Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 784
Filtrar
1.
Radiographics ; 44(8): e230173, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38990776

RESUMEN

T1-weighted (T1W) pulse sequences are an indispensable component of clinical protocols in abdominal MRI but usually require multiple breath holds (BHs) during the examination, which not all patients can sustain. Patient motion can affect the quality of T1W imaging so that key diagnostic information, such as intrinsic signal intensity and contrast enhancement image patterns, cannot be determined. Patient motion also has a negative impact on examination efficiency, as multiple acquisition attempts prolong the duration of the examination and often remain noncontributory. Techniques for mitigation of motion-related artifacts at T1W imaging include multiple arterial acquisitions within one BH; free breathing with respiratory gating or respiratory triggering; and radial imaging acquisition techniques, such as golden-angle radial k-space acquisition (stack-of-stars). While each of these techniques has inherent strengths and limitations, the selection of a specific motion-mitigation technique is based on several factors, including the clinical task under investigation, downstream technical ramifications, patient condition, and user preference. The authors review the technical principles of free-breathing motion mitigation techniques in abdominal MRI with T1W sequences, offer an overview of the established clinical applications, and outline the existing limitations of these techniques. In addition, practical guidance for abdominal MRI protocol strategies commonly encountered in clinical scenarios involving patients with limited BH abilities is rendered. Future prospects of free-breathing T1W imaging in abdominal MRI are also discussed. ©RSNA, 2024 See the invited commentary by Fraum and An in this issue.


Asunto(s)
Abdomen , Artefactos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Abdomen/diagnóstico por imagen , Movimiento (Física) , Aumento de la Imagen/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos
2.
Radiother Oncol ; 197: 110351, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824961

RESUMEN

We appreciate Chang JS.'s interest in the article: "Benefit of respiratory gating in the Danish Breast Cancer Group partial breast irradiation trial". The author's response corroborates the statements and comments of Chang JS.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Dinamarca , Técnicas de Imagen Sincronizada Respiratorias
3.
Cancer Med ; 13(10): e7322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38785309

RESUMEN

BACKGROUND AND PURPOSE: Respiratory movement has an important impact on the radiotherapy for lung tumor. Respiratory gating technology is helpful to improve the accuracy of target delineation. This study investigated the value of prospective and retrospective respiratory gating simulations in target delineation and radiotherapy plan design for solitary pulmonary tumors (SPTs) in radiotherapy. METHODS: The enrolled patients underwent CT simulation with three-dimensional (3D) CT non gating, prospective respiratory gating, and retrospective respiratory gating simulation. The target volumes were delineated on three sets of CT images, and radiotherapy plans were prepared accordingly. Tumor displacements and movement information obtained using the two respiratory gating approaches, as well as the target volumes and dosimetry parameters in the radiotherapy plan were compared. RESULTS: No significant difference was observed in tumor displacement measured using the two gating methods (p > 0.05). However, the internal gross tumor volumes (IGTVs), internal target volumes (ITVs), and planning target volumes (PTVs) based on the retrospective respiratory gating simulation were larger than those obtained using prospective gating (group A: pIGTV = 0.041, pITV = 0.003, pPTV = 0.008; group B: pIGTV = 0.025, pITV = 0.039, pPTV = 0.004). The two-gating PTVs were both smaller than those delineated on 3D non gating images (p < 0.001). V5Gy, V10Gy, V20Gy, V30Gy, and mean lung dose in the two gated radiotherapy plans were lower than those in the 3D non gating plan (p < 0.001); however, no significant difference was observed between the two gating plans (p > 0.05). CONCLUSIONS: The application of respiratory gating could reduce the target volume and the radiation dose that the normal lung tissue received. Compared to prospective respiratory gating, the retrospective gating provides more information about tumor movement in PTV.


Asunto(s)
Neoplasias Pulmonares , Planificación de la Radioterapia Asistida por Computador , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Masculino , Femenino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Anciano , Tomografía Computarizada por Rayos X/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Dosificación Radioterapéutica , Carga Tumoral , Adulto , Estudios Retrospectivos , Nódulo Pulmonar Solitario/radioterapia , Nódulo Pulmonar Solitario/diagnóstico por imagen , Estudios Prospectivos , Respiración
4.
Magn Reson Imaging ; 111: 15-20, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38579974

RESUMEN

BACKGROUND: In patients who have difficulty holding their breath, a free breathing (FB) respiratory-triggered (RT) bSSFP cine technique may be used. However, this technique may have inferior image quality and a longer scan time than breath-hold (BH) bSSFP cine acquisitions. This study examined the effect of an audiovisual breathing guidance (BG) system on RT bSSFP cine image quality, scan time, and ventricular measurements. METHODS: This study evaluated a BG system that provides audiovisual instructions and feedback on the timing of inspiration and expiration to the patient during image acquisition using input from the respiratory bellows to guide them toward a regular breathing pattern with extended end-expiration. In this single-center prospective study in patients undergoing a clinical cardiac magnetic resonance examination, a ventricular short-axis stack of bSSFP cine images was acquired using 3 techniques in each patient: 1) FB and RT (FBRT), 2) BG system and RT (BGRT), and 3) BH. The 3 acquisitions were compared for image quality metrics (endocardial edge definition, motion artifact, and blood-to-myocardial contrast) scored on a Likert scale, scan time, and ventricular volumes and mass. RESULTS: Thirty-two patients (19 females; median age 21 years, IQR 18-32) completed the study protocol. For scan time, BGRT was faster than FBRT (163 s vs. 345 s, p < 0.001). Endocardial edge definition, motion artifact, and blood-to-myocardial contrast were all better for BGRT than FBRT (p < 0.001). Left ventricular (LV) end-systolic volume (ESV) was smaller (3%, p = 0.02) and LV ejection fraction (EF) was larger (0.5%, p = 0.003) with BGRT than with FBRT. There was no significant difference in LV end-diastolic volume (EDV), LV mass, right ventricular (RV) EDV, RV ESV, and RV EF. Scan times were shorter for BGRT compared to BH. Endocardial edge definition and blood-to-myocardial contrast were better for BH than BGRT. Compared to BH, the LV EDV, LV ESV, RV EDV, and RV ESV were mildly smaller (all differences <7%) for BGRT. CONCLUSIONS: The addition of a BG system to RT bSSFP cine acquisitions decreased the scan time and improved image quality. Further exploration of this BG approach is warranted in more diverse populations and with other free breathing sequences.


Asunto(s)
Imagen por Resonancia Cinemagnética , Humanos , Imagen por Resonancia Cinemagnética/métodos , Femenino , Masculino , Adulto , Estudios Prospectivos , Respiración , Persona de Mediana Edad , Técnicas de Imagen Sincronizada Respiratorias/métodos , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Contencion de la Respiración , Artefactos , Reproducibilidad de los Resultados , Recursos Audiovisuales , Adulto Joven
5.
Comput Med Imaging Graph ; 115: 102385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663077

RESUMEN

Due to the high expenses involved, 4D-CT data for certain patients may only include five respiratory phases (0%, 20%, 40%, 60%, and 80%). This limitation can affect the subsequent planning of radiotherapy due to the absence of lung tumor information for the remaining five respiratory phases (10%, 30%, 50%, 70%, and 90%). This study aims to develop an interpolation method that can automatically derive tumor boundary contours for the five omitted phases using the available 5-phase 4D-CT data. The dynamic mode decomposition (DMD) method is a data-driven and model-free technique that can extract dynamic information from high-dimensional data. It enables the reconstruction of long-term dynamic patterns using only a limited number of time snapshots. The quasi-periodic motion of a deformable lung tumor caused by respiratory motion makes it suitable for treatment using DMD. The direct application of the DMD method to analyze the respiratory motion of the tumor is impractical because the tumor is three-dimensional and spans multiple CT slices. To predict the respiratory movement of lung tumors, a method called uniform angular interval (UAI) sampling was developed to generate snapshot vectors of equal length, which are suitable for DMD analysis. The effectiveness of this approach was confirmed by applying the UAI-DMD method to the 4D-CT data of ten patients with lung cancer. The results indicate that the UAI-DMD method effectively approximates the lung tumor's deformable boundary surface and nonlinear motion trajectories. The estimated tumor centroid is within 2 mm of the manually delineated centroid, a smaller margin of error compared to the traditional BSpline interpolation method, which has a margin of 3 mm. This methodology has the potential to be extended to reconstruct the 20-phase respiratory movement of a lung tumor based on dynamic features from 10-phase 4D-CT data, thereby enabling more accurate estimation of the planned target volume (PTV).


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/fisiopatología , Humanos , Tomografía Computarizada Cuatridimensional/métodos , Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Movimiento , Sensibilidad y Especificidad , Reproducibilidad de los Resultados , Técnicas de Imagen Sincronizada Respiratorias/métodos
6.
J Cardiovasc Magn Reson ; 26(1): 101037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38499269

RESUMEN

BACKGROUND: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR. METHODS: Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers. RESULTS: Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52). CONCLUSION: The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.


Asunto(s)
Artefactos , Cardiopatías Congénitas , Interpretación de Imagen Asistida por Computador , Valor Predictivo de las Pruebas , Humanos , Reproducibilidad de los Resultados , Femenino , Masculino , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Adulto , Adulto Joven , Imagen por Resonancia Magnética , Adolescente , Mecánica Respiratoria , Técnicas de Imagen Sincronizada Respiratorias , Niño , Persona de Mediana Edad , Respiración , Imagen por Resonancia Cinemagnética
7.
NMR Biomed ; 37(8): e5134, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38459747

RESUMEN

Free-breathing abdominal chemical exchange saturation transfer (CEST) has great potential for clinical application, but its technical implementation remains challenging. This study aimed to propose and evaluate a free-breathing abdominal CEST sequence. The proposed sequence employed respiratory gating (ResGat) to synchronize the data acquisition with respiratory motion and performed a water presaturation module before the CEST saturation to abolish the influence of respiration-induced repetition time variation. In vivo experiments were performed to compare different respiratory motion-control strategies and B0 offset correction methods, and to evaluate the effectiveness and necessity of the quasi-steady-state (QUASS) approach for correcting the influence of the water presaturation module on CEST signal. ResGat with a target expiratory phase of 0.5 resulted in a higher structural similarity index and a lower coefficient of variation on consecutively acquired CEST S0 images than breath-holding (BH) and respiratory triggering (all p < 0.05). B0 maps derived from the abdominal CEST dataset itself were more stable for B0 correction, compared with the separately acquired B0 maps by a dual-echo time scan and B0 maps derived from the water saturation shift referencing approach. Compared with BH, ResGat yielded more homogeneous magnetization transfer ratio asymmetry maps at 3.5 ppm (standard deviation: 3.96% vs. 3.19%, p = 0.036) and a lower mean squared difference between scan and rescan (27.52‱ vs. 16.82‱, p = 0.004). The QUASS approach could correct the water presaturation-induced CEST signal change, but its necessity for in vivo scanning needs further verification. The proposed free-breathing abdominal CEST sequence using ResGat had an acquisition efficiency of approximately four times that using BH. In conclusion, the proposed free-breathing abdominal CEST sequence using ResGat and water presaturation has a higher acquisition efficiency and image quality than abdominal CEST using BH.


Asunto(s)
Abdomen , Imagen por Resonancia Magnética , Respiración , Técnicas de Imagen Sincronizada Respiratorias , Agua , Abdomen/diagnóstico por imagen , Humanos , Agua/química , Técnicas de Imagen Sincronizada Respiratorias/métodos , Masculino , Imagen por Resonancia Magnética/métodos , Adulto , Femenino
8.
Radiother Oncol ; 194: 110195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442840

RESUMEN

BACKGROUND AND PURPOSE: Partial breast irradiation (PBI)has beenthe Danish Breast Cancer Group(DBCG) standard for selected breast cancer patients since 2016 based onearlyresults from the DBCG PBI trial.During trial accrual, respiratory-gated radiotherapy was introduced in Denmark. This study aims to investigate the effect of respiratory-gating on mean heart dose (MHD). PATIENTS AND METHODS: From 2009 to 2016 the DBCG PBI trial included 230 patientswith left-sided breast cancer receiving external beam PBI, 40 Gy/15 fractions/3 weeks.Localization of the tumor bed on the planning CT scan, the use of respiratory-gating, coverage of the clinical target volume (CTV), and doses to organs at risk were collected. RESULTS: Respiratory-gating was used in 123 patients (53 %). In 176 patients (77 %) the tumor bed was in the upper and in 54 patients (23 %) in the lower breast quadrants. The median MHD was 0.37 Gy (interquartile range 0.26-0.57 Gy), 0.33 Gy (0.23-0.49 Gy) for respiratory-gating, and 0.49 Gy (0.31-0.70 Gy) for free breathing, p < 0.0001. MHD was < 1 Gy in 206 patients (90 %) and < 2 Gy in 221 patients (96 %). Respiratory-gating led to significantly lower MHD for upper-located, but not for lower-located tumor beds, however, all MHD were low irrespective of respiratory-gating. Respiratory-gating did not improve CTV coverage or lower lung doses. CONCLUSIONS: PBI ensured a low MHD for most patients. Adding respiratory-gating further reduced MHD for upper-located but not for lower-located tumor beds but did not influence target coverage or lung doses. Respiratory-gating is no longer DBCG standard for left-sided PBI.


Asunto(s)
Órganos en Riesgo , Humanos , Femenino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Dinamarca , Anciano , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Neoplasias de Mama Unilaterales/radioterapia , Dosificación Radioterapéutica , Corazón/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Adulto
9.
J Appl Clin Med Phys ; 25(5): e14349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551392

RESUMEN

PURPOSE: Beam delivery latency in respiratory-gated particle therapy systems is a crucial issue to dose delivery accuracy. The aim of this study is to develop a multi-channel signal acquisition platform for investigating gating latencies occurring within RPM respiratory gating system (Varian, USA) and ProBeam proton treatment system (Varian, USA) individually. METHODS: The multi-channel signal acquisition platform consisted of several electronic components, including a string position sensor for target motion detection, a photodiode for proton beam sensing, an interfacing board for accessing the trigger signal between the respiratory gating system and the proton treatment system, a signal acquisition device for sampling and synchronizing signals from the aforementioned components, and a laptop for controlling the signal acquisition device and data storage. RPM system latencies were determined by comparing the expected gating phases extracted from the motion signal with the trigger signal's state turning points. ProBeam system latencies were assessed by comparing the state turning points of the trigger signal with the beam signal. The total beam delivery latencies were calculated as the sum of delays in the respiratory gating system and the cyclotron proton treatment system. During latency measurements, simulated sinusoidal motion were applied at different amplitudes and periods for complete beam delivery latency evaluation under different breathing patterns. Each breathing pattern was repeated 30 times for statistical analysis. RESULTS: The measured gating ON/OFF latencies in the RPM system were found to be 104.20 ± 13.64 ms and 113.60 ± 14.98 ms, respectively. The measured gating ON/OFF delays in the ProBeam system were 108.29 ± 0.85 ms and 1.20 ± 0.04 ms, respectively. The total beam ON/OFF latencies were determined to be 212.50 ± 13.64 ms and 114.80 ± 14.98 ms. CONCLUSION: With the developed multi-channel signal acquisition platform, it was able to investigate the gating lags happened in both the respiratory gating system and the proton treatment system. The resolution of the platform is enough to distinguish the delays at the millisecond time level. Both the respiratory gating system and the proton treatment system made contributions to gating latency. Both systems contributed nearly equally to the total beam ON latency, with approximately 100 ms. In contrast, the respiratory gating system was the dominant contributor to the total beam OFF latency.


Asunto(s)
Terapia de Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Terapia de Protones/métodos , Terapia de Protones/instrumentación , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Respiración , Neoplasias/radioterapia , Fantasmas de Imagen , Técnicas de Imagen Sincronizada Respiratorias/métodos , Órganos en Riesgo/efectos de la radiación
10.
J Cardiovasc Magn Reson ; 26(1): 100992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38211655

RESUMEN

BACKGROUND: The measurement of aortic dimensions and their evolution are key in the management of patients with aortic diseases. Manual assessment, the current guideline-recommended method and clinical standard, is subjective, poorly reproducible, and time-consuming, limiting the capacity to track aortic growth in everyday practice. Aortic geometry mapping (AGM) via image registration of serial computed tomography angiograms outperforms manual assessment, providing accurate and reproducible 3D maps of aortic diameter and growth rate. This observational study aimed to evaluate the accuracy and reproducibility of AGM on non-gated contrast-enhanced (CE-) and cardiac- and respiratory-gated (GN-) magnetic resonance angiographies (MRA). METHODS: Patients with thoracic aortic disease followed with serial CE-MRA (n = 30) or GN-MRA (n = 15) acquired at least 1 year apart were retrospectively and consecutively identified. Two independent observers measured aortic diameters and growth rates (GR) manually at several thoracic aorta reference levels and with AGM. Agreement between manual and AGM measurements and their inter-observer reproducibility were compared. Reproducibility for aortic diameter and GR maps assessed with AGM was obtained. RESULTS: Mean follow-up was 3.8 ± 2.3 years for CE- and 2.7 ± 1.6 years for GN-MRA. AGM was feasible in the 93% of CE-MRA pairs and in the 100% of GN-MRA pairs. Manual and AGM diameters showed excellent agreement and inter-observer reproducibility (ICC>0.9) at all anatomical levels. Agreement between manual and AGM GR was more limited, both in the aortic root by GN-MRA (ICC=0.47) and in the thoracic aorta, where higher accuracy was obtained with GN- than with CE-MRA (ICC=0.55 vs 0.43). The inter-observer reproducibility of GR by AGM was superior compared to manual assessment, both with CE- (thoracic: ICC= 0.91 vs 0.51) and GN-MRA (root: ICC=0.84 vs 0.52; thoracic: ICC=0.93 vs 0.60). AGM-based 3D aortic size and growth maps were highly reproducible (median ICC >0.9 for diameters and >0.80 for GR). CONCLUSION: Mapping aortic diameter and growth on MRA via 3D image registration is feasible, accurate and outperforms the current manual clinical standard. This technique could broaden the possibilities of clinical and research evaluation of patients with aortic thoracic diseases.


Asunto(s)
Aorta Torácica , Enfermedades de la Aorta , Medios de Contraste , Imagenología Tridimensional , Angiografía por Resonancia Magnética , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Humanos , Reproducibilidad de los Resultados , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Aorta Torácica/diagnóstico por imagen , Anciano , Medios de Contraste/administración & dosificación , Enfermedades de la Aorta/diagnóstico por imagen , Técnicas de Imagen Sincronizada Respiratorias , Adulto , Factores de Tiempo , Interpretación de Imagen Asistida por Computador , Técnicas de Imagen Sincronizada Cardíacas
11.
J Appl Clin Med Phys ; 25(6): e14280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38252745

RESUMEN

PURPOSE: This study evaluated the intra- and inter-fractional variation of tumors with fiducial markers (FMs), relative to the tumor-FM distance, to establish how close an FM should be inserted for respiratory-gated stereotactic body radiation therapy (RG-SBRT). METHODS: Forty-five lung tumors treated with RG-SBRT were enrolled. End-expiratory computed tomography (CT) (CTplan) and four-dimensional-CT (4D-CT) scans were obtained for planning. End-expiratory CT (CTfr) scanning was performed before each fraction. The FMs were divided into two groups based on the median tumor-FM distance in the CTplan (Dp). For the intra-fractional variation, the correlations between the corresponding tumor and FM intra-fractional motions, defined as the centroid coordinates of those in each 0-90% phase, with the 50% phase of 4D-CT as the origin, were calculated in the left-right, anterior-posterior, and superior-inferior directions. Furthermore, the maximum difference in the tumor-FM distance in each phase of 4D-CT scan, based on those in the 50% phase of 4D-CT scan (Dmax), was obtained. Inter-fractional variation was defined as the maximum distance between the tumors in CTplan and CTfr, when the CT scans were fused based on each FM or vertebra. RESULTS: The median Dp was 26.1 mm. While FM intra-fractional motions were significantly and strongly correlated with the tumor intra-fractional motions in only anterior-posterior and superior-inferior directions for the Dp > 26 mm group, they were significantly and strongly correlated in all directions for the Dp ≤ 26 mm group. In all directions, Dmax values of the Dp ≤ 26 mm group were lower than those of the Dp > 26 mm group. The inter-fractional variations based on the Dp ≤ 26 mm were smaller than those on the Dp > 26 mm and on the vertebra in all directions. CONCLUSIONS: Regarding intra- and inter-fractional variation, FMs for Dp ≤ 26 mm can increase the accuracy for RG-SBRT.


Asunto(s)
Marcadores Fiduciales , Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Cuatridimensional/métodos , Masculino , Femenino , Radioterapia de Intensidad Modulada/métodos , Anciano , Respiración , Persona de Mediana Edad , Anciano de 80 o más Años , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento , Pronóstico , Técnicas de Imagen Sincronizada Respiratorias/métodos , Órganos en Riesgo/efectos de la radiación
12.
Magn Reson Imaging ; 107: 80-87, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237694

RESUMEN

PURPOSE: To improve the scan efficiency of thoracic aorta vessel wall imaging using a self-gating (SG)-based motion correction scheme. MATERIALS AND METHODS: A slab-selective variable-flip-angle 3D turbo spin-echo (SPACE) sequence was modified to acquire SG signals and imaging data. Cartesian sampling with a tiny golden-step spiral profile ordering was used to obtain the imaging data during the systolic period, and then the image data were subsequently corrected based on the SG signals and binned to different respiratory cycles. Finally, respiratory artifacts were estimated from image-based registration of 3D undersampled respiratory bins that were reconstructed with L1 iterative self-consistent parallel imaging reconstruction (SPIRiT). This method was evaluated in 11 healthy volunteers and compared against conventional diaphragmatic navigator-gated acquisition to assess the feasibility of the proposed framework. RESULTS: Results showed that the proposed method achieved image quality comparable to that of conventional diaphragmatic navigator-gated acquisition with an average scan time of 4 min. The sharpness of the vessel wall and the definition of the liver boundary were in good agreement with the navigator-gated acquisition, which took approximately above 8.5 min depend on the respiratory rate. Further valuation of this technique in patients will be conducted to determine its clinical use.


Asunto(s)
Aorta Torácica , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Aorta Torácica/diagnóstico por imagen , Imagenología Tridimensional/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Respiración , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Artefactos
13.
Med Phys ; 51(2): 1364-1382, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37427751

RESUMEN

BACKGROUND: The adoption of four-dimensional cone beam computed tomography (4DCBCT) for image-guided lung cancer radiotherapy is increasing, especially for hypofractionated treatments. However, the drawbacks of 4DCBCT include long scan times (∼240 s), inconsistent image quality, higher imaging dose than necessary, and streaking artifacts. With the emergence of linear accelerators that can acquire 4DCBCT scans in a short period of time (9.2 s) there is a need to examine the impact that these very fast gantry rotations have on 4DCBCT image quality. PURPOSE: This study investigates the impact of gantry velocity and angular separation between x-ray projections on image quality and its implication for fast low-dose 4DCBCT with emerging systems, such as the Varian Halcyon that provide fast gantry rotation and imaging. Large and uneven angular separation between x-ray projections is known to reduce 4DCBCT image quality through increased streaking artifacts. However, it is not known when angular separation starts degrading image quality. The study assesses the impact of constant and adaptive gantry velocity and determines the level when angular gaps impair image quality using state-of-the-art reconstruction methods. METHODS: This study considers fast low-dose 4DCBCT acquisitions (60-80 s, 200-projection scans). To assess the impact of adaptive gantry rotations, the angular position of x-ray projections from adaptive 4DCBCT acquisitions from a 30-patient clinical trial were analyzed (referred to as patient angular gaps). To assess the impact of angular gaps, variable and static angular gaps (20°, 30°, 40°) were introduced into evenly separated 200 projections (ideal angular separation). To simulate fast gantry rotations, which are on emerging linacs, constant gantry velocity acquisitions (9.2 s, 60 s, 120 s, 240 s) were simulated by sampling x-ray projections at constant intervals using the patient breathing traces from the ADAPT clinical trial (ACTRN12618001440213). The 4D Extended Cardiac-Torso (XCAT) digital phantom was used to simulate projections to remove patient-specific image quality variables. Image reconstruction was performed using Feldkamp-Davis-Kress (FDK), McKinnon-Bates (MKB), and Motion-Compensated-MKB (MCMKB) algorithms. Image quality was assessed using Structural Similarity-Index-Measure (SSIM), Contrast-to-Noise-Ratio (CNR), Signal-to-Noise-Ratio (SNR), Tissue-Interface-Width-Diaphragm (TIW-D), and Tissue-Interface-Width-Tumor (TIW-T). RESULTS: Patient angular gaps and variable angular gap reconstructions produced similar results to ideal angular separation reconstructions, while static angular gap reconstructions produced lower image quality metrics. For MCMKB-reconstructions, average patient angular gaps produced SSIM-0.98, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm, static angular gap 40° produced SSIM-0.92, CNR-6.8, SNR-6.7, TIW-D-5.7 mm, and TIW-T-5.9 mm and ideal produced SSIM-1.00, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm. All constant gantry velocity reconstructions produced lower image quality metrics than ideal angular separation reconstructions regardless of the acquisition time. Motion compensated reconstruction (MCMKB) produced the highest contrast images with low streaking artifacts. CONCLUSION: Very fast 4DCBCT scans can be acquired provided that the entire scan range is adaptively sampled, and motion-compensated reconstruction is performed. Importantly, the angular separation between x-ray projections within each individual respiratory bin had minimal effect on the image quality of fast low-dose 4DCBCT imaging. The results will assist the development of future 4DCBCT acquisition protocols that can now be achieved in very short time frames with emerging linear accelerators.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada Cuatridimensional/métodos , Fantasmas de Imagen , Relación Señal-Ruido , Técnicas de Imagen Sincronizada Respiratorias/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
14.
Magn Reson Med ; 91(2): 600-614, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849064

RESUMEN

PURPOSE: To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI. METHODS: Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers. RESULTS: The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts. CONCLUSION: Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.


Asunto(s)
Imagen por Resonancia Magnética , Técnicas de Imagen Sincronizada Respiratorias , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Movimiento (Física) , Aceleración , Técnicas de Imagen Sincronizada Respiratorias/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Respiración
15.
J Nucl Med Technol ; 51(1): 32-37, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36750380

RESUMEN

Respiration gating is used in PET to prevent image quality degradation due to respiratory effects. In this study, we evaluated a type of data-driven respiration gating for continuous bed motion, OncoFreeze AI, which was implemented to improve image quality and the accuracy of semiquantitative uptake values affected by respiratory motion. Methods: 18F-FDG PET/CT was performed on 32 patients with lung lesions. Two types of respiration-gated images (OncoFreeze AI with data-driven respiration gating, device-based amplitude-based OncoFreeze with elastic motion compensation) and ungated images (static) were reconstructed. For each image, we calculated SUV and metabolic tumor volume (MTV). The improvement rate (IR) from respiration gating and the contrast-to-noise ratio (CNR), which indicates the improvement in image noise, were also calculated for these indices. IR was also calculated for the upper and lower lobes of the lung. As OncoFreeze AI assumes the presence of respiratory motion, we examined quantitative accuracy in regions where respiratory motion was not present using a 68Ge cylinder phantom with known quantitative accuracy. Results: OncoFreeze and OncoFreeze AI showed similar values, with a significant increase in SUV and decrease in MTV compared with static reconstruction. OncoFreeze and OncoFreeze AI also showed similar values for IR and CNR. OncoFreeze AI increased SUVmax by an average of 18% and decreased MTV by an average of 25% compared with static reconstruction. From the IR results, both OncoFreeze and OncoFreeze AI showed a greater IR from static reconstruction in the lower lobe than in the upper lobe. OncoFreeze and OncoFreeze AI increased CNR by 17.9% and 18.0%, respectively, compared with static reconstruction. The quantitative accuracy of the 68Ge phantom, assuming a region of no respiratory motion, was almost equal for the static reconstruction and OncoFreeze AI. Conclusion: OncoFreeze AI improved the influence of respiratory motion in the assessment of lung lesion uptake to a level comparable to that of the previously launched OncoFreeze. OncoFreeze AI provides more accurate imaging with significantly larger SUVs and smaller MTVs than static reconstruction.


Asunto(s)
Neoplasias Pulmonares , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Respiración , Tomografía de Emisión de Positrones/métodos , Pulmón , Movimiento (Física) , Fluorodesoxiglucosa F18 , Técnicas de Imagen Sincronizada Respiratorias/métodos
16.
Eur Radiol ; 33(5): 3366-3376, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36565352

RESUMEN

OBJECTIVES: This study aimed to investigate the performance of respiratory-gating imaging with reduced acquisition time using the total-body positron emission tomography/computed tomography (PET/CT) scanner. METHODS: Imaging data of 71 patients with suspect malignancies who underwent total-body 2-[18F]-fluoro-2-deoxy-D-glucose PET/CT for 15 min with respiration recorded were analyzed. For each examination, four reconstructions were performed: Ungated-15, using all coincidences; Ungated-5, using data of the first 5 min; Gated-15 using all coincidences but with respiratory gating; and Gated-6 using data of the first 6 min with respiratory gating. Lesions were quantified and image quality was evaluated; both were compared between the four image sets. RESULTS: A total of 390 lesions were found in the thorax and upper abdomen. Lesion detectability was significantly higher in gated-15 (97.2%) than in ungated-15 (93.6%, p = 0.001) and ungated-5 (92.3%, p = 0.001), but comparable to Gated-6 (95.9%, p = 0.993). A total of 131 lesions were selected for quantitative analyses. Lesions in Gated-15 presented significantly larger standardized uptake values, tumor-to-liver ratio, and tumor-to-blood ratio, but smaller metabolic tumor volume, compared to those in Ungated-15 and Ungated-5 (all p < 0.001). These differences were more obvious in small lesions and in lesions from sites other than mediastinum/retroperitoneum. However, these indices were not significantly different between Gated-15 and Gated-6. Higher, but acceptable, image noise was identified in gated images than in ungated images. CONCLUSIONS: Respiratory-gating imaging with reduced scanning time using the total-body PET/CT scanner is superior to ungated imaging and can be used in the clinic. KEY POINTS: • In PET imaging, respiratory gating can improve lesion presentation and detectability but requires longer imaging time. • This single-center study showed that the total-body PET scanner allows respiratory-gated imaging with reduced and clinically acceptable scanning time.


Asunto(s)
Neoplasias Hepáticas , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Tomografía de Emisión de Positrones/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Desoxiglucosa , Fluorodesoxiglucosa F18
17.
J Cardiovasc Magn Reson ; 24(1): 47, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948936

RESUMEN

BACKGROUND: Exercise cardiovascular magnetic resonance (Ex-CMR) is a promising stress imaging test for coronary artery disease (CAD). However, Ex-CMR requires accelerated imaging techniques that result in significant aliasing artifacts. Our goal was to develop and evaluate a free-breathing and electrocardiogram (ECG)-free real-time cine with deep learning (DL)-based radial acceleration for Ex-CMR. METHODS: A 3D (2D + time) convolutional neural network was implemented to suppress artifacts from aliased radial cine images. The network was trained using synthetic real-time radial cine images simulated using breath-hold, ECG-gated segmented Cartesian k-space data acquired at 3 T from 503 patients at rest. A prototype real-time radial sequence with acceleration rate = 12 was used to collect images with inline DL reconstruction. Performance was evaluated in 8 healthy subjects in whom only rest images were collected. Subsequently, 14 subjects (6 healthy and 8 patients with suspected CAD) were prospectively recruited for an Ex-CMR to evaluate image quality. At rest (n = 22), standard breath-hold ECG-gated Cartesian segmented cine and free-breathing ECG-free real-time radial cine images were acquired. During post-exercise stress (n = 14), only real-time radial cine images were acquired. Three readers evaluated residual artifact level in all collected images on a 4-point Likert scale (1-non-diagnostic, 2-severe, 3-moderate, 4-minimal). RESULTS: The DL model substantially suppressed artifacts in real-time radial cine images acquired at rest and during post-exercise stress. In real-time images at rest, 89.4% of scores were moderate to minimal. The mean score was 3.3 ± 0.7, representing increased (P < 0.001) artifacts compared to standard cine (3.9 ± 0.3). In real-time images during post-exercise stress, 84.6% of scores were moderate to minimal, and the mean artifact level score was 3.1 ± 0.6. Comparison of left-ventricular (LV) measures derived from standard and real-time cine at rest showed differences in LV end-diastolic volume (3.0 mL [- 11.7, 17.8], P = 0.320) that were not significantly different from zero. Differences in measures of LV end-systolic volume (7.0 mL [- 1.3, 15.3], P < 0.001) and LV ejection fraction (- 5.0% [- 11.1, 1.0], P < 0.001) were significant. Total inline reconstruction time of real-time radial images was 16.6 ms per frame. CONCLUSIONS: Our proof-of-concept study demonstrated the feasibility of inline real-time cine with DL-based radial acceleration for Ex-CMR.


Asunto(s)
Enfermedad de la Arteria Coronaria , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Técnicas de Imagen Sincronizada Respiratorias , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Aprendizaje Profundo , Prueba de Esfuerzo , Estudios de Factibilidad , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados , Técnicas de Imagen Sincronizada Respiratorias/métodos
18.
Semin Nucl Med ; 52(6): 745-758, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35643531

RESUMEN

Positron emission tomography (PET) is an important imaging modality for personalizing clinical management of patients with lung cancer. In this regard, PET imaging is essential for adequate clinical staging and monitoring of treatment response in patients with lung cancer. The key advantage of PET over other radiological imaging modalities is its high sensitivity for the detection of pulmonary lesions, normal-sized metastatic hilar and/or mediastinal lymph nodes, and distant metastases. Furthermore, with increasing clinical evidence, the role of PET imaging for treatment selection, adaptation, early response monitoring and follow up in patients with lung cancer is being increasingly recognized. At the heart of PET imaging lies the ability to visualize and quantify numerous biological parameters that are responsible for treatment resistance. In order to ensure accurate and reproducible image quantification, harmonization of patient preparation and imaging protocols is essential. Additionally, there are several technical factors during PET scanning that have to be taken care of to safeguard image quality and quantitative accuracy. One of these factors is the occurrence of respiratory motion artifacts, which is a well-known factor that can significantly influence image quality and quantitative accuracy of PET images. If left uncorrected, respiratory motion artifacts can introduce uncertainties in diagnosis and staging, inaccuracies in definition of target volumes for radiation treatment planning, and hinder adequate monitoring of therapy response. Although many different respiratory gating techniques have been developed to correct PET images for respiratory motion artifacts, respiratory gating has traditionally not been widely adopted in clinical practice. This is due to the fact that these methods tend to be disruptive for the clinical workflow due the lengthening of image acquisition times, higher amounts of activity being administered to the patient, and the requirement to synchronize additional hardware with the scanner. Developments in respiratory gating techniques over the last years have resulted in considerable technical improvements. These newer respiratory gating techniques can operate directly on the acquired PET data without the use of additional hardware to trace respiratory motion and can be seamlessly applied into clinical routine. Furthermore, instead of only using a fraction of the acquired PET data newer methods have the ability to use all of the acquired PET data for image reconstruction, thereby improving image quality. The clinically added value of respiratory gating lies in improving image quality by reducing the amount of respiration-induced image blurring. This considerably improves the detection and characterization of small lesions, potentially improving early diagnosis and staging of patients with lung cancer. Furthermore, the incorporation of (4D) respiratory gated PET for radiotherapy purposes has shown to improve target volume definition through more accurate tracking of tumor motion. In addition, the effect of respiratory motion artifacts on widely used volumetric and uptake parameters in PET have been described. Although respiratory gating improves quantitative accuracy of PET images, the exact impact of these corrections on clinical management of patients with lung cancer often still needs to be determined.


Asunto(s)
Neoplasias Pulmonares , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Tomografía de Emisión de Positrones/métodos , Artefactos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Procesamiento de Imagen Asistido por Computador , Respiración , Técnicas de Imagen Sincronizada Respiratorias/métodos
19.
J Appl Clin Med Phys ; 23(5): e13619, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35481961

RESUMEN

Data driven respiratory gating (DDG) in positron emission tomography (PET) imaging extracts respiratory waveforms from the acquired PET data obviating the need for dedicated external devices. DDG performance, however, degrades with decreasing detected number of coincidence counts. In this paper, we assess the clinical impact of reducing injected activity on a new DDG algorithm designed for PET data acquired with continuous bed motion (CBM_DDG) by evaluating CBM_DDG waveforms, tumor quantification, and physician's perception of motion blur in resultant images. Forty patients were imaged on a Siemens mCT scanner in CBM mode. Reduced injected activity was simulated by generating list mode datasets with 50% and 25% of the original data (100%). CBM_DDG waveforms were compared to that of the original data over the range between the aortic arch and the center of the right kidney using the Pearson correlation coefficient (PCC). Tumor quantification was assessed by comparing the maximum standardized uptake value (SUVmax) and peak SUV (SUVpeak) of reconstructed images from the various list mode datasets using elastic motion deblurring (EMDB) reconstruction. Perceived motion blur was assessed by three radiologists of one lesion per patient on a continuous scale from no motion blur (0) to significant motion blur (3). The mean PCC of the 50% and 25% dataset waveforms was 0.74 ± 0.18 and 0.59 ± 0.25, respectively. In comparison to the 100% datasets, the mean SUVmax increased by 2.25% (p = 0.11) for the 50% datasets and by 3.91% (p = 0.16) for the 25% datasets, while SUVpeak changes were within ±0.25%. Radiologist evaluations of motion blur showed negligible changes with average values of 0.21, 0.3, and 0.28 for the 100%, 50%, and 25% datasets. Decreased injected activities degrades the resultant CBM_DDG respiratory waveforms; however this decrease has minimal impact on quantification and perceived image motion blur.


Asunto(s)
Neoplasias , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos
20.
Phys Med Biol ; 67(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35313286

RESUMEN

Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique.Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases.Main results. For both NG-PET (p= 0.0041) and DDG-PET (p= 0.0028), only the 30 s acquisition time showed clear SUVmaxbias relative to the 3 min clinical standard. SUVpeakshowed no bias at any change in acquisition time. DDG-PET alone increased SUVmaxby 15 ± 20% (p< 0.0001), then was increased further by an additional 15 ± 29% (p= 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p= 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p< 0.0001).Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV-increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Movimiento (Física) , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...