Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657185

RESUMEN

BACKGROUND AND OBJECTIVES: Anti-IgLON5 disease is an autoimmune neurodegenerative disorder characterized by various phenotypes, notably sleep and movement disorders and tau pathology. Although the disease is known to be associated with the neuronal cell adhesion protein IgLON5, the physiologic function of IgLON5 remains elusive. There are conflicting views on whether autoantibodies cause loss of function, activation of IgLON5, or inflammation-associated neuronal damage, ultimately leading to the disease. We generated IgLON5 knockout (-/-) mice to investigate the functions of IgLON5 and elucidate the pathomechanism of anti-IgLON5 disease. METHODS: IgLON5 knockout (-/-) mice underwent behavioral tests investigating motor function, psychiatric function (notably anxiety and depression), social and exploratory behaviors, spatial learning and memory, and sensory perception. Histologic analysis was conducted to investigate tau aggregation in mice with tauopathy. RESULTS: IgLON5-/- mice had poorer performance in the wire hang and rotarod tests (which are tests for motor function) than wild-type mice. Moreover, IgLON5-/- mice exhibited decreased anxiety-like behavior and/or hyperactivity in behavior tests, including light/dark transition test and open field test. IgLON5-/- mice also exhibited poorer remote memory in the contextual fear conditioning test. However, neither sleeping disabilities assessed by EEG nor tau aggregation was detected in the knockout mice. DISCUSSION: These results suggest that IgLON5 is associated with activity, anxiety, motor ability, and contextual fear memory. Comparing the various phenotypes of anti-IgLON5 disease, anti-IgLON5 disease might partially be associated with loss of function of IgLON5; however, other phenotypes, such as sleep disorders and tau aggregation, can be caused by gain of function of IgLON5 and/or neuronal damage due to inflammation. Further studies are needed to elucidate the role of IgLON5 in the pathogenesis of anti-IgLON5 diseases.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Ratones Noqueados , Fenotipo , Animales , Masculino , Ratones , Ansiedad/inmunología , Autoanticuerpos/sangre , Conducta Animal/fisiología , Moléculas de Adhesión Celular Neuronal/deficiencia , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Tauopatías/fisiopatología , Tauopatías/inmunología , Humanos
2.
J Prev Alzheimers Dis ; 11(2): 366-374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374743

RESUMEN

BACKGROUND: PNT001 is a humanized full-length IgG4 S228P monoclonal antibody that binds the cis conformation of the phosphorylated Thr231-Pro232 motif in human full-length (2N4R) tau (cis-pT231 tau) with high selectivity and affinity. It binds selectively to cis-pT231 tau in human tauopathy brain sections, inhibits aggregation of tau, and has shown efficacy in preclinical models of tauopathy. Good Laboratory Practice six-month toxicology studies in cynomolgous monkeys have shown no test article-related findings. OBJECTIVES: To evaluate the safety, tolerability, pharmacokinetics, and immunogenicity of single escalating intravenous doses of PNT001 in healthy volunteers. DESIGN: Phase 1, randomized, double-blind, and placebo-controlled 16-week study. SETTING: Subjects were recruited across three clinical research sites in the United States. PARTICIPANTS: Fifty healthy volunteer subjects enrolled, with 49 receiving the double-blind study drug. INTERVENTION: Six cohorts were administered single escalating doses of PNT001 (33, 100, 300, 900, 2,700, and 4,000 mg). The subjects were randomized 6:2 (PNT001:placebo). MEASUREMENTS: Safety was evaluated by the occurrence of adverse events, electrocardiography, physical examinations, neurological examinations, vital signs, and suicidality. Pharmacokinetics and biomarkers were assessed via serum and cerebrospinal fluid sample analyses. RESULTS: Dose continuation after review of sentinel group data and dose escalation after completion of full cohort data were determined by an external, independent safety board. There were no study pauses or safety concerns identified by the safety board. A total of 49 subjects received the study drugs, with 36 receiving PNT001 and 13 receiving placebo. There were three related non-serious adverse events, each Grade 1, which occurred at the lowest doses and resolved without sequelae. No maximum tolerated dose was identified, and no premature discontinuations, dose reductions, or interruptions due to treatment-related adverse events occurred. One unrelated serious adverse event occurred in a placebo subject with an undisclosed medical condition. No other safety findings were identified. Doses of 900-4,000 mg produced concentrations in the cerebrospinal fluid exceeding the binding affinity constant of PNT001 for cis-pT231 tau (45 ng/mL), indicating that concentrations sufficient for target engagement can be obtained in the cerebrospinal fluid within the tested dose range. The serum pharmacokinetic profile was as expected for a monoclonal antibody. The terminal half-lives ranged from 23.8-33.8 days, and the cerebrospinal fluid exposures were approximately 0.1% of the plasma concentration and dose-proportional. Of the 36 subjects receiving PNT001, one post-baseline positive anti-drug antibody result was observed at Day 112 in a subject who received PNT001 (300 mg). CONCLUSIONS: Single doses of PNT001 were safe and well-tolerated at all dose levels studied, including those doses expected to produce therapeutic benefit. These results support multiple ascending dose trials in patients with neurodegenerative tauopathies for this novel mid-domain tau antibody.


Asunto(s)
Anticuerpos Monoclonales , Tauopatías , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Método Doble Ciego , Voluntarios Sanos , Tauopatías/inmunología , Tauopatías/terapia , Estados Unidos , Proteínas tau/inmunología
3.
Nature ; 615(7953): 668-677, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890231

RESUMEN

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Asunto(s)
Encéfalo , Microglía , Ovillos Neurofibrilares , Linfocitos T , Tauopatías , Animales , Ratones , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Microglía/inmunología , Microglía/metabolismo , Ovillos Neurofibrilares/inmunología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Proteínas tau/inmunología , Proteínas tau/metabolismo , Tauopatías/inmunología , Tauopatías/metabolismo , Tauopatías/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Placa Amiloide/inmunología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Células Clonales/inmunología , Células Clonales/metabolismo , Células Clonales/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunidad Innata
4.
Mol Neurodegener ; 16(1): 39, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172073

RESUMEN

BACKGROUND: For decades, dementia has been characterized by accumulation of waste in the brain and low-grade inflammation. Over the years, emerging studies highlighted the involvement of the immune system in neurodegenerative disease emergence and severity. Numerous studies in animal models of amyloidosis demonstrated the beneficial role of monocyte-derived macrophages in mitigating the disease, though less is known regarding tauopathy. Boosting the immune system in animal models of both amyloidosis and tauopathy, resulted in improved cognitive performance and in a reduction of pathological manifestations. However, a full understanding of the chain of events that is involved, starting from the activation of the immune system, and leading to disease mitigation, remained elusive. Here, we hypothesized that the brain-immune communication pathway that is needed to be activated to combat tauopathy involves monocyte mobilization via the C-C chemokine receptor 2 (CCR2)/CCL2 axis, and additional immune cells, such as CD4+ T cells, including FOXP3+ regulatory CD4+ T cells. METHODS: We used DM-hTAU transgenic mice, a mouse model of tauopathy, and applied an approach that boosts the immune system, via blocking the inhibitory Programmed cell death protein-1 (PD-1)/PD-L1 pathway, a manipulation previously shown to alleviate disease symptoms and pathology. An anti-CCR2 monoclonal antibody (αCCR2), was used to block the CCR2 axis in a protocol that partially eliminates monocytes from the circulation at the time of anti-PD-L1 antibody (αPD-L1) injection, and for the critical period of their recruitment into the brain following treatment. RESULTS: Performance of DM-hTAU mice in short-term and working memory tasks, revealed that the beneficial effect of αPD-L1, assessed 1 month after a single injection, was abrogated following blockade of CCR2. This was accompanied by the loss of the beneficial effect on disease pathology, assessed by measurement of cortical aggregated human tau load using Homogeneous Time Resolved Fluorescence-based immunoassay, and by evaluation of hippocampal neuronal survival. Using both multiparametric flow cytometry, and Cytometry by Time Of Flight, we further demonstrated the accumulation of FOXP3+ regulatory CD4+ T cells in the brain, 12 days following the treatment, which was absent subsequent to CCR2 blockade. In addition, measurement of hippocampal levels of the T-cell chemoattractant, C-X-C motif chemokine ligand 12 (Cxcl12), and of inflammatory cytokines, revealed that αPD-L1 treatment reduced their expression, while blocking CCR2 reversed this effect. CONCLUSIONS: The CCR2/CCL2 axis is required to modify pathology using PD-L1 blockade in a mouse model of tauopathy. This modification involves, in addition to monocytes, the accumulation of FOXP3+ regulatory CD4+ T cells in the brain, and the T-cell chemoattractant, Cxcl12.


Asunto(s)
Quimiocina CCL2/metabolismo , Receptores CCR2/metabolismo , Tauopatías/inmunología , Tauopatías/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Quimiocina CCL2/inmunología , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Ratones Transgénicos , Monocitos/inmunología , Receptores CCR2/inmunología , Tauopatías/patología
6.
Acta Neuropathol ; 142(2): 243-257, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33950293

RESUMEN

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neuropathologic subtypes of frontotemporal lobar degeneration with tau inclusions (FTLD-tau), primary tauopathies in which intracellular tau aggregation contributes to neurodegeneration. Gosuranemab (BIIB092) is a humanized monoclonal antibody that binds to N-terminal tau. While Gosuranemab passive immunotherapy trials for PSP failed to demonstrate clinical benefit, Gosuranemab reduced N-terminal tau in the cerebrospinal fluid of transgenic mouse models and PSP patients. However, the neuropathologic sequelae of Gosuranemab have not been described. In this present study, we examined the brain tissue of three individuals who received Gosuranemab. Post-mortem human brain tissues were studied using immunohistochemistry to identify astrocytic and microglial differences between immunized cases and a cohort of unimmunized PSP, CBD and aging controls. Gosuranemab immunotherapy was not associated with clearance of neuropathologic FTLD-tau inclusions. However, treatment-associated changes were observed including the presence of perivascular vesicular astrocytes (PVA) with tau accumulation within lysosomes. PVAs were morphologically and immunophenotypically distinct from the tufted astrocytes seen in PSP, granular fuzzy astrocytes (GFA) seen in aging, and astrocytic plaques seen in CBD. Additional glial responses included increased reactive gliosis consisting of bushy astrocytosis and accumulation of rod microglia. Together, these neuropathologic findings suggest that Gosuranemab may be associated with a glial response including accumulation of tau within astrocytic lysosomes.


Asunto(s)
Degeneración Lobar Frontotemporal/tratamiento farmacológico , Lisosomas/metabolismo , Neuroglía/metabolismo , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Astrocitos/inmunología , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/inmunología , Encéfalo/patología , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Neuroglía/inmunología , Neuroglía/patología , Neuronas/patología , Tauopatías/inmunología , Tauopatías/patología , Proteínas tau/inmunología
7.
Acta Neuropathol Commun ; 9(1): 42, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712083

RESUMEN

One of the main pathological hallmarks of Alzheimer's disease (AD) is the intraneuronal accumulation of hyperphosphorylated tau. Passive immunotherapy is a promising strategy for the treatment of AD and there are currently a number of tau-specific monoclonal antibodies in clinical trials. A proposed mechanism of action is to engage and clear extracellular, pathogenic forms of tau. This process has been shown in vitro to be facilitated by microglial phagocytosis through interactions between the antibody-tau complex and microglial Fc-receptors. As this interaction is mediated by the conformation of the antibody's Fc domain, this suggests that the antibody isotype may affect the microglial phagocytosis and clearance of tau, and hence, the overall efficacy of tau antibodies. We therefore aimed to directly compare the efficacy of the tau-specific antibody, RN2N, cloned into a murine IgG1/κ framework, which has low affinity Fc-receptor binding, to that cloned into a murine IgG2a/κ framework, which has high affinity Fc-receptor binding. Our results demonstrate, for RN2N, that although enhanced microglial activation via the IgG2a/κ isotype increased extracellular tau phagocytosis in vitro, the IgG1/κ isoform demonstrated enhanced ability to reduce tau pathology and microgliosis following passive immunisation of the P301L tau transgenic pR5 mouse model.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Tauopatías/inmunología , Proteínas tau/inmunología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Inmunización Pasiva/métodos , Inmunoglobulina G/aislamiento & purificación , Mediciones Luminiscentes , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/patología , Fosforilación/genética , Tauopatías/terapia , Proteínas tau/metabolismo
8.
Brain ; 144(3): 724-745, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33527991

RESUMEN

Neuroinflammation is involved in the aetiology of many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and motor neuron disease. Whether neuroinflammation also plays an important role in the pathophysiology of frontotemporal dementia is less well known. Frontotemporal dementia is a heterogeneous classification that covers many subtypes, with the main pathology known as frontotemporal lobar degeneration. The disease can be categorized with respect to the identity of the protein that causes the frontotemporal lobar degeneration in the brain. The most common subgroup describes diseases caused by frontotemporal lobar degeneration associated with tau aggregation, also known as primary tauopathies. Evidence suggests that neuroinflammation may play a role in primary tauopathies with genome-wide association studies finding enrichment of genetic variants associated with specific inflammation-related gene loci. These loci are related to both the innate immune system, including brain resident microglia, and the adaptive immune system through possible peripheral T-cell involvement. This review discusses the genetic evidence and relates it to findings in animal models expressing pathogenic tau as well as to post-mortem and PET studies in human disease. Across experimental paradigms, there seems to be a consensus regarding the involvement of innate immunity in primary tauopathies, with increased microglia and astrocyte density and/or activation, as well as increases in pro-inflammatory markers. Whilst it is less clear as to whether inflammation precedes tau aggregation or vice versa; there is strong evidence to support a microglial contribution to the propagation of hyperphosphorylated in tau frontotemporal lobar degeneration associated with tau aggregation. Experimental evidence-albeit limited-also corroborates genetic data pointing to the involvement of cellular adaptive immunity in primary tauopathies. However, it is still unclear whether brain recruitment of peripheral immune cells is an aberrant result of pathological changes or a physiological aspect of the neuroinflammatory response to the tau pathology.


Asunto(s)
Inmunidad Adaptativa/inmunología , Demencia Frontotemporal/inmunología , Neuroglía/inmunología , Tauopatías/inmunología , Animales , Demencia Frontotemporal/patología , Humanos , Neuroglía/patología , Tauopatías/patología
9.
J Alzheimers Dis ; 79(2): 683-691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33337376

RESUMEN

BACKGROUND: Anti-IgLON5 disease is a rare neurodegenerative tauopathy that displays heterogeneity in clinical spectrum, disease course, cerebrospinal fluid (CSF) findings, and variable response to immunotherapy. Sleep disorders, bulbar dysfunction, and gait abnormalities are common presenting symptoms, and conventional brain MRI scanning is often unrevealing. OBJECTIVE: To provide a comprehensive overview of the literature and to assess the frequency of symptoms, MRI findings, and treatment response in patients with IgLON5 autoimmunity in the serum and CSF or restricted to serum. METHODS: We examined a 65-year-old woman with bulbar-onset IgLON5 disease with serum-restricted antibodies, and we also performed a systematic review of all confirmed cases reported in the English literature. RESULTS: We identified 93 patients, included our case. Clinical data were obtained in 58 subjects, in whom the most frequent symptoms were sleep-disordered breathing, dysphagia, parasomnias, dysarthria, limb or gait ataxia, stridor or vocal cord paresis, movement disorders, and postural instability. Distinct MRI alterations were identified in 12.5% of cases, as opposed to unspecific or unremarkable changes in the remaining patients. T2-hyperintense non-enhancing signal alterations involving the hypothalamus and the brainstem tegmentum were observed only in the present case. Inflammatory CSF was found in half of the cases and serum-restricted antibodies in 4 patients. Treatment with immunosuppressant or immunomodulatory drugs led to sustained clinical response in 19/52 patients. CONCLUSION: Anti-IgLON5 autoimmunity should be considered in patients with sleep disorders, bulbar syndrome, autonomic involvement, and movement disorders, and high-field brain MRI can be of diagnostic help.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Parálisis Bulbar Progresiva/inmunología , Moléculas de Adhesión Celular Neuronal/inmunología , Enfermedades Hipotalámicas/inmunología , Enfermedades Neurodegenerativas/inmunología , Tauopatías/inmunología , Anciano , Enfermedades Autoinmunes/diagnóstico por imagen , Enfermedades Autoinmunes/patología , Parálisis Bulbar Progresiva/diagnóstico por imagen , Parálisis Bulbar Progresiva/patología , Femenino , Humanos , Enfermedades Hipotalámicas/diagnóstico por imagen , Enfermedades Hipotalámicas/patología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Tauopatías/diagnóstico por imagen , Tauopatías/patología
10.
Genes Immun ; 21(5): 288-300, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011744

RESUMEN

Tau is an evolutionary conserved protein that promotes the assembly and stabilization of microtubules in neuronal axons. Complex patterns of posttranslational modifications (PTMs) dynamically regulate tau biochemical properties and consequently its functions. An imbalance in tau PTMs has been connected with a broad spectrum of neurodegenerative conditions which are collectively known as tauopathies and include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) among others. The hallmark of these neurological disorders is the presence in the brain of fibrillary tangles constituted of misfolded species of hyper-phosphorylated tau. The pathological events leading to tau aggregation are still largely unknown but increasing evidence suggests that neuroinflammation plays a critical role in tangle formation. Moreover, tau aggregation itself could enhance inflammation through feed-forward mechanisms, amplifying the initial neurotoxic insults. Protective effects of tau against neuroinflammation have been also documented, adding another layer of complexity to this phenomenon. Here, we will review the current knowledge on tau regulation and function in health and disease. In particular, we will address its emerging role in connecting neurodegenerative and neuroinflammatory processes.


Asunto(s)
Tauopatías/inmunología , Proteínas tau/metabolismo , Animales , Humanos , Neuroglía/inmunología , Linfocitos T/inmunología , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-32817412

RESUMEN

OBJECTIVE: To develop a diagnostic model based on plasma-derived extracellular vesicle (EV) subpopulations in Parkinson disease (PD) and atypical parkinsonism (AP), we applied an innovative flow cytometric multiplex bead-based platform. METHODS: Plasma-derived EVs were isolated from PD, matched healthy controls, multiple system atrophy (MSA), and AP with tauopathies (AP-Tau). The expression levels of 37 EV surface markers were measured by flow cytometry and correlated with clinical scales. A diagnostic model based on EV surface markers expression was built via supervised machine learning algorithms and validated in an external cohort. RESULTS: Distinctive pools of EV surface markers related to inflammatory and immune cells stratified patients according to the clinical diagnosis. PD and MSA displayed a greater pool of overexpressed immune markers, suggesting a different immune dysregulation in PD and MSA vs AP-Tau. The receiver operating characteristic curve analysis of a compound EV marker showed optimal diagnostic performance for PD (area under the curve [AUC] 0.908; sensitivity 96.3%, specificity 78.9%) and MSA (AUC 0.974; sensitivity 100%, specificity 94.7%) and good accuracy for AP-Tau (AUC 0.718; sensitivity 77.8%, specificity 89.5%). A diagnostic model based on EV marker expression correctly classified 88.9% of patients with reliable diagnostic performance after internal and external validations. CONCLUSIONS: Immune profiling of plasmatic EVs represents a crucial step toward the identification of biomarkers of disease for PD and AP.


Asunto(s)
Vesículas Extracelulares/inmunología , Trastornos Parkinsonianos/diagnóstico , Trastornos Parkinsonianos/inmunología , Tauopatías/diagnóstico , Tauopatías/inmunología , Anciano , Anciano de 80 o más Años , Antígenos de Superficie , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios Transversales , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/sangre , Atrofia de Múltiples Sistemas/clasificación , Atrofia de Múltiples Sistemas/diagnóstico , Atrofia de Múltiples Sistemas/inmunología , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/clasificación , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/inmunología , Trastornos Parkinsonianos/sangre , Trastornos Parkinsonianos/clasificación , Mapas de Interacción de Proteínas , Sensibilidad y Especificidad , Aprendizaje Automático Supervisado , Tauopatías/sangre , Tauopatías/clasificación
12.
Front Immunol ; 11: 997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508844

RESUMEN

Innate immune activation is a major contributor to Alzheimer's Disease (AD) pathophysiology, although the mechanisms involved are poorly understood. Chemokine C-C motif ligand (CCL) 2 is produced by neurons and glial cells and is upregulated in the AD brain. Transgene expression of CCL2 in mouse models of amyloidosis produces microglia-induced amyloid ß oligomerization, a strong indication of the role of these activation pathways in the amyloidogenic processes of AD. We have previously shown that CCL2 polarizes microglia in wild type mice. However, how CCL2 signaling contributes to tau pathogenesis remains unknown. To address this question, CCL2 was delivered via recombinant adeno-associated virus serotype 9 into both cortex and hippocampus of a mouse model with tau pathology (rTg4510). We report that CCL2 overexpression aggravated tau pathology in rTg4510 as shown by the increase in Gallyas stained neurofibrillary tangles as well as phosphorylated tau-positive inclusions. In addition, biochemical analysis showed a reduction in the levels of detergent-soluble tau species followed by increase in the insoluble fraction, indicating a shift toward larger tau aggregates. Indeed, increased levels of high molecular weight species of phosphorylated tau were found in the mice injected with CCL2. We also report that worsening of tau pathology following CCL2 overexpression was accompanied by a distinct inflammatory response. We report an increase in leukocyte common antigen (CD45) and Cluster of differentiation 68 (CD68) expression in the brain of rTg4510 mice without altering the expression levels of a cell-surface protein Transmembrane Protein 119 (Tmem119) and ionized calcium-binding adaptor molecule 1 (Iba-1) in resident microglia. Furthermore, the analysis of cytokines in brain extract showed a significant increase in interleukin (IL)-6 and CCL3, while CCL5 levels were decreased in CCL2 mice. No changes were observed in IL-1α, IL-1ß, TNF-α. IL-4, Vascular endothelial growth factor-VEGF, IL-13 and CCL11. Taken together our data report for the first time that overexpression of CCL2 promotes the increase of pathogenic tau species and is associated with glial neuroinflammatory changes that are deleterious. We propose that these events may contribute to the pathogenesis of Alzheimer's disease and other tauopathies.


Asunto(s)
Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Neuroglía/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/inmunología , Encéfalo/patología , Quimiocina CCL2/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Masculino , Ratones Transgénicos , Mutación , Neuroglía/inmunología , Neuroglía/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Transducción de Señal , Tauopatías/genética , Tauopatías/inmunología , Tauopatías/patología , Regulación hacia Arriba , Proteínas tau/genética
13.
Neuropharmacology ; 175: 108104, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32360477

RESUMEN

The majority of clinical trials targeting the tau protein in Alzheimer's disease and other tauopathies are tau immunotherapies. Because tau pathology correlates better with the degree of dementia than amyloid-ß lesions, targeting tau is likely to be more effective in improving cognition than clearing amyloid-ß in Alzheimer's disease. However, the development of tau therapies is in many ways more complex than for amyloid-ß therapies as briefly outlined in this review. Most of the trials are on humanized antibodies, which may have very different properties than the original mouse antibodies. The impact of these differences are to a large extent unknown, can be difficult to decipher, and may not always be properly considered. Furthermore, the ideal antibody properties for efficacy are not well established and can depend on several factors. However, considering the varied approaches in clinical trials, there is a general optimism that at least some of these trials may provide functional benefits to patients suffering of various tauopathies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Asunto(s)
Enfermedad de Alzheimer/terapia , Inmunoterapia , Proteínas tau/inmunología , Enfermedad de Alzheimer/inmunología , Animales , Anticuerpos/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Tauopatías/inmunología , Tauopatías/terapia
14.
J Neuroinflammation ; 17(1): 136, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345316

RESUMEN

BACKGROUND: Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS: Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS: Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS: Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.


Asunto(s)
Córnea/patología , Células Dendríticas/inmunología , Nervio Oftálmico/patología , Tauopatías/patología , Animales , Córnea/inmunología , Córnea/inervación , Células Dendríticas/patología , Femenino , Masculino , Ratones , Ratones Transgénicos , Nervio Oftálmico/inmunología , Fenotipo , Tauopatías/inmunología
15.
Artículo en Inglés | MEDLINE | ID: mdl-31826985

RESUMEN

OBJECTIVE: To describe the neuropathologic features and the molecular data of phosphorylated tau (pTau) in a new case of anti-IgLON5 disease. METHODS: Review of clinical data, postmortem neuropathologic examination. Biochemical analyses of pTau were performed in brain samples from the present case and from a previously described patient with anti-IgLON5 with the characteristic brainstem tauopathy. RESULTS: The patient was a 71-year-old man with a clinical syndrome consisting of sleep disturbance and bulbar symptoms. IgLON5 antibodies of predominant IgG4 subtype were detected in serum and CSF. He carried the HLA DRB1*10:01-DQB1*05:01 haplotype. Despite treatment with IV immunoglobulins, he unexpectedly died during sleep 2 years after disease onset. Histology showed neurofibrillary pathology and ß-amyloid deposits consistent with Alzheimer disease (AD) of intermediate severity. pTau deposits were absent in the brainstem. There were few perivascular CD8+ T-cell infiltrates in the posterior hypothalamus, amygdala, and brainstem with microglial activation. The pTau immunoblot showed a pattern of bands consistent with AD, which was different from that observed in the patient with anti-IgLON5 with brainstem tauopathy who presented a differential band around 56 KDa. CONCLUSION: The absence of pTau deposits in the brainstem of the present patient suggests that the tauopathy of patients with anti-IgLON5 disease may be a late, secondary event. The anti-IgLON5 brainstem tauopathy has a specific molecular signature different from primary tauopathies. pTau deposits restricted to the hippocampus/limbic regions of patients with anti-IgLON5 may represent an age-related comorbidity.


Asunto(s)
Autoanticuerpos/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/inmunología , Tauopatías/inmunología , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano , Autoanticuerpos/sangre , Autoanticuerpos/líquido cefalorraquídeo , Autopsia , Encéfalo/patología , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Resultado Fatal , Humanos , Masculino , Fosforilación/fisiología
16.
J Exp Med ; 216(11): 2546-2561, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31601677

RESUMEN

Chronic activation of brain innate immunity is a prominent feature of Alzheimer's disease (AD) and primary tauopathies. However, to what degree innate immunity contributes to neurodegeneration as compared with pathological protein-induced neurotoxicity, and the requirement of a particular glial cell type in neurodegeneration, are still unclear. Here we demonstrate that microglia-mediated damage, rather than pathological tau-induced direct neurotoxicity, is the leading force driving neurodegeneration in a tauopathy mouse model. Importantly, the progression of ptau pathology is also driven by microglia. In addition, we found that APOE, the strongest genetic risk factor for AD, regulates neurodegeneration predominantly by modulating microglial activation, although a minor role of apoE in regulating ptau and insoluble tau formation independent of its immunomodulatory function was also identified. Our results suggest that therapeutic strategies targeting microglia may represent an effective approach to prevent disease progression in the setting of tauopathy.


Asunto(s)
Apolipoproteínas E/inmunología , Modelos Animales de Enfermedad , Microglía/inmunología , Enfermedades Neurodegenerativas/inmunología , Tauopatías/inmunología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Aminopiridinas/administración & dosificación , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Suplementos Dietéticos , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/citología , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Pirroles/administración & dosificación , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/inmunología , Proteínas tau/metabolismo
17.
Cell Rep ; 28(8): 2111-2123.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433986

RESUMEN

Complement pathway overactivation can lead to neuronal damage in various neurological diseases. Although Alzheimer's disease (AD) is characterized by ß-amyloid plaques and tau tangles, previous work examining complement has largely focused on amyloidosis models. We find that glial cells show increased expression of classical complement components and the central component C3 in mouse models of amyloidosis (PS2APP) and more extensively tauopathy (TauP301S). Blocking complement function by deleting C3 rescues plaque-associated synapse loss in PS2APP mice and ameliorates neuron loss and brain atrophy in TauP301S mice, improving neurophysiological and behavioral measurements. In addition, C3 protein is elevated in AD patient brains, including at synapses, and levels and processing of C3 are increased in AD patient CSF and correlate with tau. These results demonstrate that complement activation contributes to neurodegeneration caused by tau pathology and suggest that blocking C3 function might be protective in AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Amiloidosis/inmunología , Complemento C3/metabolismo , Degeneración Nerviosa/inmunología , Tauopatías/inmunología , Enfermedad de Alzheimer/genética , Animales , Atrofia , Conducta Animal , Biomarcadores/metabolismo , Encéfalo/patología , Complemento C1q/metabolismo , Complemento C3/líquido cefalorraquídeo , Complemento C3/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Degeneración Nerviosa/genética , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/metabolismo , Sinapsis/metabolismo
18.
PLoS One ; 14(5): e0217216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31120951

RESUMEN

Tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by abnormal deposition of the hyperphosphorylated microtubule-associated protein tau. Chronic neuroinflammation in tauopathies is driven by glial cells that potentially trigger the disruption of the blood-brain barrier (BBB). Pro-inflammatory signaling molecules such as cytokines, chemokines and adhesion molecules produced by glial cells, neurons and endothelial cells, in general, cooperate to determine the integrity of BBB by influencing vascular permeability, enhancing migration of immune cells and altering transport systems. We considered the effect of tau about vascular permeability of peripheral blood cells in vitro and in vivo using primary rat BBB model and transgenic rat model expressing misfolded truncated protein tau. Immunohistochemistry, electron microscopy and transcriptomic analysis were employed to characterize the structural and functional changes in BBB manifested by neurofibrillary pathology in a transgenic model. Our results show that misfolded protein tau ultimately modifies the endothelial properties of BBB, facilitating blood-to-brain cell transmigration. Our results suggest that the increased diapedesis of peripheral cells across the BBB, in response to tau protein, could be mediated by the increased expression of endothelial signaling molecules, namely ICAM-1, VCAM-1, and selectins. We suggest that the compensation of BBB in the diseased brain represents a crucial factor in neurodegeneration of human tauopathies.


Asunto(s)
Barrera Hematoencefálica/inmunología , Encéfalo/inmunología , Ovillos Neurofibrilares/inmunología , Linfocitos T/inmunología , Tauopatías/inmunología , Proteínas tau/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuroglía/inmunología , Neuroglía/metabolismo , Neuroglía/patología , Ratas , Ratas Endogámicas SHR , Ratas Transgénicas , Linfocitos T/metabolismo , Linfocitos T/patología , Tauopatías/metabolismo , Tauopatías/patología
20.
J Alzheimers Dis ; 68(2): 511-516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30814358

RESUMEN

The accumulation of tau protein aggregates is a pathological hallmark in Alzheimer's disease (AD) and other neurodegenerative diseases. However, the identity of the toxic tau conformation that propagates and induces neurodegeneration is still unknown. Anti-tau antibodies are a common tool used to differentiate between normal and pathological-associated tau forms or as passive immunotherapy in the quest to interfere with tau-mediated neurodegeneration. Here, we show that Tau13, a tau N-terminal antibody, preferentially enriches high molecular weight tau species produced in a tauopathy mouse model and AD. The data suggest that Tau13 has higher affinity to specific tau conformation presence in higher molecular weight tau species.


Asunto(s)
Anticuerpos/química , Inmunoprecipitación , Proteínas tau/química , Envejecimiento/inmunología , Animales , Anticuerpos/inmunología , Encéfalo/inmunología , Química Encefálica , Estudios de Cohortes , Modelos Animales de Enfermedad , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/inmunología , Inmunoprecipitación/métodos , Ratones Transgénicos , Peso Molecular , Conformación Proteica , Tauopatías/inmunología , Proteínas tau/genética , Proteínas tau/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA