Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.221
Filtrar
1.
Sci Total Environ ; 942: 173697, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38851350

RESUMEN

Surfactants as synergistic agents are necessary to improve the stability and utilization of pesticides, while their use is often accompanied by unexpected release into the environment. However, there are no efficient strategies available for screening low-toxicity surfactants, and traditional toxicity studies rely on extensive experimentation which are not predictive. Herein, a commonly used agricultural adjuvant Triton X (TX) series was selected to study the function of amphipathic structure to their toxicity in zebrafish. Molecular dynamics (MD) simulations, transcriptomics, metabolomics and machine learning (ML) were used to study the toxic effects and predict the toxicity of various TX. The results showed that TX with a relatively short hydrophilic chain was highly toxic to zebrafish with LC50 of 1.526 mg/L. However, TX with a longer hydrophilic chain was more likely to damage the heart, liver and gonads of zebrafish through the arachidonic acid metabolic network, suggesting that the effect of surfactants on membrane permeability is the key to determine toxic results. Moreover, biomarkers were screened through machine learning, and other hydrophilic chain lengths were predicted to affect zebrafish heart health potentially. Our study provides an advanced adjuvants screening method to improve the bioavailability of pesticides while reducing environmental impacts.


Asunto(s)
Aprendizaje Automático , Simulación de Dinámica Molecular , Plaguicidas , Pez Cebra , Animales , Plaguicidas/toxicidad , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Octoxinol/toxicidad
2.
Mar Environ Res ; 198: 106535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704932

RESUMEN

One of the most difficult-to-manage new contaminants constantly released into the environment is linear alkylbenzene sulphonate (LAS), an anionic surfactant. Significant volumes of LAS are received by the Mediterranean coast of Egypt. The current study is a comprehensive assessment of the environmental fate of the LAS 1505 km off the Mediterranean coast of Egypt in the fall of 2023 in order to track its geographic spread and eventual demise in the water column. Critical analysis of LAS revealed that it is vertically distributed in various ways according to sources, uses, production amounts, and salinity levels. The vertical variation of LAS can be explained by its amphiphilic structure. A significant increase in surfactant concentration (>300 µg/L) was recorded in 66% and 43% of the total samples, ranging from 301.128 to 455.36 and from 304.556 to 486.135 for the western and eastern sides along the Egyptian Mediterranean coast, respectively. Evaluation of the average acute and chronic risk quotient (RQ) along the investigated locations revealed that fish were the most susceptible to LAS in both long and short exposure periods. The presented results also indicated significant LAS toxicity to three trophic levels (RQ values > 1). LAS toxicity to marine organisms was greater in the western than in eastern coastal regions according to acute and chronic mixture risk characterization ratios (RCRmix). The three trophic levels in the study area had the following order of acute relative contribution (RC) to LAS toxicity: fish > invertebrates > algae. The ANOVA test results showed that in both the western and eastern regions, LAS varied significantly (p < 0.05) with salinity (1.04E-60 and 5.44E-42) and depth (6.02E-65 and 1.59E-47), respectively. In addition, a significant difference was observed using the ANOVA test between the eastern and western regions of the Egyptian Mediterranean coast.


Asunto(s)
Monitoreo del Ambiente , Tensoactivos , Contaminantes Químicos del Agua , Egipto , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Tensoactivos/toxicidad , Mar Mediterráneo , Animales , Ácidos Alcanesulfónicos/toxicidad , Peces , Medición de Riesgo , Organismos Acuáticos/efectos de los fármacos , Agua de Mar/química
3.
Mar Pollut Bull ; 203: 116491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754321

RESUMEN

Endosymbionts (Symbiodiniaceae) play a vital role in the health of corals. Seawater pollution can harm these endosymbionts and dispersants used during oil spill cleanup can be extremely toxic to these organisms. Here, we examined the impact of oil and a specific dispersant, Corexit-9500, on two representative endosymbionts - Symbiodinium and Cladocopium - from the Southwestern endemic coral Mussismilia braziliensis. The survival and photosynthetic potential of the endosymbionts decreased dramatically after exposure to the dispersant and oil by ~25 % after 2 h and ~50 % after 7 days. Low concentrations of dispersant (0.005 ml/l) and dispersed oil (Polycyclic Aromatic Hydrocarbons, 1132 µg/l; Total Petroleum Hydrocarbons, 595 µg/l) proved highly toxic to both Symbiodinium and Cladocopium. These levels triggered a reduction in growth rate, cell size, and cell wall thickness. After a few hours of exposure, cellular organelles were damaged or destroyed. These acute toxic effects underline the fragile nature of coral endosymbionts.


Asunto(s)
Antozoos , Dinoflagelados , Contaminación por Petróleo , Petróleo , Simbiosis , Contaminantes Químicos del Agua , Antozoos/efectos de los fármacos , Antozoos/fisiología , Animales , Petróleo/toxicidad , Dinoflagelados/fisiología , Dinoflagelados/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Lípidos , Tensoactivos/toxicidad
4.
Environ Toxicol Pharmacol ; 107: 104434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582069

RESUMEN

The potential toxic effects of linear alkylbenzene sulfonate (LAS), widely used in commercial detergents and cleaners, on submerged macrophytes remain unclear. We conducted a two-week exposure experiment to investigate LAS toxicity on five submerged macrophytes (four native and one exotic), focusing on their growth and physiological responses. The results showed that lower concentrations of LAS (< 5 mg/L) slightly stimulated the growth of submerged macrophytes, while higher doses inhibited it. Increasing LAS concentration resulted in decreased chlorophyll content, increased MDA content and POD activity, and initially increased SOD and CAT activities before declining. Moreover, Elodea nuttallii required a higher effective concentration for growth compared to native macrophytes. These findings suggest that different species of submerged macrophytes exhibited specific responses to LAS, with high doses (exceeding 5 ∼ 10 mg/L) inhibited plant growth and physiology. However, LAS may promote the dominance of surfactant-tolerant exotic submerged macrophytes in polluted aquatic environments.


Asunto(s)
Ácidos Alcanesulfónicos , Antioxidantes , Clorofila , Tensoactivos/toxicidad , Ácidos Alcanesulfónicos/toxicidad
5.
J Hazard Mater ; 470: 134109, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547751

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.


Asunto(s)
Biodegradación Ambiental , Células Inmovilizadas , Hidrocarburos Policíclicos Aromáticos , Rhodococcus , Tensoactivos , Pez Cebra , Rhodococcus/metabolismo , Tensoactivos/toxicidad , Tensoactivos/química , Tensoactivos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Animales , Células Inmovilizadas/metabolismo , Polisorbatos/toxicidad , Polisorbatos/química , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Fenantrenos/toxicidad , Fenantrenos/metabolismo , Fenantrenos/química , Embrión no Mamífero/efectos de los fármacos
6.
Environ Sci Pollut Res Int ; 31(19): 27817-27828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38517631

RESUMEN

Water and several chemicals, including dyestuffs, surfactants, acids, and salts, are required during textile dyeing processes. Surfactants are harmful to the aquatic environment and induce several negative biological effects in exposed biota. In this context, the present study aimed to assess acute effects of five surfactants, comprising anionic and nonionic classes, and other auxiliary products used in fiber dyeing processes to aquatic organisms Vibrio fischeri (bacteria) and Daphnia similis (cladocerans). The toxicities of binary surfactant mixtures containing the anionic surfactant dodecylbenzene sulfonate + nonionic fatty alcohol ethoxylate and dodecylbenzene sulfonate + nonionic alkylene oxide were also evaluated. Nonionic surfactants were more toxic than anionic compounds for both organisms. Acute nonionic toxicity ranged from 1.3 mg/L (fatty alcohol ethoxylate surfactant) to 2.6 mg/L (ethoxylate surfactant) for V. fischeri and from 1.9 mg/L (alkylene oxide surfactant) to 12.5 mg/L (alkyl aryl ethoxylated and aromatic sulfonate surfactant) for D. similis, while the anionic dodecylbenzene sulfonate EC50s were determined as 66.2 mg/L and 19.7 mg/L, respectively. Both mixtures were very toxic for the exposed organisms: the EC50 average in the anionic + fatty alcohol ethoxylate mixture was of 1.0 mg/L ± 0.11 for V. fischeri and 4.09 mg/L ± 0.69 for D. similis. While the anionic + alkylene oxide mixture, EC50 of 3.34 mg/L for D. similis and 3.60 mg/L for V. fischeri. These toxicity data suggested that the concentration addition was the best model to explain the action that is more likely to occur for mixture for the dodecylbenzene sulfonate and alkylene oxide mixtures in both organisms. Our findings also suggest that textile wastewater surfactants may interact and produce different responses in aquatic organisms, such as synergism and antagonism. Ecotoxicological assays provide relevant information concerning hazardous pollutants, which may then be adequately treated and suitably managed to reduce toxic loads, associated to suitable management plans.


Asunto(s)
Aliivibrio fischeri , Bencenosulfonatos , Daphnia , Tensoactivos , Aguas Residuales , Contaminantes Químicos del Agua , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Aguas Residuales/química , Aliivibrio fischeri/efectos de los fármacos , Animales , Daphnia/efectos de los fármacos , Ecotoxicología , Textiles
7.
Mar Pollut Bull ; 201: 116280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518574

RESUMEN

The utilization of chemical dispersants as a way of mitigating of oil spills in marine eco-system has been extensively documented worldwide. Hence, in this research we have successfully synthesized two amphiphilic asymmetric Dicaionic Ionic Liquids (DILs). The efficacy of these synthesized DILs as dispersants was assessed using the baffled flask test (BFT). The results indicated a dispersant effectiveness ranging from 47.98 % to 79.76 % for the dispersion of heavy crude oil across various temperature ranges (10-30 °C). These dispersant-to-oil ratios (DOR) were maintained at 3: 100 (V%), showcasing promising dispersant capabilities for mitigating heavy crude oil spills. Additionally, acute toxicity tests conducted on Nile tilapia and Oreochromis niloticus have demonstrated the relatively low toxicity of the IL-dispersants, with Lethal Concentration 50 (LC50) values exceeding 100 ppm after 96 h. This suggests a practically slight toxic effect on the tested fish. In summary, the newly developed IL-dispersants are considered to be conducive to environmentally benign oil spill remediation.


Asunto(s)
Antracenos , Líquidos Iónicos , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Líquidos Iónicos/toxicidad , Tensoactivos/toxicidad , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Petróleo/toxicidad
8.
Sci Prog ; 107(1): 368504241231663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38490166

RESUMEN

This study examined the histological aberrations in the gill and liver tissues and behavioural changes of Tilapia guineensis fingerlings exposed to lethal concentrations of used Oilfield-based emulsifiers for 96 h. Various concentrations of the surfactants were tested, ranging from 0.0 to 15.0 ml/L. The behaviour of the fish was observed throughout the experiment, and the results showed that increasing concentrations of the surfactants led to progressively abnormal behaviour, including hyperventilation and altered opercular beat frequency. These behavioural changes indicated respiratory distress and neurotoxic effects. Histological analysis revealed structural aberrations in the gill and liver tissues, with higher concentrations causing more severe damage, such as lesions, necrosis, inflammation, and cellular degeneration. This implies that surfactants released even at low concentrations are capable of inducing changes in the tissues of aquatic organisms. These findings highlight the toxic effects of the surfactants on fish health and provide biomarkers of toxicity. Future research should focus on understanding the specific mechanisms and long-term consequences of surfactant toxicity on fish genetic composition, populations, and ecosystems to implement effective conservation measures.


Asunto(s)
Tilapia , Contaminantes Químicos del Agua , Animales , Ecosistema , Yacimiento de Petróleo y Gas , Papúa Nueva Guinea , Hígado , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Chemosphere ; 353: 141589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432465

RESUMEN

A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.


Asunto(s)
Glicoles de Etileno , Glicerol/análogos & derivados , Metanol , Polisorbatos , Animales , Polisorbatos/toxicidad , Glicerol/toxicidad , Dimetilsulfóxido , Tensoactivos/toxicidad , Solventes/toxicidad , Erizos de Mar , Etanol/farmacología , Excipientes/química , 1-Propanol , Embrión no Mamífero , Mamíferos , Polietilenglicoles
10.
Environ Int ; 185: 108472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368720

RESUMEN

Synthetic surfactant products are continuously released into the aquatic environment in large quantities, posing a burden on ecosystems as a "pseudo-persistent" organic pollutant. Threshold derivation for protecting aquatic ecosystems is challenging due to the various homologous components of surfactants. In this study, five commercially available products were chosen as representative major types of surfactants. Corresponding quantitative structure-activity relationships (QSAR) were screened and subsequently combined with interspecific correlation estimation (ICE) to develop species sensitivity distributions (SSDs) for each component. Then, the 5th percentile hazard concentrations (HC5s) were calculated. The results indicated that the developed QSAR-ICE models demonstrated good toxicity prediction performance. The HC5 of each component showed a negatively correlation with alkyl chain length and a positive correlation with the amount of ethylene oxide. The HC5s of surfactants correlate with variations in their charged properties. Quaternary ammonium compounds (QAC) exhibited the lowest HC5s (8.5 ± 18.3 µg/L), followed by alcohol ethoxylates (AE), linear alkylbenzene sulfonates (LAS), and alcohol ethoxylated sulfates (AES); and alkyl oxide (AO) exhibited the highest HC5s (15784.2 ± 21552.6 µg/L). For cationic surfactants, the HC5s in the invertebrates were significantly lower than those in the fish; conversely, for anionic surfactants, the opposite was true, indicating a difference in the toxic mechanisms of surfactants with different charged properties across species taxa. Additionally, among invertebrates, shellfish demonstrated heightened sensitivity to surfactants, owing to their high accumulation and low metabolism of pollutants. Salmoniformes were the most sensitive among all species, indicating the necessity of prioritizing these species for aquatic ecological conservation in surfactant-contaminated waters.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ecosistema , Tensoactivos/toxicidad , Invertebrados , Agua Dulce
11.
Langmuir ; 40(4): 2242-2253, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38221732

RESUMEN

Gemini surfactants, due to their unique structural features and enhanced properties compared to conventional surfactants, are becoming more popular in the domain of colloid and interface science, drug delivery, and gene delivery science. This distinct class of surfactants forms a wide range of self-assembled aggregates depending on their chemical structure and environmental conditions. The present work aims to develop Gemini with three distinct chain lengths linked through the ester group and quaternary nitrogen head groups that can bind DNA molecules and ultimately serve as vectors for DNA transfection. Thus, we synthesized three distinct cationic Gemini with 12, 14, and 16 carbons in their tails and studied the effect of the hydrocarbon chain length on their physicochemical properties and biological applications. The self-assembly of these Geminis in aqueous solution was investigated by a number of techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. All three Gemini were extremely surface active and self-assembled above a very low critical micelle concentration. Calorimetric studies suggested the formation of thermodynamically favorable aggregates in an aqueous medium. Chain length dependence was observed in the size as well as the morphology of the aggregates. These Gemini ions were found to bind DNA strongly, as indicated by the high binding constant values. In vitro gene transfection studies using the RAW 264.7 cell line suggested that all three cationic Gemini had transfection efficiencies comparable to that of commercial standard turbofectamine. MTT assay was also performed for concentration selection while using these Gemini as transfection vectors. Overall, it was observed that Gemini had very little cytotoxicity within the investigated concentration range, highlighting the significance of the ester link within the structure. When compared with known antimicrobials such as kanamycin and ampicillin, all three Gemini furnished excellent antimicrobial activity in both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms.


Asunto(s)
Antiinfecciosos , ADN , Transfección , ADN/química , Hidrocarburos , Tensoactivos/toxicidad , Tensoactivos/química , Antiinfecciosos/toxicidad
12.
J Oleo Sci ; 73(1): 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171725

RESUMEN

Studies devised through the fusion of cleaning and environmental sciences can be summarized as follows: new cleaning kinetics applying a probability density function and a surface chemical approach to the aquatic toxicity of surfactants. Cleaning power analysis using the probability density functional method combines conventional cleaning kinetics using a first-order reaction equation with a risk analysis method using a probability density function. It is possible to analyze the cleaning mechanism from the obtained parameter values. It is also possible to determine whether the interaction between two different cleaning elements corresponds to a synergistic, additive, or offsetting effect. Studies on the aquatic toxicity of surfactants have focused on the surface tension at which surfactants exhibit toxicity, changes in toxicity due to water quality, and biodegradation, and the presence of adsorbed substances have been identified.


Asunto(s)
Tensoactivos , Tensoactivos/toxicidad , Tensoactivos/química , Cinética
13.
Sci Total Environ ; 912: 169176, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086477

RESUMEN

The ecological risks of surfactants have been largely neglected because of their low toxicity. Multiscale studies have indicated that even if a pollutant causes no acute toxicity in a test species, it may alter interspecific interactions and community characteristics through sublethal impacts on test organisms. Therefore, we investigated the lethal and sublethal responses of the plankton species Scenedesmus quadricauda, Chlorella vulgaris, and Daphnia magna, to surfactant Tween-80. Then, high-scale responses in grazer life-history traits and stability of the D. magna-larval damselfly system were further explored. The results showed that discernible adverse effects on the growth or survival of the three plankton species were evident only at exceptionally high concentrations (≥100 mg L-1). However, 10 mg L-1 of Tween-80 notably affected the MDA concentration in grazer species, simultaneously displaying a tendency to diminish grazer's heartbeat and swimming frequency. Furthermore, Tween-80 reduced the grazer reproductive capacity and increased its predation risk by larval damselflies, which ultimately jeopardized the stability of the D. magna-larval damselfly system at much lower concentrations (10-100 fold lower) than the individual-scale responses. This study provides evidence that high-scale traits are far more sensitive to Tween-80, compared with individual-scale traits for plankton organisms, suggesting that the ecological risks of Tween-80 demand careful reassessment. SYNOPSIS: The concentration of Tween-80 needed to induce changes in community characteristics is markedly lower than that needed to produce individual-scale consequences. Thus, high-scale analyses have broad implications for understanding the hazardous effects of surfactants compared with an individual-scale analysis.


Asunto(s)
Chlorella vulgaris , Scenedesmus , Contaminantes Químicos del Agua , Animales , Plancton , Tensoactivos/toxicidad , Polisorbatos/toxicidad , Daphnia , Contaminantes Químicos del Agua/toxicidad
14.
Environ Toxicol Chem ; 43(1): 222-233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861380

RESUMEN

Trisiloxane surfactants are often applied in formulated adjuvant products to blooming crops, including almonds, exposing the managed honey bees (Apis mellifera) used for pollination of these crops and persisting in colony matrices, such as bee bread. Despite this, little is known regarding the effects of trisiloxane surfactants on important aspects of colony health, such as reproduction. In the present study, we use laboratory assays to examine how exposure to field-relevant concentrations of three trisiloxane surfactants found in commonly used adjuvant formulations affect queen oviposition rates, worker interactions with the queen, and worker susceptibility to endogenous viral pathogens. Trisiloxane surfactants were administered at 5 mg/kg in pollen supplement diet for 14 days. No effects on worker behavior or physiology could be detected, but our results demonstrate that hydroxy-capped trisiloxane surfactants can negatively affect queen oviposition and methyl-capped trisiloxane surfactants cause increased replication of Deformed Wing Virus in workers, suggesting that trisiloxane surfactant use while honey bees are foraging may negatively impact colony longevity and growth. Environ Toxicol Chem 2024;43:222-233. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Virus ARN , Tensoactivos , Humanos , Femenino , Abejas , Animales , Tensoactivos/toxicidad , Reproducción , Replicación Viral
15.
Sci Total Environ ; 913: 169748, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160813

RESUMEN

Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown. In the present study, we investigated the ecotoxicity of a formulation of Lipid Surfactant Submicron Particles (LSSPs) loaded with melatonin at 1 mg/mL. The LSSPs formulation has been developed to be fully compliant with regulatory for its potential use in the market and all components are food additives. The same formulation without the thickening agent xanthan gum (stabilizer in water phase) designated as LSSP-xg, was also tested. Two soil model invertebrate species were tested in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). Effects were assessed based on the OECD standard guideline (28 days) and its extension, the longer-term exposure (56 days). Assessed endpoints were survival, reproduction, and size. LSSPs and LSSP-xg were toxic to E. crypticus and F. candida reducing their survival and reproduction in a dose-dependent way: e.g., 28-day exposure: E. crypticus: LC/EC50 = 30/15 mg LSSPs/kg soil and F. candida LC/EC50 = 55/44 mg LSSPs/kg soil, with similar values for LSSP-xg. Size was also reduced for F. candida but was the least sensitive endpoint. There were no indications that toxicity increased with longer term exposure. The results provide relevant information on ecotoxicity of a AdMa and highlights the need for awareness of the potential risks, even on products and additives usually used in food or cosmetic industry. Further information on single components and on their specific assembly is necessary for the interpretation of results, as it is not fully clear what causes the toxicity in this specific AdMa. This represents a typical challenge for AdMa hazard assessment scenario.


Asunto(s)
Artrópodos , Melatonina , Oligoquetos , Contaminantes del Suelo , Animales , Melatonina/farmacología , Tensoactivos/toxicidad , Suelo , Reproducción , Lipoproteínas/farmacología , Agua , Contaminantes del Suelo/análisis
16.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570764

RESUMEN

Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.


Asunto(s)
Citrus sinensis , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Tensoactivos/toxicidad , Tensoactivos/metabolismo , Contaminación por Petróleo/análisis , Citrus sinensis/metabolismo , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/análisis
17.
Regul Toxicol Pharmacol ; 143: 105441, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37433368

RESUMEN

In contrast to water-soluble respiratory tract irritants in their gas phase, the physicochemical properties of 'hydrophilicity' vs. 'lipophilicity' are the preponderant factors that dictate the site of major retention of the gas at the portal of entry. The lipophilic physical properties of phosgene gas facilitate retention in the alveolar region lined with amphipathic pulmonary surfactant (PS). The relationship between exposure and adverse health outcomes is complex, may vary over time, and is dependent on the biokinetics, biophysics, and pool size of PS relative to the inhaled dose of phosgene. Kinetic PS depletion is hypothesized to occur as inhalation followed by inhaled dose-dependent PS depletion. A kinetic model was developed to better understand the variables characterizing the inhaled dose rates of phosgene vs. PS pool size reconstitution. Modeling and empirical data from published evidence revealed that phosgene gas unequivocally follows a concentration x exposure (C × t) metric, independent of the frequency of exposure. The modeled and empirical data support the hypothesis that the exposure standards of phosgene are described best by a C × t time-averaged metric. Modeled data favorably duplicate expert panel-derived standards. Peak exposures within a reasonable range are of no concern.


Asunto(s)
Fosgeno , Surfactantes Pulmonares , Fosgeno/toxicidad , Exposición por Inhalación/efectos adversos , Benchmarking , Pulmón/patología , Tensoactivos/toxicidad
18.
Environ Toxicol Chem ; 42(8): 1685-1695, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222283

RESUMEN

The effects of silver nanoparticles (Ag NPs) on the soil environment have attracted considerable research attention. Previous studies mainly focused on agent-coated Ag NPs, which inevitably introduce additional disturbance of chemical agents to the intrinsic property of Ag NPs. We investigated the environmental effects induced by pure surfactant-free Ag NPs (SF-Ag NPs), including soil enzyme activities (urease, sucrase, phosphatase, and ß-glucosidase), bacterial community structure, and functional profile, over different exposure periods in the present study. The results indicated that these enzymes, especially urease and phosphatases, exhibit different responses to SF-Ag NPs and are more susceptible to SF-Ag NPs than other enzymes. Surfactant-free Ag NPs can also induce a decrease in bacterial diversity and a change of bacterial community structure. The abundance of SF-Ag NPs in Proteobacteria increased, but decreased in Acidobacteria after 14 days of exposure. Moreover, the abundance of genus Cupriavidus was significantly higher than those of the respective controls. By contrast, SF-Ag NP exposure for 30 days could attenuate these negative effects. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) prediction revealed that SF-Ag NPs exert a negligible effect on bacterial function, thereby suggesting that functional redundancy is conduced to bacterial community tolerance to SF-Ag NPs. These findings will help us further understand the environmental toxicity of Ag NPs. Environ Toxicol Chem 2023;42:1685-1695. © 2023 SETAC.


Asunto(s)
Nanopartículas del Metal , Suelo , Suelo/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/toxicidad , Plata/química , Tensoactivos/toxicidad , Filogenia , Ureasa , Bacterias
19.
Toxicology ; 492: 153546, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187339

RESUMEN

Currently, testing of acute inhalation toxicity in animals is required for regulation of pesticide active ingredients and formulated plant protection products. The main outcome of the regulatory tests is "lethal concentration 50″ (LC50), i.e. the concentration that will kill 50% of the exposed animals. However, ongoing work aims to identify New Approach Methods (NAMs) to replace animal experiments. To this end, we studied 11 plant protection products, sold in the European Union (EU), for their ability to inhibit lung surfactant function in vitro in the constrained drop surfactometer (CDS). In vivo, inhibition of lung surfactant function can lead to alveolar collapse and reduction of tidal volume. Therefore, we also assessed changes in breathing patterns of mice during exposure to the same products. Six of the eleven products inhibited lung surfactant function, and six products reduced tidal volume in mice. In vitro inhibition of lung surfactant function predicted reduction in tidal volume in exposed mice with a sensitivity of 67% and a specificity of 60%. Two products were labelled as "harmful if inhaled", both inhibited surfactant function in vitro and reduced tidal volume in mice. Lung surfactant function inhibition in vitro predicted reduction in tidal volume for plant protection products to a lesser degree than for previously tested substances. This could owe to the requirement for rigorous testing of plant protection products prior to approval that might have selected against substances that could potentially inhibit lung surfactant, e.g. due to severe adverse effects during inhalation.


Asunto(s)
Pulmón , Surfactantes Pulmonares , Ratones , Animales , Volumen de Ventilación Pulmonar , Surfactantes Pulmonares/toxicidad , Administración por Inhalación , Tensoactivos/toxicidad
20.
Toxicol In Vitro ; 89: 105576, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36809832

RESUMEN

The purpose of this study was to develop a defined approach (DA) for eye hazard identification according to the three UN GHS categories for surfactants (DASF). The DASF is based on a combination of Reconstructed human Cornea-like Epithelium test methods (OECD TG 492; EpiOcular™ EIT and SkinEthic™ HCE EIT) and the modified Short Time Exposure (STE) test method (0.5% concentration of the test substance after a 5-min exposure). DASF performance was assessed by comparing the prediction results with the historical in vivo data classification and against the criteria established by the OECD expert group on eye/skin. The DASF yielded a balanced accuracy of 80.5% and 90.9% of Cat. 1 (N = 22), 75.0% of Cat. 2 (N = 8), and 75.5% of No Cat. (N = 17) surfactants were correctly predicted. The percentage of mispredictions was below the established maximum values except for in vivo No Cat. surfactants that were over-predicted as Cat. 1 (5.6%, N = 17), with a maximum value set at 5%. The percentage of correct predictions did meet the minimum performance values of 75% Cat. 1, 50% Cat. 2, and 70% No Cat. established by the OECD experts. The DASF has shown to be successful for eye hazard identification of surfactants.


Asunto(s)
Ojo , Surfactantes Pulmonares , Humanos , Animales , Tensoactivos/toxicidad , Irritantes/toxicidad , Pruebas de Toxicidad/métodos , Córnea , Naciones Unidas , Alternativas a las Pruebas en Animales , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...