Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Malar J ; 23(1): 192, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898518

RESUMEN

Elimination of malaria has become a United Nations member states target: Target 3.3 of the sustainable development goal no. 3 (SDG3). Despite the measures taken, the attainment of this goal is jeopardized by an alarming trend of increasing malaria case incidence. Globally, there were an estimated 241 million malaria cases in 2020 in 85 malaria-endemic countries, increasing from 227 million in 2019. Malaria case incidence was 59, which means effectively no changes in the numbers occurred, compared with the baseline 2015. Jennifer Doudna-co-inventor of CRISPR/Cas9 technology-claims that CRISPR holds the potential to lessen or even eradicate problems lying in the centre of SDGs. On the same note, CRISPR/Cas9-mediated mosquito-targeting gene drives (MGD) are perceived as a potential means to turn this trend back and put momentum into the malaria elimination effort. This paper assessed two of the critical elements of the World Health Organization Genetically modified mosquitoes (WHO GMM) Critical Pathway framework: the community and stakeholders' engagement (inability to employ widely used frameworks, segmentation of the public, 'bystander' status, and guidelines operationalization) and the regulatory landscape (lex generali, 'goldilocks dilemma', and mode of regulation) concerning mosquito-oriented gene drives (MGD) advances. Based on the assessment findings, the author believes that CRISPR/Cas-9-mediated MGD will not contribute to the attainment of SDG3 (Target 3.3), despite the undisputable technology's potential. This research pertains to the state of knowledge, legal frameworks, and legislature, as of November 2022.


Asunto(s)
Sistemas CRISPR-Cas , Malaria , Malaria/prevención & control , Animales , Erradicación de la Enfermedad , Humanos , Desarrollo Sostenible , Participación de la Comunidad , Mosquitos Vectores/genética , Tecnología de Genética Dirigida/métodos , Control de Mosquitos , Edición Génica
2.
Nat Commun ; 15(1): 4983, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862555

RESUMEN

Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.


Asunto(s)
Anopheles , Drosophila melanogaster , Tecnología de Genética Dirigida , Razón de Masculinidad , Espermatogénesis , Cromosoma X , Animales , Masculino , Femenino , Anopheles/genética , Cromosoma X/genética , Drosophila melanogaster/genética , Tecnología de Genética Dirigida/métodos , Espermatogénesis/genética , Mosquitos Vectores/genética , Genes Ligados a X , Sistemas CRISPR-Cas , Espermatozoides/metabolismo , Animales Modificados Genéticamente
3.
Nat Plants ; 10(6): 936-953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38886522

RESUMEN

Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.


Asunto(s)
Arabidopsis , Tecnología de Genética Dirigida , Arabidopsis/genética , Tecnología de Genética Dirigida/métodos , Células Germinativas de las Plantas , Genes de Plantas , Sistemas CRISPR-Cas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Alelos
4.
Science ; 384(6703): 1394-1395, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935719
5.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709820

RESUMEN

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Asunto(s)
Control de Mosquitos , Animales , Control de Mosquitos/métodos , Culicidae/genética , Culicidae/fisiología , Biología Computacional/métodos , Tecnología de Genética Dirigida/métodos , Mosquitos Vectores/genética , Aedes/genética , Resistencia a los Insecticidas/genética , Femenino
6.
PLoS Comput Biol ; 20(5): e1012133, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805562

RESUMEN

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.


Asunto(s)
Simulación por Computador , Tecnología de Genética Dirigida , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Humanos , Mosquitos Vectores/genética , Control de Mosquitos/métodos , Malaria/epidemiología , Malaria/transmisión , Malaria/prevención & control , Tecnología de Genética Dirigida/métodos , Biología Computacional/métodos , Culicidae/genética , Algoritmos , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Dinámica Poblacional
7.
Malar J ; 23(1): 156, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773487

RESUMEN

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Malaria , Control de Mosquitos , Mosquitos Vectores , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Malaria/prevención & control , Malaria/transmisión , Animales , Anopheles/genética , Tecnología de Genética Dirigida/métodos
8.
PLoS Genet ; 20(5): e1011262, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753875

RESUMEN

Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida , Tecnología de Genética Dirigida/métodos , Modelos Genéticos , Aptitud Genética , Alelos , Ingeniería Genética/métodos , Animales
9.
Nat Commun ; 15(1): 4560, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811556

RESUMEN

Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Drosophila , Drosophila melanogaster , Tecnología de Genética Dirigida , Células Germinativas , Regiones Promotoras Genéticas , ARN Guía de Sistemas CRISPR-Cas , Animales , Regiones Promotoras Genéticas/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Tecnología de Genética Dirigida/métodos , Células Germinativas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Animales Modificados Genéticamente , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Alelos , Femenino , Masculino , Proteínas de Unión al ARN
10.
Heredity (Edinb) ; 132(5): 232-246, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494530

RESUMEN

Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Genética de Población , Malaria , Repeticiones de Microsatélite , Mosquitos Vectores , Anopheles/genética , Animales , Mosquitos Vectores/genética , Malaria/transmisión , Tecnología de Genética Dirigida/métodos , Melanesia , Alelos
11.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38306583

RESUMEN

A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9. We find that targeting the wupA gene during spermatogenesis skews the sex ratio so fewer than 14% of progeny are daughters. That is unless we cross the mutagenic males to X^XY female flies that bear attached-X chromosomes, which reverses the inheritance of the poisoned X chromosome so that sons inherit it from their father, in which case only 2% of the progeny are sons. These sex ratio biases suggest that most of the CRISPR/Cas9 mutants we induced in the wupA gene are haplolethal but some are recessive lethal. The males generating wupA mutants do not suffer from reduced fertility; rather, the haplolethal mutants arrest development in the late stages of embryogenesis well after fertilized eggs have been laid. This provides a distinct advantage over genetic manipulation strategies involving sterility which can be countered by the remating of females. We also find that wupA mutants that destroy the nuclear localization signal of shorter isoforms are not haplolethal as long as the open reading frame remains intact. Like D. melanogaster, wupA orthologs of Drosophila suzukii and Anopheles mosquitos are found on X chromosomes making wupA a viable X-poisoning target in multiple species.


Asunto(s)
Proteínas de Drosophila , Tecnología de Genética Dirigida , Animales , Femenino , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Tecnología de Genética Dirigida/métodos , Troponina I/genética , Cromosoma X/genética
12.
Malar J ; 22(1): 384, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129897

RESUMEN

BACKGROUND: Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS: A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS: Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION: Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.


Asunto(s)
Culicidae , Tecnología de Genética Dirigida , Malaria , Animales , Humanos , Tecnología de Genética Dirigida/métodos , África del Sur del Sahara , Gobierno , Malaria/prevención & control
13.
Genes (Basel) ; 14(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38136999

RESUMEN

Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida , Tecnología de Genética Dirigida/métodos , Ecosistema , Control de Malezas/métodos , Malezas/genética
14.
Nat Commun ; 14(1): 6388, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821497

RESUMEN

One method for reducing the impact of vector-borne diseases is through the use of CRISPR-based gene drives, which manipulate insect populations due to their ability to rapidly propagate desired genetic traits into a target population. However, all current gene drives employ a Cas9 nuclease that is constitutively active, impeding our control over their propagation abilities and limiting the generation of alternative gene drive arrangements. Yet, other nucleases such as the temperature sensitive Cas12a have not been explored for gene drive designs in insects. To address this, we herein present a proof-of-concept gene-drive system driven by Cas12a that can be regulated via temperature modulation. Furthermore, we combined Cas9 and Cas12a to build double gene drives capable of simultaneously spreading two independent engineered alleles. The development of Cas12a-mediated gene drives provides an innovative option for designing next-generation vector control strategies to combat disease vectors and agricultural pests.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida , Sistemas CRISPR-Cas/genética , Tecnología de Genética Dirigida/métodos , Agricultura , Endonucleasas/genética , Alelos
15.
Mol Ecol ; 32(20): 5673-5694, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37694511

RESUMEN

With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.


Asunto(s)
Tecnología de Genética Dirigida , Humanos , Tecnología de Genética Dirigida/métodos , Sistemas CRISPR-Cas
16.
Malar J ; 22(1): 234, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580703

RESUMEN

BACKGROUND: Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS: Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS: While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS: Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Malaria , MicroARNs , Animales , Humanos , Mosquitos Vectores/genética , Anopheles/genética , Sistemas CRISPR-Cas , Tecnología de Genética Dirigida/métodos , Alérgenos/genética
17.
J Math Biol ; 87(2): 30, 2023 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-37454310

RESUMEN

Understanding the temporal spread of gene drive alleles-alleles that bias their own transmission-through modeling is essential before any field experiments. In this paper, we present a deterministic reaction-diffusion model describing the interplay between demographic and allelic dynamics, in a one-dimensional spatial context. We focused on the traveling wave solutions, and more specifically, on the speed of gene drive invasion (if successful). We considered various timings of gene conversion (in the zygote or in the germline) and different probabilities of gene conversion (instead of assuming 100[Formula: see text] conversion as done in a previous work). We compared the types of propagation when the intrinsic growth rate of the population takes extreme values, either very large or very low. When it is infinitely large, the wave can be either successful or not, and, if successful, it can be either pulled or pushed, in agreement with previous studies (extended here to the case of partial conversion). In contrast, it cannot be pushed when the intrinsic growth rate is vanishing. In this case, analytical results are obtained through an insightful connection with an epidemiological SI model. We conducted extensive numerical simulations to bridge the gap between the two regimes of large and low growth rate. We conjecture that, if it is pulled in the two extreme regimes, then the wave is always pulled, and the wave speed is independent of the growth rate. This occurs for instance when the fitness cost is small enough, or when there is stable coexistence of the drive and the wild-type in the population after successful drive invasion. Our model helps delineate the conditions under which demographic dynamics can affect the spread of a gene drive.


Asunto(s)
Tecnología de Genética Dirigida , Simulación por Computador , Tecnología de Genética Dirigida/métodos , Difusión , Demografía , Modelos Biológicos
18.
Ecol Lett ; 26(7): 1174-1185, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37162099

RESUMEN

Suppression gene drives bias their inheritance to spread through a population, potentially eliminating it when they reach high frequency. CRISPR homing suppression drives have already seen success in the laboratory, but several models predict that success may be elusive in population with realistic spatial structure due to extinction-recolonization cycles. Here, we extend our continuous space framework to include two competing species or predator-prey pairs. We find that in both general and mosquito-specific models, competing species or predators can facilitate drive-based suppression, albeit at the cost of an increased rate of drive loss outcomes. These results are robust in mosquito models with seasonal fluctuations. Our study illustrates the difficulty of predicting outcomes in complex ecosystems. However, our results are promising for the prospects of less powerful suppression gene drives to successfully eliminate target mosquito and other pest populations.


Asunto(s)
Ecosistema , Tecnología de Genética Dirigida , Animales , Tecnología de Genética Dirigida/métodos , Dinámica Poblacional
19.
Transgenic Res ; 32(1-2): 17-32, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36920721

RESUMEN

Gene drive-modified mosquitoes (GDMMs) are being developed as possible new tools to prevent transmission of malaria and other mosquito-borne diseases. To date no GDMMs have yet undergone field testing. This early stage is an opportune time for developers, supporters, and possible users to begin to consider the potential regulatory requirements for eventual implementation of these technologies in national or regional public health programs, especially as some of the practical implications of these requirements may take considerable planning, time and coordination to address. Several currently unresolved regulatory questions pertinent to the implementation of GDMMs are examined, including: how the product will be defined; what the registration/approval process will be for placing new GDMM products on the market; how the potential for transboundary movement of GDMMs can be addressed; and what role might be played by existing multinational bodies and agreements in authorization decisions. Regulation and policies applied for registration of other genetically modified organisms or other living mosquito products are assessed for relevance to the use case of GDMMs to prevent malaria in Africa. Multiple national authorities are likely to be involved in decision-making, according to existing laws in place within each country for certain product classes. Requirements under the Cartagena Protocol on Biodiversity will be considered relevant in most countries, as may existing regulatory frameworks for conventional pesticide, medical, and biocontrol products. Experience suggests that standard regulatory processes, evidence requirements, and liability laws differ from country to country. Regional mechanisms will be useful to address some of the important challenges.


Asunto(s)
Culicidae , Tecnología de Genética Dirigida , Malaria , Animales , Culicidae/genética , Tecnología de Genética Dirigida/métodos , Malaria/genética , Malaria/prevención & control , Políticas
20.
Am Nat ; 201(1): E1-E22, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524934

RESUMEN

AbstractGene drive technology promises to deliver on some of the global challenges humanity faces today in health care, agriculture, and conservation. However, there is a limited understanding of the consequences of releasing self-perpetuating transgenic organisms into wild populations under complex ecological conditions. In this study, we analyze the impact of three such complexities-mate choice, mating systems, and spatial mating network-on the population dynamics for two distinct classes of modification gene drive systems. All three factors had a high impact on the modeling outcome. First, we demonstrate that distortion-based gene drives appear to be more robust against mate choice than viability-based gene drives. Second, we find that gene drive spread is much faster for higher degrees of polygamy. Including a fitness cost, the drive is fastest for intermediate levels of polygamy. Finally, the spread of a gene drive is faster and more effective when the individuals have fewer connections in a spatial mating network. Our results highlight the need to include mating complexities when modeling the properties of gene drives, such as release thresholds, timescales, and population-level consequences. This inclusion will enable a more confident prediction of the dynamics of engineered gene drives and possibly even inform about the origin and evolution of natural gene drives.


Asunto(s)
Tecnología de Genética Dirigida , Humanos , Tecnología de Genética Dirigida/métodos , Reproducción , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...