


Asunto(s)
Citocinas , Syzygium , Animales , Masculino , Ratas , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Fibrosis , Glutatión/metabolismo , Interleucina-6/metabolismo , Estrés Oxidativo , Ratas Wistar , Syzygium/química , Syzygium/metabolismo , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Espectrometría de Masas
11.
Arch Physiol Biochem ; 129(1): 186-197, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32813560

RESUMEN

AIM: A high-fat diet (HFD) can lead to obesity and related metabolic disorders. This study evaluated the preventive efficacy of myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract against HFD-induced obesity, hyperglycaemia, and oxidative stress in C57BL/6J mice. METHODS: HFD-fed mice were administered MD (50 mg/kg, 100 mg/kg, and 150 mg/kg) or 2 mg/kg metformin (positive control) orally for 16 weeks. Normal diet and HFD-fed control groups received normal saline. RESULTS: MD dose of 50 mg/kg was better than 100 mg/kg and 150 mg/kg in significantly reducing weight-gain, glucose intolerance, insulin resistance, lipid accumulation in liver and kidney, and improving the serum lipid profile. Lowered protein carbonyls and lipid hydroperoxides in urine and tissue homogenates and elevated reduced glutathione, ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant capacity (TEAC) levels in tissue homogenates indicated amelioration of oxidative stress. CONCLUSION: MD has therapeutic value in the prevention and management of obesity, hyperglycaemia, and oxidative stress.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Syzygium , Ratones , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/prevención & control , Antioxidantes/metabolismo , Dieta Alta en Grasa/efectos adversos , Syzygium/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/prevención & control , Obesidad/tratamiento farmacológico , Estrés Oxidativo , Lípidos
12.
Biol Trace Elem Res ; 201(4): 2036-2057, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35665883

RESUMEN

Selenium (Se) is one of the essential micronutrients for performing vital body functions. This study aims at examining the influence of dietary supplementation of garlic clove-based green-synthesized selenium nanoparticles (GBGS-SeNPs, 48-87 nm) on carcass minerals and trace elements, and growth, biochemical, enzymological, and gene expression analyses in the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The 96 h LC50 of this GBGS-SeNPs to M. rosenbergii PL was 52.23 mg L-1. Five different artificial diets without supplementation of GBGS-SeNPs (control, 0.0 mg kg-1) and with supplementations of GBGS-SeNPs starting from 100 times lower than the LC50 value (0.5, 1.0, 1.5, and 2.0 mg kg-1) were prepared and fed to M. rosenbergii PL for 90 days. A dose-dependent accumulation of Se was observed in the carcass of experimental prawns. GBGS-SeNPs, up to 1.5 mg kg-1 significantly influenced the absorption of other trace elements (Ca, Cu, and Fe) and mineral salts (K, Mg, Na, and Zn). GBGS-SeNPs-supplemented diets showed efficient food conversion ratio (FCR) of 1.32 g against 2.71 g, and therefore enhanced the survival rate (85.6% against 78.8% in control) and weight gain (WG) of 1.41 g against 0.46 g of control prawn. GBGS-SeNPs significantly elevated the activities of protease, amylase, and lipase, and the contents of total protein, essential amino acids (EAA), total carbohydrate, total lipid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and ash. These indicate the growth promoting potential of GBGS-SeNPs in prawn. The insignificantly altered activities of glutamic oxaloacetate transaminase (GOT), glutamic pyruvate transaminase (GPT), superoxide dismutase (SOD), and catalase, and the content of malondialdehyde (MDA) up to 1.5 mg kg-1 suggest its acceptability in prawn. Moreover, a respective down- and upregulated myostatin (MSTN) and crustacean hyperglycemic hormone (CHH) genes confirmed the influence of GBGS-SeNPs on the growth of prawn. In contrast, 2.0 mg kg-1 GBGS-SeNPs supplementation starts to produce negative effects on prawn (FCR, 1.76 g; survival rate, 82.2%; WG, 0.84 g against respective values of 1.32 g, 85.6%; and 1.41 g observed in 1.5 mg kg-1 of GBGS-SeNPs-supplemented diet fed prawn). This study recommends a maximum of 1.5 mg kg-1 GBGS-SeNPs as dietary supplement to attain sustainable growth of M. rosenbergii. This was confirmed through polynomial and linear regression analyses.


Asunto(s)
Ajo , Nanopartículas , Palaemonidae , Selenio , Syzygium , Oligoelementos , Animales , Antioxidantes/metabolismo , Expresión Génica , Selenio/farmacología , Syzygium/metabolismo , Oligoelementos/farmacología , Transaminasas/farmacología
13.
Plant J ; 113(4): 698-715, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36564995

RESUMEN

Carnation (Dianthus caryophyllus L.) is one of the most famous and ethylene-sensitive cut flowers worldwide, but how ethylene interacts with other plant hormones and factors to regulate petal senescence in carnation is largely unknown. Here we found that a gene encoding WRKY family transcription factor, DcWRKY33, was significantly upregulated upon ethylene treatment. Silencing and overexpression of DcWRKY33 could delay and accelerate the senescence of carnation petals, respectively. Abscisic acid (ABA) and H2 O2 treatments could also accelerate the senescence of carnation petals by inducing the expression of DcWRKY33. Further, DcWRKY33 can bind directly to the promoters of ethylene biosynthesis genes (DcACS1 and DcACO1), ABA biosynthesis genes (DcNCED2 and DcNCED5), and the reactive oxygen species (ROS) generation gene DcRBOHB to activate their expression. Lastly, relationships are existed between ethylene, ABA and ROS. This study elucidated that DcWRKY33 promotes petal senescence by activating genes involved in the biosynthesis of ethylene and ABA and accumulation of ROS in carnation, supporting the development of new strategies to prolong the vase life of cut carnation.


Asunto(s)
Dianthus , Syzygium , Ácido Abscísico/metabolismo , Dianthus/genética , Especies Reactivas de Oxígeno/metabolismo , Syzygium/metabolismo , Etilenos/metabolismo , Flores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Food Chem ; 409: 135282, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36577324

RESUMEN

Mandarin fish (Siniperca chuatsi) during fermentation presents a unique elastic texture. In this investigation, the physicochemical and gel-forming properties of fish proteins were evaluated to explain the formation of elastic characteristics. During fermentation, the combined effects of acidification by Lactobacillus sake SMF-L5, increased sodium chloride, and decreased moisture content in the fish protein generated a suitable microenvironment for gelation. The mass transfer of sodium chloride was accompanied by NMR relaxation of the immobilized water. The ripening fermented fish had a functionally available MHC, a higher fractal dimension, and a stable α-helical structure. Also, it exhibited excellent gel-forming performances, mainly including garlic-cloves shaped protein gel, stronger springiness, and enhanced L* and whiteness. Correlation analysis showed that the gel's physical properties were differently related to the protein's physicochemical characteristics except for total free amino acids. These results could lay a theoretical foundation for the gel formation mechanism of fermented mandarin fish.


Asunto(s)
Ajo , Perciformes , Syzygium , Animales , Ajo/metabolismo , Fermentación , Cloruro de Sodio/metabolismo , Syzygium/metabolismo , Peces/metabolismo , Proteínas de Peces/química , Lactobacillus/metabolismo , Perciformes/metabolismo
15.
Protoplasma ; 260(3): 807-819, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36264387

RESUMEN

Plant heat shock protein 90 (Hsp90) participates in various physiological processes including protein folding, degradation, and signal transduction. However, the DcHsp90 gene family in carnation (Dianthus caryophyllus L.) has not been systematically analyzed. We thoroughly examined and comprehensively analyzed the carnation DcHsp90 gene family in this study and discovered 9 DcHsp90 genes. Based on the phylogenetic examination, DcHsp90 proteins may be divided into two groups. DcHsp90 structural features were similar but varied between groups. Promoter analysis revealed the presence of many cis-acting elements, most of which were connected to growth and development, hormones, and stress. DcHsp90 genes may play distinct functions in heat stress response, according to gene expression analyses. The DcHsp90-6 was isolated, and its role in the reaction to heat stress was studied. Thermotolerance and superoxide dismutase activity in transgenic seedlings were enhanced by Arabidopsis overexpression of DcHsp90-6. After heat stress, transgenic plants' electrolyte leakage and malondialdehyde levels were much lower than wild-type plants. Furthermore, overexpression of DcHsp90-6 altered the expressions of stress-responsive genes such as AtHsp101, AtHsp90, AtGolS1, AtRS4/5, and AtHsfB1. This study provides comprehensive information on the DcHsp90 gene family and suggests that overexpressed DcHsp90-6 positively regulates thermotolerance highlighting the adaptation mechanism of carnation under heat stress.


Asunto(s)
Arabidopsis , Dianthus , Syzygium , Termotolerancia , Dianthus/genética , Dianthus/metabolismo , Syzygium/genética , Syzygium/metabolismo , Filogenia , Respuesta al Choque Térmico , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
16.
J Agric Food Chem ; 70(45): 14403-14413, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36318658

RESUMEN

COVID-19 is initiated by binding the SARS-CoV-2 spike protein to angiotensin-converting enzyme 2 (ACE2) on host cells. Food factors capable of suppressing the binding between the SARS-CoV-2 spike protein and ACE2 or reducing the ACE2 availability through ACE2 inhibitions may potentially reduce the risk of SARS-CoV-2 infection and COVID-19. In this study, the chemical compositions of clove water and ethanol extracts were investigated, along with their potentials in suppressing SARS-CoV-2 spike protein-ACE2 binding, reducing ACE2 availability, and scavenging free radicals. Thirty-four compounds were tentatively identified in the clove water and ethanol extracts, with six reported in clove for the first time. Clove water and ethanol extracts dose-dependently suppressed SARS-CoV-2 spike protein binding to ACE2 and inhibited ACE2 activity. The water extract had stronger inhibitory effects than the ethanol extract on a dry weight basis. The clove water extract also had more potent free radical scavenging activities against DPPH• and ABTS•+ (536.9 and 3525.06 µmol TE/g, respectively) than the ethanol extract (58.44 and 2298.01 µmol TE/g, respectively). In contrast, the ethanol extract had greater total phenolic content (TPC) and relative HO• scavenging capacity (HOSC) values (180.03 mg GAE/g and 2181.08 µmol TE/g, respectively) than the water extract (120.12 mg GAE/g and 1483.02 µmol TE/g, respectively). The present study demonstrated the potential of clove in reducing the risk of SARS-CoV-2 infection and COVID-19 development.


Asunto(s)
COVID-19 , Syzygium , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Syzygium/metabolismo , SARS-CoV-2 , Peptidil-Dipeptidasa A/química , Unión Proteica , Sitios de Unión , Radicales Libres , Agua , Etanol
17.
J Dairy Sci ; 105(12): 9610-9622, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270878

RESUMEN

Botanical extracts have a potential to modify ruminal fermentation while enhancing metabolism and immunity in dairy cows. The objective of this study was to investigate the effects of a combination of Capsicum oleoresin and clove essential oil (botanicals; BTC) on lactational performance, nutrient utilization, enteric methane (CH4) emissions, and blood parameters in dairy cows. Twenty Holstein cows (12 multiparous and 8 primiparous) averaging (±SD) 77 ± 28 d in milk in the beginning of the study were used in a replicated 4 × 4 Latin square design experiment with 4 periods of 28 d each. Cows were grouped into squares based on parity, milk yield and days in milk, and assigned to 1 of 4 treatments: control (CON), 150, 300, or 600 mg/cow per day of BTC. Cows received the same basal diet and BTC were top-dressed on the total mixed ration once daily. Dry matter intake, milk production, and milk composition were not affected by BTC supplementation, except for milk fat content that tended to be increased in BTC, compared with CON. Daily CH4 emission (measured using the GreenFeed system) was linearly decreased by up to 7.5% with increasing doses of BTC. Treatment decreased CH4 yield (kg of CH4 ÷ kg of DMI) and tended to decrease CH4 intensity (kg of CH4 ÷ kg of milk or energy-corrected milk yields) by 5% in BTC, compared with CON. Supplementation of BTC resulted in a quadratic decrease of serum ß-hydroxybutyrate in all cows, and a linear decrease of serum insulin concentration in primiparous but not in multiparous cows. Nutrient utilization and other blood parameters (e.g., blood cells count) were not affected by BTC in the current study. The reduction of enteric CH4 emission demonstrates a moderate mitigation effect on carbon footprint of milk by BTC supplementation. These results must be further investigated and confirmed in longer-term experiments.


Asunto(s)
Capsicum , Aceites Volátiles , Syzygium , Embarazo , Femenino , Bovinos , Animales , Metano , Lactancia , Syzygium/metabolismo , Capsicum/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/metabolismo , Leche/metabolismo , Dieta/veterinaria , Fermentación , Rumen/metabolismo , Ensilaje , Zea mays/metabolismo
18.
J Oleo Sci ; 71(9): 1403-1412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36047244

RESUMEN

Clove, a dried flower buds of Syzygium aromaticum, is used in traditional medicine, for culinary purposes, and in essential oil production. In our preliminary screening of crude drugs used in Japanese Kampo formulas, a methanol (MeOH) extract of clove buds was found to exhibit a melanin induction. To date, the effects of clove buds or their constituents on the activation of melanogenesis remain unclear. Thus, this study aimed to isolate active compounds from the MeOH extract of clove buds associated with melanin synthesis in melanoma cells and to investigate the molecular mechanism involved. The MeOH extract of clove buds increased melanin content in murine B16-F1 melanoma cells. To identify the active compounds responsible for melanin induction, the MeOH extract was suspended in water and successively partitioned using hexane, ethyl acetate (EtOAc), and n-butanol (n-BuOH). Comparative analysis revealed that the EtOAc fraction induced melanin synthesis. Bioassay-guided separation of the EtOAc fraction isolated three compounds including eugenol. The analysis of structure-activity relationships of eugenol and structurally related compounds indicated that eugenol was the most potent melanin inducer among the 11 compounds, and that a hydroxyl group at C-1 and a methoxy group at C-2 may contribute to melanin induction. Eugenol induced melanin synthesis in human HMV-II melanoma cells as well as in B16-F1 cells. Further analysis indicated that eugenol may invoke intracellular tyrosinase activity and expression of tyrosinase, tyrosinaserelated protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). These results suggest that eugenol enhances melanin synthesis by upregulating the expression of MITF and subsequent expression of melanogenic enzymes, and that it may be a potent therapeutic agent for hypopigmentation.


Asunto(s)
Melanoma Experimental , Syzygium , Animales , Bioensayo , Eugenol/farmacología , Eugenol/uso terapéutico , Humanos , Melaninas , Melanoma Experimental/metabolismo , Metanol , Ratones , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/farmacología , Syzygium/metabolismo
19.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144547

RESUMEN

Excessive glutamate neurotransmitters result in oxidative neurotoxicity, similar to neurodegeneration. An indigenous berry of Thailand, Cleistocalyx nervosum var. paniala (CNP), has been recognized for its robust antioxidants. We investigated the effects and mechanisms of CNP fruit extracts on antioxidant-related survival pathways against glutamate-induced neurotoxicity. The extract showed strong antioxidant capability and had high total phenolic and flavonoid contents, particularly resveratrol. Next, the protective effects of the CNP extract or resveratrol on the glutamate-induced neurotoxicity were examined in HT22 hippocampal cells. Our investigation showed that the pretreatment of cells with the CNP extract or resveratrol attenuated glutamate-induced neuronal death via suppression of apoptosis cascade by inhibiting the levels of cleaved- and pro-caspase-3 proteins. The CNP extract and resveratrol suppressed the intracellular ROS by increasing the mRNA expression level of antioxidant enzymes (SODs, GPx1, and CAT). We found that this extract and resveratrol significantly increased SIRT1 expression as a survival-related protein. Moreover, they also promoted the activity of the Nrf2 protein translocation into the nucleus and could bind to the promoter containing the antioxidant response element, inducing the expression of the downstream GPx1-antioxidant protein. Our data illustrate that the CNP extract and resveratrol inhibit apoptotic neuronal death via glutamate-induced oxidative neurotoxicity in HT22 cells through the activation of the SIRT1/Nrf2 survival mechanism.


Asunto(s)
Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Syzygium , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Caspasa 3/metabolismo , Flavonoides/farmacología , Frutas/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Extractos Vegetales/farmacología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Syzygium/metabolismo
20.
J Food Biochem ; 46(10): e14339, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852118

RESUMEN

In this study, a D-galactose-induced aging mouse model was established, and Syringa oblata Lindl. extract (SOLE) was administered orally to observe the effect and mechanism of SOLE on the running ability of aging mice. The role of SOLE was evaluated by H&E histopathological observation, detection of serum biochemical indices, and detection of mRNA expression levels by qPCR experiments. The experimental results showed that SOLE could increase the exhaustive running time of aging mice and reduce the oxidative aging of the liver and kidney. At the same time, the levels of BUN, lactic acid, GOT, GPT, MDA, iNOS, and TNF-α in the serum of the mice were decreased, and the relative mRNA expression levels of nNOS, iNOS, TNF-α and syncytin-1 in the liver tissue and skeletal muscle tissue of the mice were downregulated. In addition, it increased the levels of CAT, GSH-Px, and T-SOD in mouse serum and upregulated the relative mRNA expression of Cu/Zn-SOD, Mn-SOD, and CAT in mouse liver tissue and muscle tissue. The analysis results showed that SOLE mainly contained rutin, isoquercitrin, ferulic acid, dihydroquercetin, and quercitrin. In summary, SOLE can enhance the running ability and exercise ability of aging mice and slow down aging. PRACTICAL APPLICATIONS: Clove is used as health tea or traditional Chinese medicine in China, but there is no relevant research and application on the improvement of human exercise ability. This study found this new function of clove, which accumulated a theoretical basis for further popularizing its application.


Asunto(s)
Syzygium , Animales , Galactosa , Humanos , Ácido Láctico , Ratones , Estrés Oxidativo , Extractos Vegetales/farmacología , ARN Mensajero/genética , Rutina/farmacología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Syzygium/genética , Syzygium/metabolismo , , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA