Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.420
Filtrar
1.
Reprod Domest Anim ; 59(5): e14596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757656

RESUMEN

Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 µM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.


Asunto(s)
Ácido Clorogénico , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Mitocondrias , Estrés Oxidativo , Partenogénesis , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Partenogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Técnicas de Cultivo de Embriones/veterinaria , Ácido Clorogénico/farmacología , Desarrollo Embrionario/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Blastocisto/efectos de los fármacos , Porcinos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Femenino , Glutatión/metabolismo
2.
J Med Case Rep ; 18(1): 247, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745332

RESUMEN

BACKGROUND: Bacterial infection of embryo culture medium is rare but may be detrimental. The main source of embryo culture contamination is semen. Assisted reproduction centers currently lack consensus regarding the methods for preventing and managing embryo culture infection. In our recent case, a successful pregnancy was achieved with intracytoplasmic sperm injection after failed conventional in vitro fertilization owing to bacterial contamination. CASE PRESENTATION: We present a case report of two consecutive in vitro fertilization-intracytoplasmic sperm injection cycles with photo and video documentation of the bacterial growth. A 36-year-old Hungarian woman and her 37-year-old Hungarian partner came to our department. They had two normal births followed by 2 years of infertility. The major causes of infertility were a closed fallopian tube and asthenozoospermia. Bacterial infection of the embryo culture medium was observed during in vitro fertilization and all oocytes degenerated. The source was found to be the semen. To prevent contamination, intracytoplasmic sperm injection was used for fertilization in the subsequent cycle. Intracytoplasmic bacterial proliferation was observed in one of the three fertilized eggs, but two good-quality embryos were successfully obtained. The transfer of one embryo resulted in a successful pregnancy and a healthy newborn was delivered. CONCLUSION: Intracytoplasmic sperm injection may be offered to couples who fail conventional in vitro fertilization treatment owing to bacteriospermia, as it seems to prevent infection of the embryo culture. Even if bacterial contamination appears, our case encourages us to continue treatment. Nevertheless, the development of new management guidelines for the prevention and management of bacterial contamination is essential.


Asunto(s)
Fertilización In Vitro , Inyecciones de Esperma Intracitoplasmáticas , Humanos , Femenino , Embarazo , Adulto , Masculino , Técnicas de Cultivo de Embriones/métodos , Resultado del Embarazo , Transferencia de Embrión , Semen/microbiología
3.
Mol Biol Rep ; 51(1): 692, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796562

RESUMEN

BACKGROUND: Resveratrol, a potent antioxidant, is known to induce the up-regulation of the internal antioxidant system. Therefore, it holds promise as a method to mitigate cryopreservation-induced injuries in bovine oocytes and embryos. This study aimed to (i) assess the enhancement in the quality of in vitro produced bovine embryos following resveratrol supplementation and (ii) monitor changes in the expression of genes associated with oxidative stress (GPX4, SOD, CPT2, NFE2L2), mitochondrial function (ATP5ME), endoplasmic reticulum function (ATF6), and embryo quality (OCT4, DNMT1, CASP3, ELOVL5). METHODS AND RESULTS: Three groups of in vitro bovine embryos were cultured with varying concentrations of resveratrol (0.01, 0.001, and 0.0001 µM), with a fourth group serving as a control. Following the vitrification process, embryos were categorized as either good or poor quality. Blastocysts were then preserved at - 80 °C for RNA isolation, followed by qRT-PCR analysis of selected genes. The low concentrations of resveratrol (0.001 µM, P < 0.05 and 0.0001 µM, P < 0.01) significantly improved the blastocyst rate compared to the control group. Moreover, the proportion of good quality vitrified embryos increased significantly (P < 0.05) in the groups treated with 0.001 and 0.0001 µM resveratrol compared to the control group. Analysis of gene expression showed a significant increase in OCT4 and DNMT1 transcripts in both good and poor-quality embryos treated with resveratrol compared to untreated embryos. Additionally, CASP3 expression was decreased in treated good embryos compared to control embryos. Furthermore, ELOVL5 and ATF6 transcripts were down-regulated in treated good embryos compared to the control group. Regarding antioxidant-related genes, GPX4, SOD, and CPT2 transcripts increased in the treated embryos, while NFE2L2 mRNA decreased in treated good embryos compared to the control group. CONCLUSIONS: Resveratrol supplementation at low concentrations effectively mitigated oxidative stress and enhanced the cryotolerance of embryos by modulating the expression of genes involved in oxidative stress response.


Asunto(s)
Antioxidantes , Blastocisto , Criopreservación , Estrés Oxidativo , Resveratrol , Vitrificación , Animales , Bovinos , Resveratrol/farmacología , Vitrificación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Criopreservación/métodos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Fertilización In Vitro/veterinaria , Fertilización In Vitro/métodos , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Técnicas de Cultivo de Embriones/métodos , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Femenino
4.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786090

RESUMEN

The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.


Asunto(s)
Blastocisto , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Cigoto , Animales , Bovinos , Blastocisto/citología , Blastocisto/metabolismo , Cigoto/citología , Cigoto/metabolismo , Técnicas de Cultivo de Embriones/métodos , Femenino , Mitocondrias/metabolismo
5.
Reprod Domest Anim ; 59(5): e14620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798166

RESUMEN

This study examines the impact of oxygen tension and embryo kinetics on gene transcription dynamics in pathways crucial for embryonic preimplantation development, including lipid metabolism, carbohydrate transport and metabolism, mitochondrial function, stress response, apoptosis and transcription regulation. Bovine embryos were generated in vitro and allocated into two groups based on oxygen tension (20% or 5%) at 18 h post insemination (hpi). At 40 hpi, embryos were categorized into Fast (≥4 cells) or Slow (2 cells) groups, resulting in four experimental groups: FCL20, FCL5, SCL20 and SCL5. Embryo collection also occurred at 72 hpi (16-cell stage; groups FMO20, FMO5, SMO20 and SMO5) and at 168 hpi (expanded blastocyst (BL) stage; groups FBL20, FBL5, SBL20 and SBL5). Pools of three embryos per group were analysed in four replicates using inventoried TaqMan assays specific for Bos taurus, targeting 93 genes. Gene expression patterns were analysed using the K-means algorithm, revealing three main clusters: genes with low relative abundance at the cleavage (CL) and 16-cell morula (MO) stages but increased at the BL stage (cluster 1); genes with higher abundances at CL but decreasing at MO and BL (cluster 2); and genes with low levels at CL, higher levels at MO and decreased levels at BL (cluster 3). Within each cluster, genes related to epigenetic mechanisms, cell differentiation events and glucose metabolism were particularly influenced by differences in developmental kinetics and oxygen tension. Fast-developing embryos, particularly those cultured under low oxygen tension, exhibited transcript dynamics more closely resembling that reported in vivo-produced embryos.


Asunto(s)
Blastocisto , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Oxígeno , Animales , Bovinos/embriología , Oxígeno/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Blastocisto/metabolismo , Transcripción Genética , Fertilización In Vitro/veterinaria , Femenino
6.
Theriogenology ; 223: 74-88, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692037

RESUMEN

Mammalian embryos produced in vitro have poor embryo quality and low developmental ability compared with in vivo embryos. The main manifestations are the low number of blastocysts, the low ratio of the number of inner cell mass cells to the number of trophoblastic cells, and the high apoptosis rate of blastocysts, resulting in low embryo implantation rate. Therefore, optimizing in vitro culture conditions has become a key technology to im-prove the quality of preimplantation embryos. Oviduct Epithelial cells exosomes (OEVs) can be absorbed and internalized by embryos to improve the blastocyst rate and blastocyst quality of embryos in vitro. As a special nuclear structure, Paraspeckles are involved in the fate determination of mammalian early embryonic mammalian cells. However, the regulation of embryonic cell differentiation by OEVs remains unknown. We aimed to investigate the effects of OEVs on paraspeckle formation and cell fate determination in yak in vitro fertilization (IVF) of em-bryos. To simulate the in vivo oviduct environment after ovulation, we used follicular fluid exosomes (FEVs) to stimulate yak oviduct epithelial cells and collect OEVs. OEVs were added to the yak IVF embryo culture system. Paraspeckle formation, cell differentiation, and blastocyst quality in yak embryos were determined. Our results show that, development of yak embryos is unique compared to other bovine species, and OEVs can be used as a supplement to the in vitro culture system of yak embryos to improve embryonic development and blas-tocyst quality. And also Paraspeckles/CARM1 mediated the regulation of OEVs on cell differentiation during in vitro yak embryo production. These results provide new insights into the study of yak embryonic development and the role of OEVs in embryonic development.


Asunto(s)
Diferenciación Celular , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Células Epiteliales , Exosomas , Animales , Femenino , Desarrollo Embrionario/fisiología , Bovinos/embriología , Células Epiteliales/fisiología , Células Epiteliales/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Exosomas/metabolismo , Fertilización In Vitro/veterinaria , Trompas Uterinas/citología , Blastocisto/fisiología , Oviductos
7.
JBRA Assist Reprod ; 28(2): 276-283, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775323

RESUMEN

OBJECTIVE: Cryopreservation has some adverse effects on embryos including cell metabolism reduction, mitochondria and plasma membrane damage, excess production of 'Reactive Oxygen Species' and damage to DNA. In the present study. In this study we assessed the effect of coenzyme Q10 as an exogenous antioxidant on mouse embryos following cryopreservation. METHODS: We collected mice embryos at the morula stage from uterine horns on the third day of gestation. The morulae were divided into 9 groups (1 control, 2 vehicles and 6 experimental), then vitrified. The culture and/or vitrification media of the experimental groups were supplemented by 10 or 30 µM of CoQ10. After one week, the embryos were warmed and then cultured. After 48 hours of embryo culture, the blastocyst rate, total cell number, viability; and after 72 hours of embryo culture, we assessed the hatching rate. RESULTS: Blastocyst rate and hatching rate were significantly reduced in the groups containing 30 µM CoQ10 supplemented culture media compared to other groups (p<0.05). The hatching rate in the groups containing 10 µM CoQ10 supplemented in both culture and vitrification media was significantly higher than in the other groups (p<0.05). In groups containing 10 µM CoQ10 supplemented culture media, the viability was higher than that in the other groups (p<0.05). CONCLUSIONS: It seems that CoQ10 in a dose-dependent manner is able to improve hatching rate and viability following cryopreservation through its antioxidant and anti-apoptotic properties, and through the production of ATP.


Asunto(s)
Criopreservación , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ratones , Femenino , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/efectos de los fármacos , Blastocisto/efectos de los fármacos , Vitrificación/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Antioxidantes/farmacología , Embarazo
8.
Reprod Domest Anim ; 59(5): e14576, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712681

RESUMEN

The possibility of embryo cryopreservation is important for applying the genome resource banking (GRB) concept to those mammalian species that exhibit embryonal diapause in their early development. Odc1 encodes ODC1, which is a key enzyme in polyamine synthesis. RhoA is an essential part of Rho/ROCK system. Both Odc1 and RhoA play an important role in preimplantation embryo development. Studying these systems in mammalian species with obligate or experimentally designed embryonic diapause may provide insight into the molecular machinery underlying embryo dormancy and re-activation. The effect of cryopreservation procedures on the expression of the Odc1 and RhoA in diapausing embryos has not been properly studied yet. The purpose of this work is to address the possibility of cryopreservation diapausing embryos and to estimate the expression of the Odc1 and RhoA genes in diapausing and non-diapausing embryos before and after freeze-thaw procedures using ovariectomized progesterone treated mice as a model. Both diapausing and non-diapausing in vivo-derived embryos continued their development in vitro after freezing-thawing as evidenced by blastocoel re-expansion. Although cryopreservation dramatically decreased the expression of the Odc1 and RhoA genes in non-diapausing embryos, no such effects have been observed in diapausing embryos where these genes were already at the low level before freeze-thaw procedures. Future studies may attempt to facilitate the re-activation of diapausing embryos, for example frozen-thawed ones, specifically targeting Odc1 or Rho/ROCK system.


Asunto(s)
Blastocisto , Criopreservación , Proteína de Unión al GTP rhoA , Animales , Criopreservación/veterinaria , Blastocisto/metabolismo , Femenino , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Ratones , Regulación del Desarrollo de la Expresión Génica , Diapausa , Desarrollo Embrionario , Técnicas de Cultivo de Embriones/veterinaria
9.
Theriogenology ; 222: 1-9, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581760

RESUMEN

MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.


Asunto(s)
Blastocisto , Fertilización In Vitro , MicroARNs , Espermatozoides , Animales , Bovinos/embriología , MicroARNs/genética , MicroARNs/metabolismo , Blastocisto/fisiología , Masculino , Fertilización In Vitro/veterinaria , Espermatozoides/fisiología , Técnicas de Cultivo de Embriones/veterinaria , Regulación del Desarrollo de la Expresión Génica , Desarrollo Embrionario
10.
Theriogenology ; 222: 31-44, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615434

RESUMEN

There is still no consensus regarding the role of lipid modulators during in vitro embryo production. Thus, we investigated how lipid reducers during the in vitro maturation of oocytes (IVM) or in vitro culture (IVC) of embryos impact their cryotolerance. A literature search was performed using three databases, recovering 43 articles for the systematic review, comprising 75 experiments (13 performed in IVM, 62 in IVC) and testing 13 substances. In 39 % of the experiments, an increase in oocyte and/or embryo survival after cryopreservation was reported, in contrast to 48 % exhibiting no effect, 5 % causing negative effects, and 8 % influencing in a dose-dependent manner. Of the 75 experiments extracted during IVM and IVC, 41 quantified the lipid content. Of those that reduced lipid content (n = 26), 50 % increased cryotolerance, 34 % had no effect, 8 % harmed oocyte/embryo survival, and 8 % had different results depending on the concentration used. Moreover, 28 out of the 43 studies were analyzed under a meta-analytical approach at the IVC stage in cattle. There was an improvement in the cryotolerance of bovine embryos when the lipid content was reduced. Forskolin, l-carnitine, and phenazine ethosulfate positively affected cryotolerance, while conjugated linoleic acid had no effect and impaired embryonic development. Moreover, fetal bovine serum has a positive impact on cryotolerance. SOF and CR1aa IVC media improved cryotolerance, while mSOF showed no effect. In conclusion, lipid modulators did not unanimously improve cryotolerance, especially when used in IVM, but presented positive effects on cryotolerance during IVC when reaching lipid reduction.


Asunto(s)
Criopreservación , Técnicas de Cultivo de Embriones , Animales , Criopreservación/veterinaria , Criopreservación/métodos , Técnicas de Cultivo de Embriones/veterinaria , Lípidos/química , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Fertilización In Vitro/veterinaria , Bovinos/embriología , Metabolismo de los Lípidos , Embrión de Mamíferos/fisiología
11.
Theriogenology ; 223: 47-52, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38669841

RESUMEN

This retrospective study aimed at identifying factors that contribute to the success of equine in vitro embryo production by intracytoplasmic sperm injection (ICSI). A total of 7993 ovum pick-up (OPU) sessions were performed, totaling 2540 donor mares and semen from 396 stallions. Oocytes were aspirated at multiple sites in Brazil and were sent to the laboratory, within 6 h from OPU, in pre-maturation medium where they were in vitro matured (IVM) followed by ICSI and in vitro embryo culture for 7-8 days. The number of recovered oocytes, matured oocytes, cleaved embryos and blastocysts were used to explore the effect of age and breed of the donor mare, time of year in which the mare was aspirated and phase of the estrous cycle on the day of follicular aspiration. Mares between 6 and 15 years old were superior to other age groups in most parameters evaluated, including the average number of blastocysts per OPU. The impact of age was similar when evaluated within two breeds, American Quarter Horse (AQHA) and Warmblood mares. We observed that breed (AQHA, Warmblood, Crioulo, Lusitano and Mangalarga) had an important effect on most of the parameter evaluated, including number of oocytes recovered, blastocysts produced per OPU, and blastocyst rates. The overall impact of season was less pronounced than age and breed, with the only statistically significant difference being a higher rate of oocyte maturation during the summer season. Finally, most of the parameters evaluated were superior in follicular phase mares, with or without dominant follicle than luteal phase mares. In conclusion, this retrospective study revealed that breed, age, season and stage of estrous at the time of OPU are all important parameters for the success of equine embryo production by ICSI. This technology enables producing embryos all-year-round from mares of different breeds and ages from OPU-derived oocytes collected at multiple sites.


Asunto(s)
Ciclo Estral , Estaciones del Año , Inyecciones de Esperma Intracitoplasmáticas , Animales , Caballos/fisiología , Caballos/embriología , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/métodos , Femenino , Ciclo Estral/fisiología , Estudios Retrospectivos , Técnicas de Cultivo de Embriones/veterinaria , Masculino , Envejecimiento/fisiología , Factores de Edad , Recuperación del Oocito/veterinaria , Recuperación del Oocito/métodos
12.
Theriogenology ; 223: 36-46, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38669840

RESUMEN

In vitro embryo production (IVP) is of great importance to the porcine industry, as well as for basic research and biomedical applications. Despite the large efforts made in laboratories worldwide to address suboptimal culture conditions, porcine IVP remains inefficient. Nobiletin (Nob, 5,6,7,8,3',4' hexamethoxyflavone) supplementation to in vitro culture (IVC) medium, enhances in vitro embryo development in various species. However, its impact on the quality and developmental capacity of in vitro-produced pig embryos is yet to be established. This study evaluated the effects of different concentrations (2.5 and 5 µM) of Nob during the early culture of in vitro-produced pig embryos on embryo developmental competence, mitochondrial activity, lipid content, intracellular Reactive Oxygen Species (ROS) and Glutathione (GSH) content, Total Cell Number (TCN) per blastocyst, and expression of genes related to embryo development, quality and oxidative stress. Embryos cultured in medium without Nob supplementation and in medium supplemented with 0.01 % dimethyl sulfoxide (DMSO-vehicle for Nob) constituted the Control and DMSO groups, respectively. Embryo development rates were evaluated on Days 2, 6 and 7 of IVC. Additionally, a representative group of embryos was selected to assess mitochondrial activity, lipid, ROS and GSH content (on Days 2 and 6 of IVC), TCN assessment and gene expression analyses (on Day 6 of IVC). No significant differences were observed in any of the parameters evaluated on Day 2 of IVC. In contrast, embryos cultured under the presence of Nob 2.5 showed higher developmental rates on Days 6 and 7 of IVC. In addition, Day 6 embryos showed increased mitochondrial activity, with decreased levels of ROS and GSH in the Nob 2.5 group compared to the other groups. Both Nob 2.5 and Nob 5 embryos showed higher TCN compared to the Control and DMSO groups. Furthermore, Nob 2.5 and Nob 5 upregulated the expression of Superoxide dismutase type 1 (SOD1) and Glucose-6-phosphate dehydrogenase (G6PDH) genes, which could help to counteract oxidative stress during IVC. In conclusion, the addition of Nob during the first 48 h of IVC increased porcine embryo development rates and enhanced their quality, including the upregulation of relevant genes that potentially improved the overall efficiency of the IVP system.


Asunto(s)
Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Flavonas , Animales , Desarrollo Embrionario/efectos de los fármacos , Porcinos/embriología , Técnicas de Cultivo de Embriones/veterinaria , Flavonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fertilización In Vitro/veterinaria , Glutatión/metabolismo , Mitocondrias/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos
13.
Reprod Domest Anim ; 59(4): e14565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646981

RESUMEN

Mangiferin (MGN) is primarily found in the fruits, leaves, and bark of plants of the Anacardiaceae family, including mangoes. MGN exhibits various pharmacological effects, such as protection of the liver and gallbladder, anti-lipid peroxidation, and cancer prevention. This study aimed to investigate the effects of MGN supplementation during in vitro culture (IVC) on the antioxidant capacity of early porcine embryos and the underlying mechanisms involved. Porcine parthenotes in the IVC medium were exposed to different concentrations of MGN (0, 0.01, 0.1, and 1 µM). The addition of 0.1 µM MGN significantly increased the blastocyst formation rate of porcine embryos while reducing the apoptotic index and autophagy. Furthermore, the expression of antioxidation-related (SOD2, GPX1, NRF2, UCHL1), cell pluripotency (SOX2, NANOG), and mitochondria-related (TFAM, PGC1α) genes was upregulated. In contrast, the expression of apoptosis-related (CAS3, BAX) and autophagy-related (LC3B, ATG5) genes decreased after MGN supplementation. These findings suggest that MGN improves early porcine embryonic development by reducing oxidative stress-related genes.


Asunto(s)
Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Estrés Oxidativo , Xantonas , Animales , Estrés Oxidativo/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Xantonas/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Porcinos , Blastocisto/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Partenogénesis
14.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673927

RESUMEN

Domestic cat blastocysts cultured without the zona pellucida exhibit reduced implantation capacity. However, the protein expression profile has not been evaluated in these embryos. The objective of this study was to evaluate the protein expression profile of domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were generated: (1) domestic cat embryos generated by IVF and cultured in vitro (zona intact, (ZI)) and (2) domestic cat embryos cultured in vitro without the zona pellucida (zona-free (ZF group)). The cleavage, morula, and blastocyst rates were estimated at days 2, 5 and 7, respectively. Day 7 blastocysts and their culture media were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The UniProt Felis catus database was used to identify the standard proteome. No significant differences were found in the cleavage, morula, or blastocyst rates between the ZI and ZF groups (p > 0.05). Proteomic analysis revealed 22 upregulated and 20 downregulated proteins in the ZF blastocysts. Furthermore, 14 proteins involved in embryo development and implantation were present exclusively in the culture medium of the ZI blastocysts. In conclusion, embryo culture without the zona pellucida did not affect in vitro development, but altered the protein expression profile and release of domestic cat blastocysts.


Asunto(s)
Blastocisto , Proteómica , Zona Pelúcida , Animales , Blastocisto/metabolismo , Zona Pelúcida/metabolismo , Gatos , Proteómica/métodos , Técnicas de Cultivo de Embriones , Secretoma/metabolismo , Femenino , Fertilización In Vitro , Proteoma/metabolismo , Desarrollo Embrionario , Espectrometría de Masas en Tándem , Cromatografía Liquida
15.
J Exp Zool A Ecol Integr Physiol ; 341(5): 544-552, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38462737

RESUMEN

The hatch rate of chick embryos cultured outside of the eggshell with 350 mg calcium l-lactate hydrate (CaL) and 3.5 mL water is fourfold greater in cultures in which the chorioallantoic membrane (CAM) surrounds the egg contents by incubation day 17.5 (E17.5) an event which occurs in ovo by E13. It was first investigated whether decreasing the volume of water added with 350 mg CaL would promote CAM expansion due to the smaller volume to enclose. When 350 mg CaL was present, the CAM did not surround the egg contents by E13. By E17.5, the CAM surrounded the egg contents in 53%-74% of cultures; however, CAM expansion was not significantly different when 0, 1, 2, or 3.5 mL water was present. The hatch rate with 2 or 3.5 mL water was greater than 50% but was not improved with less water. Second, it was investigated whether CaL or water inhibits CAM expansion. In the absence of CaL, the CAM surrounded the egg contents in up to two-thirds of cultures by E13, whether 2 mL water was present or not. Thus CaL, but not water, inhibits expansion of the CAM by E13, even though CaL promotes hatching. Finally, it was investigated whether injection of aqueous CaL into the allantoic fluid, in conjunction with not adding CaL to culture hammocks, would promote CAM expansion. Allantoic injection of CaL starting at E13 did not promote CAM expansion at E17.5 but resulted in hatch rates of approximately 30%. Allantoic injection is a novel route for supplementation of calcium in cultured chick embryos.


Asunto(s)
Membrana Corioalantoides , Animales , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Alantoides , Calcio/metabolismo , Compuestos de Calcio/farmacología , Compuestos de Calcio/administración & dosificación , Técnicas de Cultivo de Embriones/veterinaria , Lactatos/administración & dosificación , Cáscara de Huevo , Inyecciones
16.
Reprod Biomed Online ; 48(5): 103769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492415

RESUMEN

RESEARCH QUESTION: What is the efficiency and efficacy of the novel Biorocks semi-automated vitrification system, which is based on a hydrogel? DESIGN: This comparative experimental laboratory study used mouse model and human day 6 blastocysts. Mouse oocytes and embryos were quality assessed post-vitrification. RESULTS: The Biorocks system successfully automated the solution exchanges during the vitrification process, achieving a significantly improved throughput of up to 36 embryos/oocytes per hour. Using hydrogel for cryoprotective agent delivery, 12 vessels could be processed simultaneously, fitting comfortably within an assisted reproductive technology (ART) workstation. In tests involving the cryopreservation of oocytes and embryos, the system yielded outcomes equivalent to the manual Cryotop method. For example, the survival rate for mouse oocytes was 98% with the Biorocks vitrification system (n = 46) and 95% for the manual Cryotop method (n = 39), of which 46% and 41%, respectively, progressed to blastocysts on day 5 after IVF. CC-grade day 6 human blastocysts processed with the Biorocks system (n = 39) were associated with a 92% 2 h re-expansion rate, equivalent to the 90% with Cryotop (n = 30). The cooling/warming rates achieved by the Biorocks system were 31,900°C/minute and 24,700°C/minute, respectively. Oocyte quality was comparable or better post-vitrification for Biorocks than Cryotop. CONCLUSIONS: The Biorocks semi-automated vitrification system offers enhanced throughput without compromising the survival and developmental potential of oocytes and embryos. This innovative system may help to increase the efficiency and standardization of vitrification in ART clinics. Further investigations are needed to confirm its efficacy in a broader clinical context.


Asunto(s)
Criopreservación , Vitrificación , Animales , Ratones , Criopreservación/métodos , Criopreservación/instrumentación , Humanos , Femenino , Blastocisto/fisiología , Hidrogeles , Oocitos , Embrión de Mamíferos , Técnicas de Cultivo de Embriones/instrumentación , Técnicas de Cultivo de Embriones/métodos
17.
Cryo Letters ; 45(1): 28-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38538369

RESUMEN

BACKGROUND: Intracellular lipids are sensitive to freezing. Lipidome modification is an important tool for studying the role of intracellular lipids in cryotolerance of mammalian oocytes and preimplantation embryos. OBJECTIVE: To study the effects of in vitro exposure of murine embryos to saturated stearic acid (SA) on the lipid content, embryo development and cryotolerance. MATERIALS AND METHODS: In vivo derived mouse embryos were cultured with 100 uM SA for 48 h up to the morula/blastocyst stage. Some of the SA-treated embryos were chosen for the evaluation of their development competence and the change in the lipidome, and other embryos were either slowly frozen or rapidly vitrified. RESULTS: Nile red staining combined with confocal laser scanning microscopy revealed a decrease in the total amount of lipids in the SA-treated embryos. Raman measurements showed that the lipid unsaturation was lower in embryos after in vitro SA culture. The addition of SA did not affect the embryo development before cryopreservation, but negatively affected the results of slow freezing cryopreservation and vitrification. CONCLUSION: In vitro SA exposure lowered the total amount of intracellular lipids and unsaturation in mouse embryos. The changes were accompanied with a significantly lower efficacy of embryo cryopreservation. https://doi.org/10.54680/fr24110110512.


Asunto(s)
Criopreservación , Ácidos Esteáricos , Vitrificación , Animales , Ratones , Criopreservación/métodos , Embrión de Mamíferos , Blastocisto , Desarrollo Embrionario , Lípidos , Técnicas de Cultivo de Embriones , Mamíferos
18.
In Vitro Cell Dev Biol Anim ; 60(3): 300-306, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506940

RESUMEN

The culture of preimplantation embryos in vitro is an important method for human and mouse reproductive technology. This study aims to investigate the influence of different conditions of culture media on the preimplantation stage of mouse embryos cultured in vitro, and monitor the post-implantation development of new mice after embryo transfer to surrogate females. We demonstrated here that mouse embryos cultured in vitro in fresh M16, KSOM, Global, and HTF embryo culture media from one cell to the blastocyst stage and the subsequent embryo transfer to surrogate females are able to proceed through post-implantation development and, after birth, develop into healthy mice. However, culture of embryos in differently aged media shows various (often unpredictable) results. To find the optimal storage conditions of culture media, we suggest that the freezing and long-term storage of these media at - 80°C will not influence the quality of the media. To test this hypothesis, we grew embryos from one cell to blastocysts in vitro in the selected media after thawing and subsequently transferring them to surrogate females. Embryo culture in these four media after thawing does not affect preimplantation and postnatal mouse development. Thus, we have shown that storage of embryo culture media at low temperature (- 80°C) does not impact the quality of the media, and subsequently, it can be used for the culture of embryos for the full preimplantation period, the same as in fresh media.


Asunto(s)
Técnicas de Cultivo de Embriones , Transferencia de Embrión , Femenino , Ratones , Humanos , Animales , Medios de Cultivo/farmacología , Técnicas de Cultivo de Embriones/métodos , Transferencia de Embrión/métodos , Embrión de Mamíferos , Desarrollo Embrionario , Blastocisto
19.
Theriogenology ; 221: 47-58, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554613

RESUMEN

Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 µg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 µg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 µg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.


Asunto(s)
Antioxidantes , Zinc , Femenino , Animales , Bovinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Zinc/farmacología , Zinc/metabolismo , Sulfato de Zinc/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario , Fertilización In Vitro/veterinaria , Blastocisto/fisiología , Glutatión/metabolismo , ADN/metabolismo
20.
J Ovarian Res ; 17(1): 63, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491534

RESUMEN

BACKGROUND: Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) methods were developed in order to assist embryologists with automatized and objective predictive models able to standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify relevant patterns associated with the prediction of blastocyst development stage on day 5. METHODS: We retrospectively analysed the morphokinetics of 575 embryos obtained from 80 women who underwent IVF at our Unit. Embryo morphokinetics was registered using the Geri plus® time-lapse system. Overall, 30 clinical, morphological and morphokinetic variables related to women and embryos were recorded and combined. Some embryos reached the expanded blastocyst stage on day 5 (BL Group, n = 210), some others did not (nBL Group, n = 365). RESULTS: The novel EmbryoMLSelection framework was developed following four-steps: Feature Selection, Rules Extraction, Rules Selection and Rules Evaluation. Six rules composed by a combination of 8 variables were finally selected, and provided a predictive power described by an AUC of 0.84 and an accuracy of 81%. CONCLUSIONS: We provided herein a new feature-signature able to identify with an high performance embryos with the best developmental competence to reach the expanded blastocyst stage on day 5. Clear and clinically relevant cut-offs were identified for each considered variable, providing an objective tool for early embryo developmental assessment.


Asunto(s)
Inteligencia Artificial , Desarrollo Embrionario , Femenino , Humanos , Estudios Retrospectivos , Blastocisto , Aprendizaje Automático , Técnicas de Cultivo de Embriones/métodos , Imagen de Lapso de Tiempo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA