Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.441
Filtrar
1.
Sci Robot ; 9(94): eado0051, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321274

RESUMEN

Biological motions of native muscle tissues rely on the nervous system to interface movement with the surrounding environment. The neural innervation of muscles, crucial for regulating movement, is the fundamental infrastructure for swiftly responding to changes in body tissue requirements. This study introduces a bioelectronic neuromuscular robot integrated with the motor nervous system through electrical synapses to evoke cardiac muscle activities and steer robotic motion. Serving as an artificial brain and wirelessly regulating selective neural activation to initiate robot fin motion, a wireless frequency multiplexing bioelectronic device is used to control the robot. Frequency multiplexing bioelectronics enables the control of the robot locomotion speed and direction by modulating the flapping of the robot fins through the wireless motor innervation of cardiac muscles. The robots demonstrated an average locomotion speed of ~0.52 ± 0.22 millimeters per second, fin-flapping frequency up to 2.0 hertz, and turning locomotion path curvature of ~0.11 ± 0.04 radians per millimeter. These systems will contribute to the expansion of biohybrid machines into the brain-to-motor frontier for developing autonomous biohybrid systems capable of advanced adaptive motor control and learning.


Asunto(s)
Diseño de Equipo , Robótica , Tecnología Inalámbrica , Robótica/instrumentación , Tecnología Inalámbrica/instrumentación , Unión Neuromuscular/fisiología , Humanos , Locomoción/fisiología , Corazón/fisiología , Corazón/inervación , Animales , Movimiento (Física)
2.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275550

RESUMEN

Achieving negative surgical margins, defined as no tumor found on the edges of the resected tissue, during lumpectomy for breast cancer is critical for mitigating the risk of local recurrence. To identify nonpalpable tumors that cannot be felt, pre-operative placements of wire and wire-free localization devices are typically employed. Wire-free localization approaches have significant practical advantages over wired techniques. In this study, we introduce an innovative localization system comprising a light-emitting diode (LED)-based implantable device and handheld system. The device, which is needle injectable and wire free, utilizes multiple wirelessly powered LEDs to provide direct visual guidance for lumpectomy. Two distinct colors, red and blue, provide a clear indication of tissue depth: blue light is absorbed strongly in tissue, visible within a close range of <1 cm, while red light remains visible through several centimeters of tissue. The LEDs, integrated with an impedance-matching circuit and receiver coil, are encapsulated in biocompatible epoxy for injection with a 12 G needle. Our findings demonstrate that the implant exhibits clearly perceivable depth-dependent color changes and remains visible through >2 cm of ex vivo chicken breast and bovine muscle tissue using less than 4 W of transmitted power from a handheld antenna. These miniaturized needle-injectable localization devices show promise for improving surgical guidance of nonpalpable breast tumors.


Asunto(s)
Neoplasias de la Mama , Luz , Mastectomía Segmentaria , Tecnología Inalámbrica , Femenino , Mastectomía Segmentaria/instrumentación , Animales , Neoplasias de la Mama/cirugía , Tecnología Inalámbrica/instrumentación , Humanos , Prótesis e Implantes , Bovinos , Pollos
3.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275710

RESUMEN

This study presents an IoT-based gait analysis system employing insole pressure sensors to assess gait kinetics. The system integrates piezoresistive sensors within a left foot insole, with data acquisition managed using an ESP32 board that communicates via Wi-Fi through an MQTT IoT framework. In this initial protocol study, we conducted a comparative analysis using the Zeno system, supported by PKMAS as the gold standard, to explore the correlation and agreement of data obtained from the insole system. Four volunteers (two males and two females, aged 24-28, without gait disorders) participated by walking along a 10 m Zeno system path, equipped with pressure sensors, while wearing the insole system. Vertical ground reaction force (vGRF) data were collected over four gait cycles. The preliminary results indicated a strong positive correlation (r = 0.87) between the insole and the reference system measurements. A Bland-Altman analysis further demonstrated a mean difference of approximately (0.011) between the two systems, suggesting a minimal yet significant bias. These findings suggest that piezoresistive sensors may offer a promising and cost-effective solution for gait disorder assessment and monitoring. However, operational factors such as high temperatures and sensor placement within the footwear can introduce noise or unwanted signal activation. The communication framework proved functional and reliable during this protocol, with plans for future expansion to multi-device applications. It is important to note that additional validation studies with larger sample sizes are required to confirm the system's reliability and robustness for clinical and research applications.


Asunto(s)
Marcha , Tecnología Inalámbrica , Humanos , Masculino , Femenino , Adulto , Marcha/fisiología , Tecnología Inalámbrica/instrumentación , Adulto Joven , Cinética , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Internet de las Cosas , Análisis de la Marcha/métodos , Análisis de la Marcha/instrumentación , Caminata/fisiología , Zapatos , Presión
4.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20230323, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39246081

RESUMEN

The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS2-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S2P(OPr)2}2]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.


Asunto(s)
Nanoestructuras , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Nanoestructuras/química , Níquel/química , Respiración , Frecuencia Respiratoria , Tecnología Inalámbrica/instrumentación , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Diseño de Equipo , Teléfono Inteligente , Capacidad Eléctrica
5.
Biomed Eng Online ; 23(1): 87, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210335

RESUMEN

This review presents an in-depth examination of implantable antennas for various biomedical purposes. The development of implantable antennas, including their designs, materials, and operating principles, are introduced at the beginning of the discussion. An overview of the many kinds of implantable antennas utilized in implantable medical devices (IMDs) are presented in this study. The article then discusses the important factors to consider when developing implantable antennas for biomedical purposes, including implant placement, frequency range, and power needs. This investigation additionally examines the challenges and limitations encountered with implantable antennas, including the limited space available within the human body, the requirement for biocompatible materials, the impact of surrounding tissue on antenna performance, tissue attenuation, and signal interference. This review also emphasizes the most recent advances in implanted antenna technology, such as wireless power transmission, multiband operation, and miniaturization. Furthermore, it offers illustrations of several biomedical uses for implantable antennas, including pacemaker, capsule endoscopy, intracranial pressure monitoring, retinal prostheses, and bone implants. This paper concludes with a discussion of the future of implantable antennas and their possible use in bioelectronic medicine and novel medical implants. Overall, this survey offers a thorough analysis of implantable antennas in biomedical applications, emphasizing their importance in the development of implantable medical technology.


Asunto(s)
Prótesis e Implantes , Humanos , Materiales Biocompatibles , Diseño de Equipo/tendencias , Prótesis e Implantes/tendencias , Tecnología Inalámbrica/instrumentación , Tecnología Inalámbrica/tendencias
6.
Animal ; 18(9): 101276, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39213914

RESUMEN

Monitoring animal location and proximity can provide useful information on behaviour and activity, which can act as a health and welfare indicator. However, tools such as global navigation satellite systems (GNSS) can be costly, power-hungry and often heavy, thus not viable for commercial uptake in small ruminant systems. Developments in Bluetooth Low Energy (BLE) could offer another option for animal monitoring, however, BLE signal strength can be variable, and further information is needed to understand the relationship between signal strength and distance in an outdoor environment and assess factors which might affect its interpretation in on-animal scenarios. A calibration of a purpose-built device containing a BLE reader, alongside commercial BLE beacons, was conducted in a field environment to explore how signal strength changed with distance and investigate whether this was affected by device height, and thus animal behaviour. From this calibration, distance prediction equations were developed whereby beacon distance from a reader could be estimated based on signal strength. BLE as a means of localisation was then trialled, firstly using a multilateration approach to locate 16 static beacons within an ∼5 400 m2 section of paddock using 6 BLE readers, followed by an on-sheep validation where two localisation approaches were trialled in the localisation of a weaned lamb within ∼1.4 ha of adjoining paddocks, surrounded by nine BLE readers. Validation was conducted using 1 days' worth of data from a lamb fitted with both a BLE beacon and separate GNSS device. The calibration showed a decline in signal strength with increasing beacon distance from a reader, with a reduced range and earlier decline in the proportion of beacons reported at lower reader and beacon heights. The distance prediction equations indicated a mean underestimation of 12.13 m within the static study, and mean underestimation of 1.59 m within the on-sheep validation. In the static beacon localisation study, the multilateration method produced a mean localisation error of 22.02 m, whilst in the on-sheep validation, similar mean localisation errors were produced by both methods - 19.00 m using the midpoint and 23.77 m using the multilateration method. Our studies demonstrate the technical feasibility of localising sheep in an outdoor environment using BLE technology; however, potential commercial application of such a system would require improvements in BLE range and accuracy.


Asunto(s)
Crianza de Animales Domésticos , Animales , Ovinos/fisiología , Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/instrumentación , Tecnología Inalámbrica/instrumentación , Conducta Animal , Calibración , Telemetría/instrumentación , Telemetría/veterinaria , Telemetría/métodos
7.
Hear Res ; 451: 109093, 2024 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094370

RESUMEN

The discovery and development of electrocochleography (ECochG) in animal models has been fundamental for its implementation in clinical audiology and neurotology. In our laboratory, the use of round-window ECochG recordings in chinchillas has allowed a better understanding of auditory efferent functioning. In previous works, we gave evidence of the corticofugal modulation of auditory-nerve and cochlear responses during visual attention and working memory. However, whether these cognitive top-down mechanisms to the most peripheral structures of the auditory pathway are also active during audiovisual crossmodal stimulation is unknown. Here, we introduce a new technique, wireless ECochG to record compound-action potentials of the auditory nerve (CAP), cochlear microphonics (CM), and round-window noise (RWN) in awake chinchillas during a paradigm of crossmodal (visual and auditory) stimulation. We compared ECochG data obtained from four awake chinchillas recorded with a wireless ECochG system with wired ECochG recordings from six anesthetized animals. Although ECochG experiments with the wireless system had a lower signal-to-noise ratio than wired recordings, their quality was sufficient to compare ECochG potentials in awake crossmodal conditions. We found non-significant differences in CAP and CM amplitudes in response to audiovisual stimulation compared to auditory stimulation alone (clicks and tones). On the other hand, spontaneous auditory-nerve activity (RWN) was modulated by visual crossmodal stimulation, suggesting that visual crossmodal simulation can modulate spontaneous but not evoked auditory-nerve activity. However, given the limited sample of 10 animals (4 wireless and 6 wired), these results should be interpreted cautiously. Future experiments are required to substantiate these conclusions. In addition, we introduce the use of wireless ECochG in animal models as a useful tool for translational research.


Asunto(s)
Estimulación Acústica , Audiometría de Respuesta Evocada , Vías Auditivas , Chinchilla , Nervio Coclear , Estimulación Luminosa , Vigilia , Tecnología Inalámbrica , Animales , Nervio Coclear/fisiología , Vigilia/fisiología , Tecnología Inalámbrica/instrumentación , Vías Auditivas/fisiología , Audiometría de Respuesta Evocada/métodos , Modelos Animales , Percepción Auditiva/fisiología , Cóclea/fisiología , Percepción Visual , Factores de Tiempo
8.
Nat Commun ; 15(1): 6520, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095399

RESUMEN

Neural wearables can enable life-saving drowsiness and health monitoring for pilots and drivers. While existing in-cabin sensors may provide alerts, wearables can enable monitoring across more environments. Current neural wearables are promising but most require wet-electrodes and bulky electronics. This work showcases in-ear, dry-electrode earpieces used to monitor drowsiness with compact hardware. The employed system integrates additive-manufacturing for dry, user-generic earpieces, existing wireless electronics, and offline classification algorithms. Thirty-five hours of electrophysiological data were recorded across nine subjects performing drowsiness-inducing tasks. Three classifier models were trained with user-specific, leave-one-trial-out, and leave-one-user-out splits. The support-vector-machine classifier achieved an accuracy of 93.2% while evaluating users it has seen before and 93.3% when evaluating a never-before-seen user. These results demonstrate wireless, dry, user-generic earpieces used to classify drowsiness with comparable accuracies to existing state-of-the-art, wet electrode in-ear and scalp systems. Further, this work illustrates the feasibility of population-trained classification in future electrophysiological applications.


Asunto(s)
Electroencefalografía , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Tecnología Inalámbrica/instrumentación , Masculino , Adulto , Fases del Sueño/fisiología , Femenino , Oído/fisiología , Electrodos , Algoritmos , Máquina de Vectores de Soporte , Adulto Joven , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
9.
J Med Syst ; 48(1): 72, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101979

RESUMEN

Wireless medical telemetry systems (WMTSs) are typical radio communication-based medical devices that monitor various biological parameters, such as electrocardiograms and respiration rates. In Japan, the assigned frequency band for WMTSs is 400 MHz. However, the issues accounting for poor reception in WMTS constitute major concerns. In this study, we analyzed the effects of electromagnetic interferences (EMIs) caused by other radio communication systems, the intermodulation (IM) effect, and noises generated from electrical devices on WMTS and discussed their management. The 400-MHz frequency band is also shared by other radio communication systems. We showed the instantaneous and impulsive voltages generated from the location-detection system for wandering patients and their potential to exhibit EMI effects on WMTS. Further, we presented the IM effect significantly reduces reception in WMTS. Additionally, the electromagnetic noises generated from electrical devices, such as light-emitting diode lamps and security cameras, can exceed the 400 MHz frequency band as these devices employ the switched-mode power supply and/or central processing unit and radiate wideband emissions. Moreover, we proposed and evaluated simple and facile methods using a simplified spectrum analysis function installed in the WMTS receiver and software-defined radio for evaluating the electromagnetic environment.


Asunto(s)
Telemetría , Tecnología Inalámbrica , Tecnología Inalámbrica/instrumentación , Telemetría/instrumentación , Telemetría/métodos , Humanos , Campos Electromagnéticos , Fenómenos Electromagnéticos
10.
PLoS One ; 19(8): e0306730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093834

RESUMEN

A novel compact and highly selective Ultra Wide Band (UWB) filter is proposed using multimode resonator (MMR) technology. To begin with, the filter's ultra-wideband performance is achieved by coupling a stepped-triangular multimode resonator with input-output feedlines. Furthermore, dual-notch band characteristics are realized at 6.80 GHz and 9.82 GHz, employing asymmetric coupled lines and the split ring resonator (SRR) methods. Eventually, by using a Defected Ground Structure (DGS), the filter's correct transmission zero is deepened, further enhancing the out-of-band suppression performance at higher frequencies. The measured results are in excellent agreement with the experimental results, and the filter has a passband range of 3.52-11.68 GHz, a center frequency of 7.59 GHz, an insertion loss of just 0.61 dB, and a return loss of more than 18 dB. The transmission zeros have a rejection capability of more than 47 dB attenuation, and the rectangular coefficient of the filter is 1.34, which is outstanding for filtering out the interference signals in the parasitic passband with superior selectivity. The overall structure is compact, and the size is just 0.41λg×0.20λg. The filter can be used for UWB system filtering and also to avoid interference from some Wireless Local Area Network (WLAN) IEEE 802.11 series and x-band satellite link frequency bands.


Asunto(s)
Diseño de Equipo , Tecnología Inalámbrica/instrumentación , Miniaturización
11.
Sci Rep ; 14(1): 19688, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181946

RESUMEN

This article introduces an innovative approach for creating a circular polarization (CP) antenna-based rotation-insensitive implantable wireless power transfer (WPT) system for medical devices. The system is constructed to work in the industrial, scientific, and medical (ISM) frequency band of 902-928 MHz. Initially, a flexible, wide-band, and bio-compatible open-ended CP slot antenna is designed within a single-layer human skin tissue model to serve as the receiving (Rx) element. To form the implantable WPT link, a circular patch antenna is also constructed in the free-space to use as a transmitting (Tx) source. Further, a new metamaterial-polarization converter (MTM-PC) structure is developed and incorporated into the proposed system to enhance the power transfer efficiency (PTE). Furthermore, the rotational phenomenon of the Rx implant has been studied to show how the rotation affects the system's performance. Moreover, a numerical analysis of the specific absorption rate (SAR) is conducted to confirm compliance with safety regulations and prioritize human safety from electromagnetic exposure. Finally, to validate the introduced concept, prototypes of the different elements of the proposed WPT system were fabricated and tested using skin-mimicking gel and porcine tissue. The measured results confirm the feasibility of the introduced approach, exhibiting improved efficiency due to use of the MTM-PC. The amplitude of the transmission coefficient ( | S 21 | ) has improved by 6.94 dB in the simulation, whereas the enhancement of 7.04 dB and 6.76 dB is obtained from the experimental study due to the integration of MTM-PC. As a result, the PTE of the proposed MTM-PC integrated implantable WPT system is increased significantly compared to the system without MTM-PC.


Asunto(s)
Tecnología Inalámbrica , Tecnología Inalámbrica/instrumentación , Humanos , Prótesis e Implantes , Suministros de Energía Eléctrica , Diseño de Equipo , Rotación
12.
PLoS One ; 19(8): e0306738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141686

RESUMEN

In order to implement the fifth generation (5G) communication system for a large number of users, the governments of many countries nominated the low 5G frequency band between 3.3 and 4.3 GHz. This paper proposes a wideband RFPA by designing the input matching network (MN) and output MN of the device using the simplified real frequency technique (SRFT) and the harmonic tuning network. The load-pull and source-pull is applied at multiple points for 100 MHz intervals over the bandwidth to obtain the optimum impedances at the output and input of the 10W Gallium Nitride (GaN) Cree CGH40010F device. To verify the design, the RFPA is simulated, and the performance is measured between 3.3 and 4.3 GHz. According to experimental findings, the measured drain efficiency (DE) throughout the whole bandwidth ranged from 57.5 to 67.5% at the output power of 40 dBm. Moreover, at the 1 dB compression point between 39.2 and 42.2 dBm output power, the drain efficiency (DE) achieves a high value of 81.2% with an output power of 42.2 dBm at a frequency of 3.3 GHz. The RFPA can obtain a maximum gain of 12.4 dB at 3.5 GHz. The linearity of the RFPA with a two-tone signal is measured and the value is less than -22 dBc all over the band.


Asunto(s)
Galio , Galio/química , Diseño de Equipo , Amplificadores Electrónicos , Tecnología Inalámbrica/instrumentación
13.
Sci Rep ; 14(1): 19317, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164429

RESUMEN

Wired high resolution surface electromyography (sEMG) using gelled electrodes is a standard method for psycho-physiological, neurological and medical research. Despite its widespread use electrode placement is elaborative, time-consuming, and the overall experimental setting is prone to mechanical artifacts and thus offers little flexibility. Wireless and easy-to-apply technologies would facilitate more accessible examination in a realistic setting. To address this, a novel smart skin technology consisting of wireless dry 16-electrodes was tested. The soft electrode arrays were attached to the right hemiface of 37 healthy adult participants (60% female; 20 to 57 years). The participants performed three runs of a standard set of different facial expression exercises. Linear mixed-effects models utilizing the sEMG amplitudes as outcome measure were used to evaluate differences between the facial movement tasks and runs (separately for every task). The smart electrodes showed specific activation patterns for each of the exercises. 82% of the exercises could be differentiated from each other with very high precision when using the average muscle action of all electrodes. The effects were consistent during the 3 runs. Thus, it appears that wireless high-resolution sEMG analysis with smart skin technology successfully discriminates standard facial expressions in research and clinical settings.


Asunto(s)
Electrodos , Electromiografía , Expresión Facial , Músculos Faciales , Humanos , Electromiografía/métodos , Electromiografía/instrumentación , Adulto , Femenino , Masculino , Adulto Joven , Persona de Mediana Edad , Músculos Faciales/fisiología , Tecnología Inalámbrica/instrumentación , Voluntarios Sanos
14.
Nat Commun ; 15(1): 7216, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174518

RESUMEN

Bladder volume measurement is critical for early detection and management of lower urinary tract dysfunctions. Current gold standard is invasive, and alternative technologies either require trained personnel or do not offer medical grade information. Here, we report an integrated wearable ultrasonic bladder volume monitoring device for accurate and autonomous continuous monitoring of the bladder volume. The device incorporates flexible and air-backed ultrasonic transducers and miniaturized control electronics with wireless data transmission capability. We demonstrate the real-life application of the device on healthy volunteers with various bladder shapes and sizes with high accuracy. Apart from the lower urinary tract dysfunctions, the proposed technology could also be adapted for various wearable ultrasonic applications.


Asunto(s)
Ultrasonografía , Vejiga Urinaria , Humanos , Vejiga Urinaria/diagnóstico por imagen , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Adulto , Dispositivos Electrónicos Vestibles , Femenino , Masculino , Transductores , Tamaño de los Órganos , Diseño de Equipo , Voluntarios Sanos , Tecnología Inalámbrica/instrumentación
15.
PLoS One ; 19(8): e0306737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121158

RESUMEN

This paper presents the design and analysis of a metamaterial-based compact dual-band antenna for WBAN applications. The antenna is designed and fabricated on a 0.254 mm thick semi-flexible substrate, RT/Duroid® 5880, with a relative permittivity of 2.2 and a loss tangent of 0.0009. The total dimensions of the antenna are 0.26λo×0.19λo×0.002λo, where λo corresponds to the free space wavelength at 2.45 GHz. To enhance overall performance and isolate the antenna from adverse effects of the human body, it is backed by a 2×2 artificial magnetic conductor (AMC) plane. The total volume of the AMC integrated design is 0.55λo×0.55λo×0.002λo. The paper investigates the antenna's performance both with and without AMC integration, considering on- and off-body states, as well as various bending conditions in both E and H-planes. Results indicate that the AMC-integrated antenna gives improved measured gains of 6.61 dBi and 8.02 dBi, with bandwidths of 10.12% and 7.43% at 2.45 GHz and 5.80 GHz, respectively. Furthermore, the AMC integrated antenna reduces the specific absorption rate (SAR) to (>96%) and (>93%) at 2.45 GHz and 5.80 GHz, meeting FCC requirements for low SAR at both frequencies when placed in proximity to the human body. CST Microwave Studio (MWS) and Ansys High-Frequency Structure Simulation (HFSS), both full-wave simulation tools, are utilized to evaluate the antenna's performance and to characterize the AMC unit cell. The simulated and tested results are in mutual agreement. Due to its low profile, high gain, adequate bandwidth, low SAR values, and compact size, the AMC integrated antenna is considered suitable for WBAN applications.


Asunto(s)
Diseño de Equipo , Tecnología Inalámbrica , Tecnología Inalámbrica/instrumentación , Humanos
16.
PLoS One ; 19(8): e0307366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39186565

RESUMEN

Recent progress studies in light of wireless communication systems mainly centred around two focuses: zero-energy consumption and ultra-reliable and low-latency communication (URLLC). Among various cutting-edge areas, exploiting ambient backscatter communication (Backcom) has recently been devised as one of the foremost solutions for achieving zero energy consumption through the viability of ambient radio frequency. Meanwhile, using short-packet communication (SPC) is the cheapest way to reach the goal of URLLCs. Upon these benefits, we investigate the feasibility of Backcom and SPC for symbiotic wireless sensor networks by analyzing the system performance. Specifically, we provide a highly approximated mathematical framework for evaluating the block-error rate (BLER) performance, followed by some useful asymptotic results. These results provide insights into the level of diversity and coding gain, as well as how packet design impacts BLER performance. Numerical results confirm the efficacy of the developed framework and the correctness of key insights gleaned from the asymptotic analyses.


Asunto(s)
Tecnología Inalámbrica , Tecnología Inalámbrica/instrumentación , Redes de Comunicación de Computadores/instrumentación , Modelos Teóricos , Algoritmos
17.
Biosens Bioelectron ; 265: 116712, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208509

RESUMEN

The constrained resources on wearable devices pose a challenge in meeting the demands for comprehensive sensing information, and current wearable non-enzymatic sensors face difficulties in achieving specific detection in biofluids. To address this issue, we have developed a highly selective non-enzymatic sweat sensor that seamlessly integrates with machine learning, ensuring reliable sensing and physiological monitoring of sweat biomarkers during exercise. The sensor consists of two electrodes supported by a microsystem that incorporates signal processing and wireless communication. The device generates four explainable features that can be used to accurately predict tyrosine and tryptophan concentrations, as well as sweat pH. The reliability of this device has been validated through rigorous statistical analysis, and its performance has been tested in subjects with and without supplemental amino acid intake during cycling trials. Notably, a robust linear relationship has been identified between tryptophan and tyrosine concentrations in the collected samples, irrespective of the pH dimension. This innovative sensing platform is highly portable and has significant potential to advance the biomedical applications of non-enzymatic sensors. It can markedly improve accuracy while decreasing costs.


Asunto(s)
Técnicas Biosensibles , Aprendizaje Automático , Sudor , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Técnicas Biosensibles/instrumentación , Triptófano/análisis , Diseño de Equipo , Tirosina/análisis , Concentración de Iones de Hidrógeno , Electrodos , Biomarcadores/análisis , Tecnología Inalámbrica/instrumentación
18.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124125

RESUMEN

This paper proposes a novel multi-band textile monopole antenna for patient tracking applications. The designed antenna has compact footprints (0.13λ02) and works in the narrow band-internet of things (NB-IoT) 1.8 GHz, radio frequency identification (RFID), and industrial, scientific, and medical (ISM) 2.45 GHz and 5.8 GHz bands. The impedance bandwidths and gain of the antenna at 1.8 GHz, 2.45 GHz, and 5.8 GHz are 310 MHz, 960 MHz, and 1140 MHz; 3.7 dBi, 5.3 dBi, and 9.6 dBi, respectively. Also, the antenna's behavior is checked on different body parts of the human body in various bending scenarios. As per the evaluated link budget, the designed antenna can easily communicate up to 100 m of distance. The specific absorption rate values of the designed antenna are also within acceptable limits as per the (FCC/ICNIRP) standards at the reported frequency bands. Unlike traditional rigid antennas, the proposed textile antenna is non-intrusive, enhancing user safety and comfort. The denim material makes it comfortable for extended wear, reducing the risk of skin irritation. It can also withstand regular wear and tear, including stretching and bending. The presented denim-based antenna can be seamlessly integrated into clothing and accessories, making it less obtrusive and more aesthetically pleasing.


Asunto(s)
Internet de las Cosas , Dispositivo de Identificación por Radiofrecuencia , Textiles , Dispositivos Electrónicos Vestibles , Humanos , Dispositivo de Identificación por Radiofrecuencia/métodos , Tecnología Inalámbrica/instrumentación , Diseño de Equipo
19.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204986

RESUMEN

To address the current demands for antenna miniaturization, ultra-bandwidth, and circular polarization in advanced medical devices, a novel ISM band implantable antenna for blood glucose monitoring has been developed. This antenna achieves miniaturization by incorporating slots in the radiation patch and adding symmetric short-circuit probes, resulting in a compact size of only 0.054λ0 × 0.054λ0 × 0.005λ0 (λ0 is the wavelength in free space in respect of the lowest working frequency). By combining two resonance points and utilizing a differential feed structure, the antenna achieves ultra-broadband and circular polarization. Simulations indicate a |S11| bandwidth of 1.1 GHz (1.65-2.75 GHz) and an effective axial ratio (based on 3 dB axis ratio) bandwidth of 590 MHz (1.89-2.48 GHz), able to cover both the ISM frequency band (2.45 GHz) and the mid-field frequency band (1.9 GHz). The antenna exhibits CP gains of -20.04 dBi at a frequency of 2.45 GHz, while it shows gains of -24.64 dBi at 1.9 GHz. Furthermore, a superstrate layer on the antenna's radiating surface enhances its biocompatibility and minimizes its impact on the human body. Simulation and experimental results indicate that the antenna can establish a stable wireless communication link for implantable continuous blood glucose monitoring systems.


Asunto(s)
Glucemia , Prótesis e Implantes , Tecnología Inalámbrica , Glucemia/análisis , Humanos , Tecnología Inalámbrica/instrumentación , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Diseño de Equipo
20.
Adv Sci (Weinh) ; 11(35): e2308619, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39041885

RESUMEN

Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto-active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue-robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next-generation mechanotherapy.


Asunto(s)
Diseño de Equipo , Robótica , Tecnología Inalámbrica , Robótica/métodos , Robótica/instrumentación , Porcinos , Animales , Tecnología Inalámbrica/instrumentación , Diseño de Equipo/métodos , Magnetismo/métodos , Hígado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...