Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
J Med Eng Technol ; 48(1): 12-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38857023

RESUMEN

Haemorrhage is the leading cause of battlefield deaths and second most common cause for civilian mortality worldwide. Biomaterials-based haemostatic agents are used to aid in bleeding stoppage; mesoporous bioactive glasses (MBGs) are candidates for haemostasis. Previously made Tantalum-containing MBG (Ta-MBG) powders' compositions were fabricated as electrospun fibres for haemostatic applications in the present study. The fibres were fabricated to address the challenges associated with the powder form: difficult to compress without gauze, getting washed away in profuse bleeding, generating dust in the surgical environment, and forming thick callus-difficult to remove for surgeons and painful for patients. Ta-MBGs were based on (80-x)SiO2-15CaO-5P2O5-xTa2O5 mol% compositions with x = 0 (0Ta), 0.5 (0.5Ta), 1 (1Ta), and 5 (5Ta) mol%. The present study details the fibres' in vitro analyses, elucidating their cytotoxic effects, and haemostatic capabilities and relating these observations to fibre chemistry and previously fabricated powders of the same glasses. As expected, when Ta addition is increased at the expense of silica, a new FTIR peak (non-bridging oxygen-silicon, Si-NBO) develops and Si-O-Si peaks become wider. Compared to 0Ta and 1Ta fibres, 0.5Ta show Si-O peaks with reduced intensity. The fibres had a weaker intensity of Si-NBO peaks and release fewer ions than powders. A reduced ion profile provides fibres with a stable matrix for clot formation. The ion release profile for 1Ta and 5Ta fibres was significantly lower than 0Ta and 0.5Ta fibres. Ta-MBGs were not found to be cytotoxic to primary rat fibroblasts using a methyl thiazolyl tetrazolium (MTT) assay. Furthermore, a modified activated partial thromboplastin time assay analysing the fibrin absorbance showed that the absorption increases from physiological clotting < 0Ta < 0.5Ta < 5Ta < commercial haemostat, Surgical SNoWTM, Ethicon, USA < 1Ta. Higher absorption signifies a stronger clot. It is concluded that Ta-MBG fibres can provide stable matrix for clot formation and 1Ta can potentially enhance clotting best among other Ta-MBGs.


Asunto(s)
Vidrio , Tantalio , Tantalio/química , Vidrio/química , Hemostáticos/química , Hemostáticos/farmacología , Hemostasis/efectos de los fármacos , Animales , Porosidad , Humanos , Ratas , Materiales Biocompatibles/química
2.
Food Chem ; 455: 139920, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850994

RESUMEN

This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 µM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 µM, and it shows a high sensitivity of 2.266 µA µÐœ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.


Asunto(s)
Cromanos , Frutas , Grafito , Nitrógeno , Tantalio , Grafito/química , Frutas/química , Nitrógeno/química , Tantalio/química , Cromanos/química , Cromanos/análisis , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Límite de Detección , Electrodos , Hierro/química , Hierro/análisis
3.
Biomed Mater ; 19(4)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38838694

RESUMEN

Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.


Asunto(s)
Sustitutos de Huesos , Huesos , Propiedades de Superficie , Tantalio , Ingeniería de Tejidos , Tantalio/química , Ingeniería de Tejidos/métodos , Humanos , Porosidad , Animales , Huesos/metabolismo , Sustitutos de Huesos/química , Materiales Biocompatibles/química , Ensayo de Materiales , Prótesis e Implantes , Andamios del Tejido/química
4.
Int J Biol Macromol ; 271(Pt 1): 132573, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782315

RESUMEN

Guided bone regeneration can play an important role in orthopedic applications. This work presents the synthesis and characterization of composite scaffolds based on polysaccharides loaded with microparticles of titanium or tantalum as novel materials proposed for composite systems with promising characteristics for guided bone regeneration. Ti/Ta composite scaffolds were synthesized using chitosan and gellan gum as organic substrates and crosslinked with oxidized dextran resulting in stable inorganic-organic composites. Physico-chemical characterization revealed a uniform distribution of metal nanoparticles within the scaffolds that showed a release of metals lower than 5 %. In vitro biological assays demonstrated that Ta composites exhibit a 2 times higher ALP activity than Ti and a higher capacity to support the full differentiation of human mesenchymal stem cells into osteoblasts. These results highlight their potential for bone regeneration applications.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Regeneración Ósea , Células Madre Mesenquimatosas , Tantalio , Andamios del Tejido , Titanio , Humanos , Titanio/química , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Tantalio/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Quitosano/química , Polisacáridos/química , Polisacáridos/farmacología , Diferenciación Celular/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología
5.
ACS Appl Mater Interfaces ; 16(19): 24384-24397, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709640

RESUMEN

Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.


Asunto(s)
Regeneración Ósea , Deferoxamina , Magnesio , Células Madre Mesenquimatosas , Óxidos , Tantalio , Deferoxamina/química , Deferoxamina/farmacología , Regeneración Ósea/efectos de los fármacos , Tantalio/química , Animales , Óxidos/química , Óxidos/farmacología , Magnesio/química , Magnesio/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Ratones , Ratas Sprague-Dawley , Proliferación Celular/efectos de los fármacos , Angiogénesis
6.
Biomed Mater ; 19(4)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697199

RESUMEN

Porous tantalum scaffolds offer a high degree of biocompatibility and have a low friction coefficient. In addition, their biomimetic porous structure and mechanical properties, which closely resemble human bone tissue, make them a popular area of research in the field of bone defect repair. With the rapid advancement of additive manufacturing, 3D-printed porous tantalum scaffolds have increasingly emerged in recent years, offering exceptional design flexibility, as well as facilitating the fabrication of intricate geometries and complex pore structures that similar to human anatomy. This review provides a comprehensive description of the techniques, procedures, and specific parameters involved in the 3D printing of porous tantalum scaffolds. Concurrently, the review provides a summary of the mechanical properties, osteogenesis and antibacterial properties of porous tantalum scaffolds. The use of surface modification techniques and the drug carriers can enhance the characteristics of porous tantalum scaffolds. Accordingly, the review discusses the application of these porous tantalum materials in clinical settings. Multiple studies have demonstrated that 3D-printed porous tantalum scaffolds exhibit exceptional corrosion resistance, biocompatibility, and osteogenic properties. As a result, they are considered highly suitable biomaterials for repairing bone defects. Despite the rapid development of 3D-printed porous tantalum scaffolds, they still encounter challenges and issues when used as bone defect implants in clinical applications. Ultimately, a concise overview of the primary challenges faced by 3D-printed porous tantalum scaffolds is offered, and corresponding insights to promote further exploration and advancement in this domain are presented.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Huesos , Osteogénesis , Impresión Tridimensional , Tantalio , Ingeniería de Tejidos , Andamios del Tejido , Tantalio/química , Andamios del Tejido/química , Porosidad , Humanos , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Animales , Sustitutos de Huesos/química , Ensayo de Materiales , Regeneración Ósea
7.
Nanotechnology ; 35(30)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663375

RESUMEN

In this research, we utilize porous tantalum, known for its outstanding elastic modulus and biological properties, as a base material in biomedical applications. The human skeletal system is rich in elements like Ca and Zn. The role of Zn is crucial for achieving a spectrum of sterilizing effects, while Ca is known to effectively enhance cell differentiation and boost cellular activity. The focus of this study is the modification of porous tantalum using a hydrothermal method to synthesize Ca2+/Zn2+-doped Ta2O5nanorods. These nanorods are subjected to extensive characterization techniques to confirm their structure and composition. Additionally, their biological performance is evaluated through a range of tests, including antibacterial assessments, MTT assays, and bacteria/cell scanning electron microscopy (SEM) analyses. The objective is to determine the most effective method of surface modification for porous tantalum, thereby laying a foundational theoretical framework for its surface enhancement.


Asunto(s)
Antibacterianos , Calcio , Tantalio , Zinc , Tantalio/química , Antibacterianos/farmacología , Antibacterianos/química , Zinc/química , Zinc/farmacología , Calcio/química , Humanos , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Porosidad , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
8.
Adv Healthc Mater ; 13(17): e2303814, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38497832

RESUMEN

In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (Mϕ) polarization, Ta particles regulating calcium signaling pathways and promoting M2 Mϕ polarization. Ta-induced M2 Mϕ enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous Mϕ polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate Mϕ polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 Mϕ, providing insights for potential bone repair applications.


Asunto(s)
Diferenciación Celular , Exosomas , Macrófagos , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Tantalio , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Exosomas/metabolismo , Tantalio/química , Tantalio/farmacología , Osteogénesis/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/citología , Ratas , Diferenciación Celular/efectos de los fármacos , MicroARNs/metabolismo , Ratas Sprague-Dawley , Humanos , Masculino , Proliferación Celular/efectos de los fármacos , Huesos/metabolismo
9.
ACS Biomater Sci Eng ; 10(1): 377-390, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38078685

RESUMEN

Tantalum is receiving increasing attention in the biomedical field due to its biocompatible nature and superior mechanical properties. However, the bioinert nature of tantalum still poses a challenge and limits its integration into the bone tissue. To address these issues, we fabricated nanotubular (NT), nanocoral (NC), and nanodimple morphologies on tantalum surfaces via anodization. The size of these nanofeatures was engineered to be approximately 30 nm for all anodized samples. Thus, the influence of the anodized nanostructured morphology on the chemical and biological properties of tantalum was evaluated. The NT and NC samples exhibited higher surface roughness, surface energy, and hydrophilicity compared to the nonanodized samples. In addition, the NT samples exhibited the highest corrosion resistance among all of the investigated samples. Biological experiments indicated that NT and NC samples promoted human adipose tissue-derived mesenchymal stem cell (hADMSC) spreading and proliferation up to 5 days in vitro. ALP, COL1A1, and OSC gene expressions as well as calcium mineral synthesis were upregulated on the NT and NC samples in the second and third weeks in vitro. These findings highlight the significance of nanostructured feature morphology for anodized tantalum, where the NT morphology was shown to be a potential candidate for orthopedic applications.


Asunto(s)
Óxidos , Tantalio , Humanos , Tantalio/química , Corrosión , Óxidos/química , Diferenciación Celular
10.
Biomed Mater ; 18(6)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37729922

RESUMEN

This paper focuses on the preparation of Zn2+-doped Ta2O5nanorods on porous tantalum using the hydrothermal method. Porous tantalum is widely used in biomedical materials due to its excellent elastic modulus and biological activity. Porous tantalum has an elastic modulus close to that of human bone, and its large specific surface area is conducive to promoting cell adhesion. Zinc is an important component of human bone, which not only has spectral bactericidal properties, but also has no cytotoxicity. The purpose of this study is to provide a theoretical basis for the surface modification of porous tantalum and to determine the best surface modification method. The surface structure of the sample was characterized by x-ray diffractometer, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and the Zn-doped Ta2O5nanorods are characterized by antibacterial test, MTT test, ICP and other methods. The sample has good antibacterial properties and no cytotoxicity. The results of this study have potential implications for the development of new and improved biomedical materials.


Asunto(s)
Nanotubos , Tantalio , Humanos , Porosidad , Tantalio/química , Zinc , Materiales Biocompatibles , Propiedades de Superficie
11.
Molecules ; 28(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446574

RESUMEN

The reactions between catechol (H2cat) and niobium(V) or tantalum(V) precursors in basic aqueous solutions lead to the formation of catecholate complexes of different natures. The following complexes were isolated and characterized by single-crystal X-ray diffraction (SCXRD): (1) (NH4)3[NbO(cat)3]∙4H2O; (2) K2[Nb(cat)3(Hcat)]·2H2cat·2H2O; (3) Cs3[NbO(cat)3]·H2O; (4) (NH4)4[Ta2O(cat)6]·3H2O; (5) Cs2[Ta(cat)3(Hcat)]·H2cat; (6) Cs4[Ta2O(cat)6]·7H2O. The isolated crystalline products were characterized by elemental analysis, X-ray powder diffraction (XRPD), FTIR, and TGA. The structural features of these complexes, such as {Ta2O} unit geometry, Cs-π interactions, and crystal packing effects, are discussed.


Asunto(s)
Niobio , Tantalio , Niobio/química , Tantalio/química , Cristalografía por Rayos X
12.
J Biomed Mater Res A ; 111(9): 1358-1371, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37009822

RESUMEN

Due to its excellent biocompatibility and corrosion resistance, tantalum demonstrates versatility as an implant material. However, limited studies investigated the role of tantalum coated titanium-based dental implants. This study aimed to investigate the potential application of micro-nano porous structured tantalum coating on the surface of titanium dental implant. In the present study, micro-nano porous structured tantalum coating was prepared by vacuum plasma spraying (VPS) under selected optimum parameters, various characteristics of tantalum coating (Ta/Ti), including the morphology, potential, constituent, and hydrophilia, were investigated in comparison with its respective control groups, sandblasted titanium (Ti) and titanium coating (Ti/Ti). The adhesion, proliferation, and osteogenic differentiation ability of rat bone marrow mesenchymal cells (BMSCs) on different materials were assessed in vitro. Then the osseointegration capacity of Ti, Ti/Ti, Ta/Ti, and Straumann implants in canine mandible was evaluated with micro-CT, histological sections, and energy dispersive X-ray spectroscopy. These results demonstrated that micro-nanostructured, uneven, and granular tantalum coating was successfully prepared on titanium substrate by VPS with pore size ranging from 50 nm to 5 µm and thickness ranging from 80 to 100 µm. Tantalum coating revealed the highest surface potential, best hydrophilia, and most protein adsorption among Ta/Ti, Ti/Ti, and Ti. Furthermore, Ta/Ti surfaces significantly promoted the adhesion, proliferation, and osteogenic differentiation of BMSCs. In vivo, Ta/Ti implants displayed positive osseointegration capability associated with increased bone mineral density and formation of new bone around implants without tantalum particles released. Together, these findings indicate that tantalum-coated titanium dental implants may serve as a new type of dental implant.


Asunto(s)
Implantes Dentales , Oseointegración , Ratas , Animales , Osteogénesis , Titanio/farmacología , Titanio/química , Tantalio/farmacología , Tantalio/química , Propiedades de Superficie
13.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834697

RESUMEN

The threshold displacement energy (TDE) is an important measure of the extent of a material's radiation damage. In this study, we investigate the influence of hydrostatic strains on the TDE of pure tantalum (Ta) and Ta-tungsten (W) alloy with a W content ranging from 5% to 30% in 5% intervals. Ta-W alloy is commonly used in high-temperature nuclear applications. We found that the TDE decreased under tensile strain and increased under compressive strain. When Ta was alloyed with 20 at% W, the TDE increased by approximately 15 eV compared to pure Ta. The directional-strained TDE (Ed,i) appears to be more influenced by complex ⟨i j k⟩ directions rather than soft directions, and this effect is more prominent in the alloyed structure than in the pure one. Our results suggest that radiation defect formation is enhanced by tensile strain and suppressed by compressive strain, in addition to the effects of alloying.


Asunto(s)
Tantalio , Tungsteno , Tantalio/química , Tungsteno/química , Aleaciones/química
14.
ACS Biomater Sci Eng ; 9(3): 1720-1728, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780252

RESUMEN

Porous tantalum (Ta) is a potential bone substitute due to its excellent biocompatibility and desirable mechanical properties. In this work, a series of porous Ta materials with interconnected micropores and varying pore sizes from 23 to 210 µm were fabricated using spark plasma sintering. The porous structure was formed by thermal decomposition of ammonium bicarbonate powder premixed in the Ta powder. The pore size and porosity were controlled by the categorized particle size of ammonium bicarbonate. The porous Ta has elastic moduli in the range of 2.1-3.2 GPa and compressive yield strength in the range of 23-34 MPa, which are close to those of human bone. In vitro, as-fabricated porous Ta demonstrates excellent biocompatibility by supporting adhesion and proliferation of preosteoblasts. In vivo studies also validate its bone repair capability after implantation in a rat femur defect model. The study demonstrates a facile strategy to fabricate porous Ta with controllable pore size for bone repair.


Asunto(s)
Tantalio , Ingeniería de Tejidos , Animales , Ratas , Humanos , Porosidad , Tantalio/química , Módulo de Elasticidad , Polvos
15.
ACS Biomater Sci Eng ; 9(2): 889-899, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36701762

RESUMEN

3D-printed porous titanium (Ti) alloy scaffolds have been reported for facilitating muscle attachment in our previous study. However, the anti-avulsion ability needs to be improved. In this study, we used 3D-printed porous tantalum (Ta) scaffolds to improve muscle attachment. The differences in chemical and physical characteristics and muscle adhesion between the two scaffolds were tested and compared in the gene and protein level both in vitro and in vivo. The possible molecular mechanism was analyzed and further proved. The results showed that compared with the porous Ti alloy, porous Ta had better cell proliferation, differentiation, migration, and adhesion via the integrin-ß1 (Itgb1)-activated AKT/MAPK signaling pathway in L6 rat myoblasts. When artificially down-regulated the expression of Itgb1, cell adhesion and myogenesis differentiation were affected and the phosphorylation of the AKT/MAPK signaling pathway was suppressed. In rat intramuscular implantation, porous Ta had a significantly higher muscle ingrowth rate (85.63% ± 4.97 vs 65.98% ± 4.52, p < 0.01) and larger avulsion force (0.972 vs 0.823 N/mm2, p < 0.05) than the porous Ti alloy. These findings demonstrate that the 3D-printed porous Ta scaffold is beneficial for further clinical application of muscle attachment.


Asunto(s)
Tantalio , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Tantalio/farmacología , Tantalio/química , Proteínas Proto-Oncogénicas c-akt/genética , Integrina beta1/genética , Porosidad , Músculos , Transducción de Señal , Aleaciones/química , Impresión Tridimensional
16.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675171

RESUMEN

Titanium beta alloys represent the new generation of materials for the manufacturing of joint implants. Their Young's modulus is lower and thus closer to the bone tissue compared to commonly used alloys. The surface tribological properties of these materials should be improved by ion implantation. The influence of this surface treatment on corrosion behaviour is unknown. The surface of Ti-36Nb-6Ta, Ti-36Nb-4Zr, and Ti-39Nb titanium ß-alloys was modified using nitrogen ion implantation. X-ray photoelectron spectroscopy was used for surface analysis, which showed the presence of titanium, niobium, and tantalum nitrides in the treated samples and the elimination of less stable oxides. Electrochemical methods, electrochemical impedance spectra, polarisation resistance, and Mott-Schottky plot were measured in a physiological saline solution. The results of the measurements showed that ion implantation does not have a significant negative effect on the corrosion behaviour of the material. The best results of the alloys investigated were achieved by the Ti-36Nb-6Ta alloy. The combination of niobium and tantalum nitrides had a positive effect on the corrosion resistance of this alloy. After surface treatment, the polarization resistance of this alloy increased, 2.3 × 106 Ω·cm2, demonstrating higher corrosion resistance of the alloy. These results were also supported by the results of electrochemical impedance spectroscopy.


Asunto(s)
Aleaciones , Titanio , Titanio/química , Aleaciones/química , Niobio/química , Tantalio/química , Técnicas Electroquímicas , Corrosión , Propiedades de Superficie , Ensayo de Materiales
17.
Chemistry ; 29(5): e202203266, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36281622

RESUMEN

The reaction of TaMe3 Cl2 with the rigid acridane-derived trisamine H3 NNN yields the tantalum(V) complex [TaCl2 (NNNcat )]. Subsequent reaction with dioxygen results in the full four-electron reduction of O2 yielding the oxido-bridged bimetallic complex [{TaCl2 (NNNsq )}2 O]. This dinuclear complex features an open-shell ground state due to partial ligand oxidation and was comprehensively characterized by single crystal X-ray diffraction, LIFDI mass spectrometry, NMR, EPR, IR and UV/VIS/NIR spectroscopy. The mechanism of O2 activation was investigated by DFT calculations revealing initial binding of O2 to the tantalum(V) center followed by complete O2 scission to produce a terminal oxido-complex.


Asunto(s)
Oxígeno , Tantalio , Tantalio/química , Ligandos , Oxígeno/química , Oxidación-Reducción , Teoría Funcional de la Densidad
18.
Ambix ; 69(4): 399-419, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36250926

RESUMEN

This paper examines the identification of chemical elements using mineral analysis, focusing on the controversy surrounding the "tantalum metals" between 1801 and 1866. Of these metals, only tantalum and niobium are still recognised as elements today; the discovery claims of columbium, pelopium, ilmenium and dianium were all retracted or refuted. Despite the theoretical and institutional changes that chemistry underwent during this time, the debates on the tantalum metals point towards a continuity in the identification of metals. For most of the nineteenth century, chemists continued to use the same types of analytical procedures as their mid-eighteenth-century predecessors. These analytical methods enabled the identification of metals based on the chemical behaviour of their compounds, without requiring their isolation in the form of simple substances (that is, as metals). Accordingly, the central questions in all of the debates on the tantalum metals were the correct identification of the properties of compounds and the elimination of impurities, rather than the simplicity of the new metals. The story of the tantalum metals therefore illustrates the fact that, despite the definition of chemical elements as simple substances, the discovery of new (metallic) elements only rarely coincided with the isolation of new simple substances.


Asunto(s)
Niobio , Tantalio , Tantalio/química , Niobio/química , Metales , Química Analítica
19.
Biomed Mater ; 17(4)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35477054

RESUMEN

The aim of this study was to evaluate the application prospect of a tantalum (Ta) and zirconium (Zr) alloy as a dental implant material. The Ta-20Zr (wt.%) alloy was prepared by powder metallurgy, and its microstructure and mechanical properties were analyzed by standard techniques. The effect of Ta-20Zr alloy on inflammation, bone remodeling and osseointegration was analyzed in rat and rabbit models by biochemical, histological and imaging tests. The Ta-20Zr alloy showed excellent mechanical compatibility with the bone tissue on account of similar elastic modulus (49.2 GPa), thereby avoiding the 'stress shielding effect'. Furthermore, Ta-20Zr alloy enhanced the inflammatory response by promoting secretion of interleukin-6 (IL-6) and IL-10, and facilitated the balance between the M1/M2 macrophage phenotypes. Finally, Ta-20Zr also showed excellent osseointegration and osteogenic ability without any systemic side effects, making it an ideal dental implant material.


Asunto(s)
Aleaciones , Implantes Dentales , Aleaciones/química , Animales , Materiales Dentales , Oseointegración , Conejos , Ratas , Tantalio/química , Titanio/química
20.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163283

RESUMEN

To obtain fiber materials with pronounced chemical-biological protection, metal (Zn or Ta) nanoparticles were jointly applied with polyelectrolyte complexes of enzymes and polypeptides being their stabilizers. Computer modeling revealed the preferences between certain polyelectrolyte partners for N-acyl-homoserine lactone acylase and hexahistidine-tagged organophosphorus hydrolase (His6-OPH) possessing the quorum quenching (QQ) behavior with bacterial cells. The combinations of metal nanoparticles and enzymes appeared to function better as compared to the combinations of the same QQ-enzymes with antibiotics (polymyxins), making it possible to decrease the applied quantities by orders of magnitude while giving the same effect. The elimination of Gram-positive and Gram-negative bacterial cells from doubly modified fiber materials notably increased (up to 2.9-fold), whereas His6-OPH retained its hydrolytic activity in reaction with organophosphorus compounds (up to 74% of initially applied activity). Materials with the certain enzyme and Zn nanoparticles were more efficient against Bacillus subtilis cells (up to 2.1-fold), and Ta nanoparticles acted preferentially against Escherichia coli (up to 1.5-fold). Some materials were proved to be more suitable for combined modification by metal nanoparticles and His6-OPH complexes as antimicrobial protectants.


Asunto(s)
Acil-Butirolactonas/química , Nanopartículas del Metal/química , Péptidos/química , Amidohidrolasas , Antibacterianos/química , Arildialquilfosfatasa/química , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hidrólisis , Compuestos Organofosforados/química , Polielectrolitos/farmacología , Percepción de Quorum/fisiología , Tantalio/química , Tantalio/metabolismo , Zinc/química , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...