Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 657
Filtrar
1.
Phytomedicine ; 130: 155742, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838635

RESUMEN

PURPOSE: It is unclear whether traditional Chinese patent medicines can resist premature aging. This prospective study investigated the effects of Bazi Bushen Capsule (BZBS) which is a traditional Chinese patent medicine for tonifying the kidney essence on premature senility symptoms and quality of life, telomerase activity and telomere length. STUDY DESIGN AND METHODS: It was a parallel, multicenter, double-blind, randomized, and placebo-controlled trial. Subjects (n = 530) aged 30-78 years were randomized to receive BZBS or placebo capsules 12 weeks. The primary outcome was the clinical feature of change in kidney deficiency for aging evaluation scale (CFCKD-AES) and tilburg frailty indicator (TFI). The secondary outcomes were SF-36, serum sex hormone level, five times sit-to-stand time (FTSST), 6MWT, motor function test-grip strength, balance test, walking speed, muscle mass measurement, telomerase and telomere length. RESULTS: After 12 weeks of treatment, the CFCKD-AES and TFI scores in the BZBS group decreased by 13.79 and 1.50 respectively (6.42 and 0.58 in the placebo group, respectively); The SF-36 in the BZBS group increased by 98.38 (23.79 in the placebo group). The FTSST, motor function test grip strength, balance test, walking speed, and muscle mass in the elderly subgroup were all improved in the BZBS group. The telomerase content in the BZBS group increased by 150.04 ng/ml compared to the placebo group. The fever led one patient in the placebo group to discontinue the trial. One patient in the placebo group withdrew from the trial due to pregnancy. None of the serious AEs led to treatment discontinuation, and 3 AEs (1.14%) were assessed as related to BZBS by the primary investigator. CONCLUSIONS: BZBS can improve premature aging symptoms, frailty scores, and quality of life, as well as improve FTSST, motor function: grip strength, balance test, walking speed, and muscle mass in elderly subgroups of patients, and enhance telomerase activity, but it is not significantly associated with increasing telomere length which is important for healthy aging. TRIAL REGISTRY: https://www.chictr.org.cn/showproj.html?proj=166181.


Asunto(s)
Envejecimiento Prematuro , Medicamentos Herbarios Chinos , Calidad de Vida , Humanos , Método Doble Ciego , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Persona de Mediana Edad , Femenino , Anciano , Envejecimiento Prematuro/tratamiento farmacológico , Adulto , Telomerasa , Fuerza de la Mano , Estudios Prospectivos , Telómero/efectos de los fármacos
2.
Food Funct ; 15(13): 7200-7213, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896046

RESUMEN

Colorectal cancer often leads to metastasis, with cancer stem cells (CSCs) playing a pivotal role in this process. Two closely linked mechanisms, epithelial-mesenchymal transition and angiogenesis, contribute to metastasis and recent research has also highlighted the impact of telomere replication on this harmful tumor progression. Standard chemotherapy alone can inadvertently promote drug-resistant CSCs, posing a challenge. Combining chemotherapy with other compounds, including natural ones, shows promise in enhancing effectiveness while minimizing side effects. This study investigated the anti-metastatic potential of Manuka honey, both alone and in combination with 5-fluorouracil, using a 3D model of colonospheres enriched with CSC-like cells. In summary, it was observed that the treatment reduced migration ability by downregulating the transcription factors Slug, Snail, and Twist, which are key players in epithelial-mesenchymal transition. Additionally, Manuka honey downregulated pro-angiogenic factors and shortened CSC telomeres by downregulating c-Myc - demonstrating an effective anti-metastatic potential. This study suggests new research opportunities for studying the impact of natural compounds when combined with pharmaceuticals, with the potential to enhance effectiveness and reduce side effects.


Asunto(s)
Neoplasias del Colon , Transición Epitelial-Mesenquimal , Miel , Células Madre Neoplásicas , Neovascularización Patológica , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neovascularización Patológica/tratamiento farmacológico , Línea Celular Tumoral , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Fluorouracilo/farmacología , Leptospermum/química , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Telómero/efectos de los fármacos , Homeostasis del Telómero/efectos de los fármacos , Angiogénesis
3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892366

RESUMEN

In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon (X-ray) irradiation (IR) using gene expression analysis, flow cytometry, protein phosphorylation, and telomere length shortening. Proliferation markers and cell cycle distribution changed significantly after combined treatment, revealing a prominent G2/M arrest. The expression of the G2/M checkpoint genes cyclin B, CDK1, and WEE1 was significantly reduced by IR alone and the combined treatment. While IR alone showed no effects, additional AZD7648 treatment resulted in a dose-dependent reduction in AKT phosphorylation and an increase in Chk2 phosphorylation. Twenty-four hours after IR, the key genes of DNA repair mechanisms were reduced by the combined treatment, which led to impaired DNA repair and increased radiosensitivity. A time-dependent shortening of telomere length was observed in both cell lines after combined treatment with AZD7648 and 8 Gy X-ray/C-ion IR. Our data suggest that the inhibition of DNA-PKcs may increase sensitivity to X-rays and C-ion IR by impairing its functional role in DNA repair mechanisms and telomere end protection.


Asunto(s)
Condrosarcoma , Proteína Quinasa Activada por ADN , Radioterapia de Iones Pesados , Telómero , Humanos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Línea Celular Tumoral , Condrosarcoma/metabolismo , Condrosarcoma/genética , Condrosarcoma/radioterapia , Condrosarcoma/tratamiento farmacológico , Telómero/efectos de los fármacos , Telómero/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Pirazoles/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación
4.
Sci Total Environ ; 943: 173785, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851349

RESUMEN

Chemical pollution is a major man-made environmental threat to ecosystems and natural animal populations. Of concern are persistent organic pollutants (POPs), which can persist in the environment for many years. While bioaccumulating throughout the lives of wild animals, POPs can affect their health, reproduction, and survival. However, measuring long-term effects of POPs in wild populations is challenging, and therefore appropriate biomarkers are required in wildlife ecotoxicology. One potential target is telomere length, since telomere preservation has been associated to survival and longevity, and stressors as chemical pollution can disrupt its maintenance. Here, we investigated the effects of different classes of POPs on relative telomere length (RTL) and its rate of change (TROC) in wild long-lived Alpine swifts (Tachymarptis melba). As both RTL and TROC are often reported to differ between sexes and with chronological age, we tested for sex- and age-specific (pre-senescent vs. senescent, ≥ 9 age of years, individuals) effects of POPs. Our results showed that senescent females presented longer RTL and elongated telomeres over time compared to pre-senescent females and males. These sex- and age-related differences in RTL and TROC were influenced by POPs, but differently depending on whether they were organochlorine pesticides (OCPs) or industrial polychlorinated biphenyls (PCBs). OCPs (particularly drins) were negatively associated with RTL, with the strongest negative effects being found in senescent females. Conversely, PCBs led to slower rates of telomere shortening, especially in females. Our study indicates diametrically opposed effects of OCPs on RTL and PCBs on TROC, and these effects were more pronounced in females and senescent individuals. The mechanisms behind these effects (e.g., increased oxidative stress by OCPs; upregulation of telomerase activity by PCBs) remain unknown. Our results highlight the importance in wildlife ecotoxicology to account for sex- and age-related effects when investigating the health effects of pollutants on biomarkers such as telomeres.


Asunto(s)
Aves , Contaminantes Orgánicos Persistentes , Telómero , Animales , Masculino , Femenino , Telómero/efectos de los fármacos , Contaminantes Orgánicos Persistentes/toxicidad , Longevidad/efectos de los fármacos , Factores Sexuales , Factores de Edad , Monitoreo del Ambiente
5.
Eur J Med Chem ; 274: 116536, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805936

RESUMEN

G-quadruplexes (G4s) are commonly formed in the G-rich strand of telomeric DNA. Ligands targeting telomeric G4 induce DNA damage and telomere dysfunction, which makes them potential antitumor drugs. New telomeric G4 ligands with drug-likeness are still needed to be exploited, especially with their antitumor mechanisms thoroughly discussed. In this study, a novel series of quinoxaline analogs were rationally designed and synthesized. Among them, R1 was the most promising ligand for its cytotoxic effects on tumor cells and stabilizing ability with telomeric G4. Cellular assays illustrated that R1 stabilized G4 and induced R-loop accumulation in the telomeric regions, subsequently triggering DNA damage responses, cell cycle arrest in G2/M phase, apoptosis and antiproliferation. Moreover, R1 evoked immunogenic cell death (ICD) in tumor cells, which promoted the maturation of bone marrow derived dendritic cells (BMDCs). In breast cancer mouse model, R1 exhibited a significant decrease in tumor burden through the immunomodulatory effects, including the increase of CD4+ and CD8+ T cells in tumors and cytokine levels in sera. Our research provides a new idea that targeting telomeric G4 induces DNA damage responses, causing antitumor effects both in vitro and in vivo, partially due to the enhancement of immunomodulation.


Asunto(s)
Antineoplásicos , Proliferación Celular , G-Cuádruplex , Quinoxalinas , Telómero , G-Cuádruplex/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Quinoxalinas/química , Quinoxalinas/farmacología , Quinoxalinas/síntesis química , Animales , Humanos , Telómero/efectos de los fármacos , Ligandos , Ratones , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Femenino , Inmunomodulación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Daño del ADN/efectos de los fármacos
6.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732590

RESUMEN

Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.


Asunto(s)
Envejecimiento , Longevidad , Nucleótidos , Humanos , Anciano , Femenino , Masculino , Envejecimiento/fisiología , Persona de Mediana Edad , Método Doble Ciego , Suplementos Dietéticos , Evaluación Geriátrica/métodos , Metilación de ADN/efectos de los fármacos , Telómero/efectos de los fármacos , Leucocitos
7.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708177

RESUMEN

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Telomerasa , Telómero , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Telómero/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Telomerasa/antagonistas & inhibidores , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Inmunoterapia/métodos , Células Madre Neoplásicas/efectos de los fármacos
8.
Curr Opin Pharmacol ; 76: 102460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776747

RESUMEN

Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.


Asunto(s)
Antineoplásicos , Daño del ADN , Reparación del ADN , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Reparación del ADN/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Telómero/efectos de los fármacos , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Terapia Molecular Dirigida
9.
Mutat Res ; 828: 111857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603928

RESUMEN

Inhaled anesthetics, such as isoflurane, may cause side effects, including short-term immunosuppression and DNA damage. In contrast, low molecular weight fucoidan (LMF), derived from brown seaweed, exhibits promising immunomodulatory effects. In this study, we determined the effect of isoflurane on telomeres and examined the potential of LMF to ameliorate the harmful effects of isoflurane. Male Lewis rats, the mouse lymphoma cell line YAC-1, and the human nature killer cell line NK-92 MI were exposed to isoflurane. The relative telomere length (T/S) ratio and mRNA expression were determined by quantitative PCR. The viability assay was used to assess cell viability. In vivo, 2% isoflurane exposure, which is a clinically relevant concentration, reduced telomere length, and correlated with exposure frequency and duration. Isoflurane concentrations above 2% shortened YAC-1 telomeres, with minimal impact on cell viability. LMF pre-treatment enhanced NK-92 MI cell survival resulting from isoflurane exposure and exerted superior telomere protection compared with LMF post-treatment. Furthermore, adding LMF during isoflurane exposure resulted in a significant increase in IFN-γ, TNF-α, and IL-10 mRNA compared with the untreated group. LMF protected against isoflurane-induced telomere shortening, enhanced NK cell viability, and modulated cytokine expression, thus mitigating postoperative immune suppression and risk of tumor metastasis.


Asunto(s)
Isoflurano , Células Asesinas Naturales , Polisacáridos , Animales , Polisacáridos/farmacología , Isoflurano/farmacología , Isoflurano/toxicidad , Ratones , Masculino , Humanos , Ratas , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/farmacología , Supervivencia Celular/efectos de los fármacos , Telómero/efectos de los fármacos , Ratas Endogámicas Lew , Peso Molecular , Línea Celular Tumoral , Homeostasis del Telómero/efectos de los fármacos
10.
Environ Res ; 252(Pt 1): 118791, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552826

RESUMEN

Indoor air pollution (IAP) has been associated with various adverse health effects. However, the evidence regarding such an association with leukocyte telomere length (LTL) in cord blood samples is still scarce. Therefore, the present study aimed to assess the relationship between exposure to indicators of IAP and LTL in umbilical cord blood samples. This cross-sectional study was based on 188 mother-newborn pairs who participated in our study between 2020 and 2022 in Isfahan, Iran. Umbilical LTL was measured by quantitative real-time polymerase chain reaction (qRT-PCR) technique. Linear mixed-effect models were used to assess the relationship between IAP indicators and umbilical LTL, adjusted for relevant covariates. The median (interquartile range (IQR)) of umbilical LTL was 0.92 (0.47). In fully adjusted models, frequency of using degreasing spray during pregnancy (times per month) (ß = -0.047, 95% CI:0.09, -0.05, P-value = 0.02), using air freshener spray during pregnancy (ß = -0.26, 95% CI: -0.5, -0.02, P-value = 0.03) and frequency of using insecticides during pregnancy (times per month) (ß = -0.025, 95% CI: -0.047, -0.003, P-value = 0.02) were significantly associated with shorter umbilical LTL. There was a positive significant relationship between the frequency of using cleaning spray during pregnancy (times per month) with umbilical LTL (ß = 0.019, 95% CI: 0.005, 0.033, P-value = 0.01). Furthermore, the direct connection of the parking with home and the frequency of using barbecue (times per week) were marginally associated with shorter umbilical LTL. For other indicators of IAP, we did not observe any statistically significant associations. Overall, this study suggested a negative association between prenatal exposure to IAP during pregnancy and umbilical LTL.


Asunto(s)
Contaminación del Aire Interior , Sangre Fetal , Leucocitos , Exposición Materna , Humanos , Contaminación del Aire Interior/análisis , Femenino , Sangre Fetal/química , Leucocitos/efectos de los fármacos , Embarazo , Estudios Transversales , Adulto , Exposición Materna/efectos adversos , Irán , Telómero/efectos de los fármacos , Masculino , Recién Nacido , Contaminantes Atmosféricos/análisis , Adulto Joven
11.
Environ Res ; 249: 118323, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336161

RESUMEN

Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.


Asunto(s)
Contaminantes Ambientales , Humanos , Embarazo , Femenino , Contaminantes Ambientales/toxicidad , Telómero/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Recién Nacido , Exposición Materna/efectos adversos , Contaminación Ambiental/efectos adversos
12.
Environ Res ; 250: 118515, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373547

RESUMEN

Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.


Asunto(s)
Pulmón , Ratas Sprague-Dawley , Acero Inoxidable , Telomerasa , Soldadura , Animales , Masculino , Ratas , Contaminantes Ocupacionales del Aire/toxicidad , Exposición por Inhalación/efectos adversos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Acero Inoxidable/toxicidad , Telomerasa/genética , Telomerasa/metabolismo , Telómero/efectos de los fármacos , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
13.
Nutrients ; 14(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014852

RESUMEN

Short telomeres have been associated with ageing and cardiovascular disease. The influence on leukocyte telomere length (LTL) of long-term intervention with combined selenium and coenzyme Q10 is unknown. Our aim was to determine whether 42 months of selenium and coenzyme Q10 supplementation prevented telomere attrition and further cardiovascular mortality. The investigation is an explorative sub-study of a double-blind, placebo-controlled, randomized trial. Swedish citizens low in selenium (n = 118), aged 70−80 years, were included. Intervention time was 4 years, with 10 years' follow-up time. LTL was relatively quantified with PCR at baseline and after 42 months. At baseline, LTL (SD) was 0.954 (0.260) in the active treatment group and 1.018 (0.317) in the placebo group (p = 0.23). At 42 months, less shortening of LTL was observed after active treatment compared with placebo (+0.019 vs. −0.129, respectively, p = 0.02), with a significant difference in change basing the analysis on individual changes in LTL (p < 0.001). Subjects suffering future death presented with significantly shorter LTL at 42 months than survivors [0.791 (0.190) vs. 0.941 (0.279), p = 0.01], with a significant difference in change of LTL according to cardiovascular mortality and survival (p = 0.03). To conclude, preservation of LTL after selenium and coenzyme Q10 supplementation associated with reduced cardiovascular mortality.


Asunto(s)
Enfermedades Cardiovasculares , Selenio , Telómero , Ubiquinona , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Humanos , Leucocitos , Estudios Prospectivos , Selenio/farmacología , Selenio/uso terapéutico , Telómero/efectos de los fármacos , Telómero/fisiología , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
14.
PLoS One ; 17(2): e0264337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35202418

RESUMEN

Vitamin D deficiency is common among postmenopausal women. Telomere length can be a potential protective mechanism for age-related diseases. The objective of our study is to examine the association of vitamin D supplementation on leukocyte telomere length (LTL) in healthy postmenopausal women with vitamin D deficiency. The study was designed as a placebo-controlled study to investigate the short-term effects of vitamin D supplementation and seasonal changes on vitamin D related parameters, including 25(OH)D, 1,25(OH)2D parathormone (PTH), Vitamin D binding protein (VDBP), vitamin D receptor (VDR), and telomere length in a cohort of postmenopausal women (n = 102). The group was divided as supplementation (n = 52) and placebo groups (n = 50). All parameters were measured before and after treatment. Serum VDBP levels were measured by ELISA method and VDR, GC (VDBP) gene expressions and relative telomere lengths were measured in peripheral blood mononuclear cells (PBMC) using a quantitative real-time PCR method. The results demonstrate that baseline levels were similar between the groups. After vitamin D supplementation 25(OH)D, 1,25(OH)2D, PTH and VDBP levels were changed significantly compared to the placebo group. At the end of the study period, LTL levels were significantly increased in both groups and this change was more prominent in placebo group. The change in GC expression was significant between treatment and placebo groups but VDR expression remained unchanged. Even though the study was designed to solely assess the effects of vitamin D supplementation, LTL was significantly increased in the whole study group in summer months suggesting that LTL levels are affected by sun exposure and seasonal changes rather than supplementation. The study displayed the short-term effect of Vitamin D supplementation on vitamin D, PTH levels, LTL and vitamin D associated gene expressions. The relation between Vitamin D and LTL is not linear and could be confounded by several factors such as the population differences, regional and seasonal changes in sun exposure.


Asunto(s)
Leucocitos Mononucleares/efectos de los fármacos , Homeostasis del Telómero/efectos de los fármacos , Telómero/efectos de los fármacos , Deficiencia de Vitamina D/tratamiento farmacológico , Vitamina D/farmacología , Anciano , Estudios de Cohortes , Femenino , Humanos , Leucocitos Mononucleares/ultraestructura , Persona de Mediana Edad , Posmenopausia , Receptores de Calcitriol/sangre , Transcriptoma , Vitamina D/administración & dosificación , Vitamina D/sangre , Deficiencia de Vitamina D/patología
15.
Mol Neurobiol ; 59(1): 590-602, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741234

RESUMEN

DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress-induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0-40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ácido Fólico/farmacología , Células-Madre Neurales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Telómero/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Peróxido de Hidrógeno/farmacología , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Telómero/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638655

RESUMEN

DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.


Asunto(s)
ARN/genética , Telómero/genética , Antineoplásicos/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , G-Cuádruplex/efectos de los fármacos , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Relación Estructura-Actividad , Telómero/efectos de los fármacos
18.
Mol Biol Rep ; 48(12): 7767-7773, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34669125

RESUMEN

PURPOSE: Millions of pregnant, HIV-infected women take reverse transcriptase inhibitors, such as zidovudine (azidothymidine or AZT), during pregnancy. Reverse transcription plays important roles in early development, including regulation of telomere length (TL) and activity of transposable elements (TE). So we evaluated the effects of AZT on embryo development, TL, and copy number of an active TE, Long Interspersed Nuclear Element 1 (LINE-1), during early development in a murine model. DESIGN: Experimental study. METHODS: In vivo fertilized mouse zygotes from B6C3F1/B6D2F1 mice were cultured for 48 h in KSOM with no AZT (n = 45), AZT 1 µM (n = 46) or AZT 10 µM (n = 48). TL was measured by single-cell quantitative PCR (SC-pqPCR) and LINE-1 copy number by qPCR. The percentage of morulas at 48 h, TL and LINE-1 copy number were compared among groups. RESULTS: Exposure to AZT 1 µM or 10 µM significantly impairs early embryo development. TL elongates from oocyte to control embryos. TL in AZT 1 µM embryos is shorter than in control embryos. LINE-1 copy number is significantly lower in oocytes than control embryos. AZT 1 µM increases LINE-1 copy number compared to oocytes controls, and AZT 10 µM embryos. CONCLUSION: AZT at concentrations approaching those used to prevent perinatal HIV transmission compromises mouse embryo development, prevents telomere elongation and increases LINE-1 copy number after 48 h treatment. The impact of these effects on the trajectory of aging of children exposed to AZT early during development deserves further investigation.


Asunto(s)
Proteínas de Unión al ARN/genética , Telómero/metabolismo , Zidovudina/farmacología , Animales , Fármacos Anti-VIH/farmacología , Blastocisto/efectos de los fármacos , Elementos Transponibles de ADN/genética , Desarrollo Embrionario/efectos de los fármacos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Elementos de Nucleótido Esparcido Largo/genética , Elementos de Nucleótido Esparcido Largo/fisiología , Ratones/embriología , Modelos Animales , Oocitos/efectos de los fármacos , Embarazo , Proteínas de Unión al ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Telómero/efectos de los fármacos , Zidovudina/efectos adversos , Zidovudina/metabolismo , Cigoto/efectos de los fármacos
19.
Life Sci ; 287: 120095, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715135

RESUMEN

AIMS: This study aimed to evaluate the ability of compound 13d to induce autophagy and to promote apoptosis of tumor cells and its interaction mechanism. MATERIALS AND METHODS: Using CCK-8 assay, transwell assay, fluorescence resonance energy transfer melting analysis (FRET), transmission electron microscopy, flow cytometry assay, immunofluorescence assay, Western blot analysis, and wound healing assay. KEY FINDINGS: The results indicated that compound 13d could induce autophagy and apoptosis of gastric cancer cells. Moreover, the findings of CCK-8 assay, colony formation, migration and invasion assay, and wound healing assay revealed that compound 13d would effectively inhibit cell proliferation, migration, and invasion. Its IC50 value is about 2.4 µM against gastric cancer cells, which is similar to positive drug­platinum. 13d specific induction of telomere G-quadruplex formation was proved in extracellular FRET melting assay, and indirectly affected telomerase activity. G-quadruplex formation promoted cell apoptosis and autophagy. Upon incorporating the autophagy inhibitors 3-MA and HCQ, the expression of the autophagy marker protein LC3 was then checked, suggesting that the compound 13d influences the autophagy flux. Furthermore, knocking down the autophagy-related gene Atg5 to reduce the level of autophagy enhances the anti-tumor activity and increases apoptotic cells' proportion. Mechanistic experiments have shown that blocking the Akt/m-TOR signal pathway plays a crucial role in autophagy and G-quadruplex induced telomere dysfunction. DNA damage is the leading cause of autophagy. Compound 13d combined with autophagy inhibitor can inhibit tumor cells more effectively. SIGNIFICANCE: Our findings demonstrate that compound 13d as a telomeric G-quadruplex ligand induces Telomere dysfunction, DNA damage response, autophagy, and apoptosis in gastric cancer cells by blocking the Akt/m-TOR signaling pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Citoprotección/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Fenantrolinas/administración & dosificación , Neoplasias Gástricas , Telómero/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Quelantes/administración & dosificación , Citoprotección/fisiología , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Telómero/metabolismo
20.
Biomolecules ; 11(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439779

RESUMEN

Telomere maintenance plays important roles in genome stability and cell proliferation. Tumor cells acquire replicative immortality by activating a telomere-maintenance mechanism (TMM), either telomerase, a reverse transcriptase, or the alternative lengthening of telomeres (ALT) mechanism. Recent advances in the genetic and molecular characterization of TMM revealed that telomerase activation and ALT define distinct neuroblastoma (NB) subgroups with adverse outcomes, and represent promising therapeutic targets in high-risk neuroblastoma (HRNB), an aggressive childhood solid tumor that accounts for 15% of all pediatric-cancer deaths. Patients with HRNB frequently present with widely metastatic disease, with tumors harboring recurrent genetic aberrations (MYCN amplification, TERT rearrangements, and ATRX mutations), which are mutually exclusive and capable of promoting TMM. This review provides recent insights into our understanding of TMM in NB tumors, and highlights emerging therapeutic strategies as potential treatments for telomerase- and ALT-positive tumors.


Asunto(s)
Genoma Humano , Proteína Proto-Oncogénica N-Myc/genética , Neoplasias del Sistema Nervioso/genética , Neuroblastoma/genética , Telomerasa/genética , Telómero/química , Proteína Nuclear Ligada al Cromosoma X/genética , Antineoplásicos/uso terapéutico , Niño , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Mutación , Proteína Proto-Oncogénica N-Myc/metabolismo , Metástasis de la Neoplasia , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Neoplasias del Sistema Nervioso/mortalidad , Neoplasias del Sistema Nervioso/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Neuroblastoma/patología , Factores de Riesgo , Transducción de Señal , Análisis de Supervivencia , Telomerasa/metabolismo , Telómero/efectos de los fármacos , Telómero/patología , Homeostasis del Telómero , Proteína Nuclear Ligada al Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...