Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.332
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731977

RESUMEN

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Asunto(s)
Movimiento Celular , Proliferación Celular , Exosomas , Queratinocitos , Células Madre Mesenquimatosas , Gelatina de Wharton , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Gelatina de Wharton/citología , Gelatina de Wharton/metabolismo , Queratinocitos/metabolismo , Queratinocitos/citología , Fibrinógeno/metabolismo , Proteómica/métodos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Cultivadas , Cicatrización de Heridas , Proteoma/metabolismo
2.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698419

RESUMEN

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Asunto(s)
Tejido Adiposo , Quimiocina CXCL12 , Receptores CXCR4 , Regeneración , Células Madre , Proteína de Unión al GTP rhoA , Quimiocina CXCL12/metabolismo , Animales , Receptores CXCR4/metabolismo , Ratones , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Células Madre/metabolismo , Células Madre/citología , Ratones Endogámicos C57BL , Retroalimentación Fisiológica , Movimiento Celular , Células Cultivadas , Masculino , Transducción de Señal
3.
Sci Rep ; 14(1): 10349, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710789

RESUMEN

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Asunto(s)
Mastitis Bovina , Trasplante de Células Madre Mesenquimatosas , Leche , Animales , Bovinos , Femenino , Mastitis Bovina/terapia , Mastitis Bovina/microbiología , Leche/citología , Leche/microbiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Citocinas/metabolismo , Citocinas/sangre
4.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735979

RESUMEN

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Asunto(s)
Tejido Adiposo , Cicatriz Hipertrófica , Humanos , Cicatriz Hipertrófica/terapia , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Madre/metabolismo , Células Madre/citología , Secretoma/metabolismo , Animales , Trasplante de Células Madre/métodos
5.
Sci Rep ; 14(1): 10182, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702382

RESUMEN

Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Condrogénesis , Campos Electromagnéticos , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Supervivencia Celular/efectos de la radiación
6.
FASEB J ; 38(10): e23626, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38739537

RESUMEN

Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Macrófagos/metabolismo , Animales , Tejido Adiposo/citología , Humanos , Ratones , Estrés Mecánico , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Masculino , Factor Estimulante de Colonias de Macrófagos/metabolismo , Trasplante de Células Madre/métodos , Inflamación/terapia , Ratones Endogámicos C57BL
7.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736214

RESUMEN

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Fibrina , Insulina , Células Madre , Humanos , Diferenciación Celular/efectos de los fármacos , Fibrina/química , Fibrina/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Madre/metabolismo , Células Madre/citología , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacología , Amnios/citología , Amnios/metabolismo , Amnios/química
8.
FASEB J ; 38(10): e23653, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38738548

RESUMEN

Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.


Asunto(s)
Exosomas , Células Endoteliales de la Vena Umbilical Humana , Subunidad alfa del Factor 1 Inducible por Hipoxia , ARN Largo no Codificante , Ubiquitina Tiolesterasa , Cicatrización de Heridas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Exosomas/metabolismo , Humanos , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proliferación Celular , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Masculino , Regulación hacia Arriba , Células Madre/metabolismo , Movimiento Celular , Piel/metabolismo , Hipoxia de la Célula , Ratones Endogámicos C57BL
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732109

RESUMEN

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Asunto(s)
Diferenciación Celular , Melatonina , Células Madre Mesenquimatosas , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Tejido Adiposo/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/citología , Neuroglía/metabolismo , Sinapsinas/metabolismo
10.
ACS Biomater Sci Eng ; 10(5): 3120-3135, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38624019

RESUMEN

The production of small-diameter artificial vascular grafts continues to encounter numerous challenges, with concerns regarding the degradation rate and endothelialization being particularly critical. In this study, porous PCL scaffolds were prepared, and PCL vascular grafts were fabricated by 3D bioprinting of collagen materials containing adipose-derived mesenchymal stem cells (ADSCs) on the internal wall of the porous PCL scaffold. The PCL vascular grafts were then implanted in the abdominal aorta of Rhesus monkeys for up to 640 days to analyze the degradation of the scaffolds and regeneration of the aorta. Changes in surface morphology, mechanical properties, crystallization property, and molecular weight of porous PCL revealed a similar degradation process of PCL in PBS at pH 7.4 containing Thermomyces lanuginosus lipase and in situ in the abdominal aorta of rhesus monkeys. The contrast of in vitro and in vivo degradation provided valuable reference data for predicting in vivo degradation based on in vitro enzymatic degradation of PCL for further optimization of PCL vascular graft fabrication. Histological analysis through hematoxylin and eosin (HE) staining and fluorescence immunostaining demonstrated that the PCL vascular grafts successfully induced vascular regeneration in the abdominal aorta over the 640-day period. These findings provided valuable insights into the regeneration processes of the implanted vascular grafts. Overall, this study highlights the significant potential of PCL vascular grafts for the regeneration of small-diameter blood vessels.


Asunto(s)
Aorta Abdominal , Prótesis Vascular , Colágeno , Macaca mulatta , Células Madre Mesenquimatosas , Poliésteres , Andamios del Tejido , Animales , Poliésteres/química , Colágeno/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/química , Tejido Adiposo/citología , Implantación de Prótesis Vascular
11.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634810

RESUMEN

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Asunto(s)
Técnicas de Cocultivo , Factor 2 de Crecimiento de Fibroblastos , Gelatina , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Metacrilatos , Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Gelatina/química , Gelatina/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Metacrilatos/química , Metacrilatos/farmacología , Ingeniería de Tejidos/métodos , Neovascularización Fisiológica/efectos de los fármacos , Tejido Adiposo/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo
12.
Res Vet Sci ; 172: 105255, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608346

RESUMEN

Rabbit hemorrhagic disease virus (RHDV) can cause fatal fulminant hepatitis, which is very similar to human acute liver failure. The aim of this study was to investigate whether adipose-derived stem cells (ADSCs) could alleviate RHDV2-induced liver injury in rabbits. Twenty 50-day-old rabbits were divided randomly into two groups (RHDV2 group, ADSCs + RHDV2 group). Starting from the 1st day, two groups of rabbits were given 0.5 ml of viral suspensions by subcutaneous injection in the neck. Meanwhile, the ADSCs + RHDV2 group was injected with ADSCs cell suspension (1.5 × 107 cells/ml) via a marginal ear vein, and the RHDV2 group was injected with an equal amount of saline via a marginal ear vein. At the end of the 48 h experiment, the animals were euthanized and gross hepatic changes were observed before liver specimens were collected. Histopathological analysis was performed using hematoxylin-eosin (HE), periodic acid schiff (PAS) and Masson's trichrome staining. For RHDV2 affected rabbits, HE staining demonstrated disorganized hepatic cords, loss of cellular detail, and severe cytoplasmic vacuolation within hepatocytes. Glycogen was not observed with PAS staining, and Masson's Trichrome staining showed increased hepatic collagen deposition. For rabbits treated with ADSCs at the time of inoculation, hepatic pathological changes were significantly less severe, liver glycogen synthesis was increased, and collagen fiber deposition was decreased. For RHDV2 affected rabbits, Tunel and immunofluorescence staining showed that the number of apoptotic cells, TGF-ß, and MMP-9 protein expression increased. And that in the ADSC treated group there was less hepatocyte apoptosis. In addition, RHDV2 induces liver inflammation and promotes the expression of IL-1ß, IL-6, and TNF-α. In rabbits administered ADSCs at time of inoculation, the expression of inflammatory factors in liver tissue decreased significantly. Our experiments show that ADSCs can protect rabbits from liver injury by RHDV2 and reduce the pathological and inflammatory response of liver. However, the specific protective mechanism needs further study.


Asunto(s)
Tejido Adiposo , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/fisiología , Tejido Adiposo/citología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/terapia , Hígado/patología , Trasplante de Células Madre/métodos , Células Madre , Apoptosis , Masculino , Distribución Aleatoria
13.
Cells ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667308

RESUMEN

Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-ß, TGF-ß1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-ß induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-ß1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.


Asunto(s)
Tejido Adiposo , Fibrosis , Perfilación de la Expresión Génica , Inflamación , Células Madre , Células Madre/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Humanos , Inflamación/patología , Inflamación/genética , Hipoxia de la Célula/genética , Transcriptoma/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Animales
14.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 233-240, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650128

RESUMEN

Skin photoaging affects appearance and is associated with a variety of skin diseases, even skin cancer. Therefore, the prevention and treatment of skin photoaging is very important. However, there is a lack of effective evaluation methods, so it is an urgent problem to explore a comprehensive, non-invasive and in vivo evaluation method. Adipose-derived mesenchymal stem cells (ADSCs) are widely used to improve skin conditions as easier to obtain and positive effects. Recently, as the development of ultrasound technology, skin ultrasound has been widely used. Changes in skin layer and structure can be observed by high-frequency ultrasound (HFUS). In addition, Shear wave elastography (SWE) technology can be used to monitor the change of skin hardness. However, it is necessary to further explore the ultrasound parameters in interpreting histological changes. We simulate the progression and treatment process of human skin photoaging by using UVB-induced nude mice skin photoaging model and ADSCs injection. The analysis of the degree and therapeutic effect of skin photoaging was conducted by HFUS, SWE and to verify with histopathology. Our study aims to clarify the value of HFUS combined SWE techniques in evaluating the degree and therapeutic efficacy of skin photoaging, which provides theoretical basis for diagnosis and treatment evaluation systems.


Asunto(s)
Células Madre Mesenquimatosas , Ratones Desnudos , Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Animales , Envejecimiento de la Piel/efectos de la radiación , Células Madre Mesenquimatosas/citología , Humanos , Piel/efectos de la radiación , Piel/patología , Tejido Adiposo/citología , Diagnóstico por Imagen de Elasticidad , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Femenino
15.
J Orthop Surg Res ; 19(1): 255, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650022

RESUMEN

Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.


Asunto(s)
Tejido Adiposo , Osteoblastos , Osteogénesis , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Osteoblastos/efectos de los fármacos , Humanos , Tejido Adiposo/citología , Células Madre/efectos de los fármacos , Células Cultivadas , Diferenciación Celular/efectos de los fármacos , Extractos Celulares/farmacología , Animales
16.
Stem Cell Res Ther ; 15(1): 119, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659070

RESUMEN

BACKGROUND: Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. METHODS: We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. RESULTS: Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. CONCLUSIONS: Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.


Asunto(s)
Lesión Renal Aguda , Inflamación , Lesión Renal Aguda/terapia , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Ratas , Humanos , Inflamación/patología , Inflamación/metabolismo , Masculino , Secretoma/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Ratas Sprague-Dawley , Inyecciones Subcutáneas , Riñón/metabolismo , Riñón/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/terapia , Células del Estroma/metabolismo
17.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661048

RESUMEN

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , PPAR gamma , Rosiglitazona , Trasplante Autólogo , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Rosiglitazona/farmacología , Masculino , Diferenciación Celular , Adipogénesis , Adipocitos/metabolismo , Ratones , Ratas
18.
Front Endocrinol (Lausanne) ; 15: 1343255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681772

RESUMEN

Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.


Asunto(s)
Tejido Adiposo , Diabetes Mellitus , Humanos , Tejido Adiposo/citología , Diabetes Mellitus/terapia , Animales , Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Complicaciones de la Diabetes/terapia , Diferenciación Celular , Técnicas de Cultivo Tridimensional de Células/métodos
19.
Biomolecules ; 14(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38672430

RESUMEN

Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Albúmina Sérica Bovina , Humanos , Condrogénesis/efectos de los fármacos , Albúmina Sérica Bovina/farmacología , Albúmina Sérica Bovina/química , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Animales , Bovinos , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Células del Estroma/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/metabolismo , Persona de Mediana Edad
20.
Sci Rep ; 14(1): 9689, 2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678043

RESUMEN

Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.


Asunto(s)
Adipogénesis , Diferenciación Celular , Lactobacillus delbrueckii , Células Madre Mesenquimatosas , Osteogénesis , Probióticos , Humanos , Probióticos/farmacología , Osteogénesis/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Lactobacillus delbrueckii/metabolismo , Diferenciación Celular/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Cultivadas , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA