Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.944
Filtrar
1.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731555

RESUMEN

Anthocyanins are colored water-soluble plant pigments. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lowers the risk of neurodegenerative diseases. The copigmentation caused by copigments is considered an effective way to stabilize anthocyanins against adverse environmental conditions. This is attributed to the covalent and noncovalent interactions between colored forms of anthocyanins (flavylium ions and quinoidal bases) and colorless or pale-yellow organic molecules (copigments). The present work carried out a theoretical study of the copigmentation process between cyanidin and resveratrol (CINRES). We used three levels of density functional theory: M06-2x/6-31g+(d,p) (d3bj); ωB97X-D/6-31+(d,p); APFD/6-31+(d,p), implemented in the Gaussian16W package. In a vacuum, the CINRES was found at a copigmentation distance of 3.54 Å between cyanidin and resveratrol. In water, a binding free energy ∆G was calculated, rendering -3.31, -1.68, and -6.91 kcal/mol, at M06-2x/6-31g+(d,p) (d3bj), ωB97X-D/6-31+(d,p), and APFD/6-31+(d,p) levels of theory, respectively. A time-dependent density functional theory (TD-DFT) was used to calculate the UV spectra of the complexes and then compared to its parent molecules, resulting in a lower energy gap at forming complexes. Excited states' properties were analyzed with the ωB97X-D functional. Finally, Shannon aromaticity indices were calculated and isosurfaces of non-covalent interactions were evaluated.


Asunto(s)
Antocianinas , Teoría Funcional de la Densidad , Resveratrol , Antocianinas/química , Resveratrol/química , Termodinámica , Modelos Moleculares , Agua/química
2.
Food Res Int ; 186: 114394, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729737

RESUMEN

The ability of spices (bay leaf, star anise, and red pepper) and their characteristic phenolic compounds (quercetin, kaempferol, and capsaicin) to inhibit Heterocyclic aromatic amines (HAAs) in roasted beef patties were compared. Density functional theory (DFT) was used to reveal phenolic compounds interacting with HAAs-related intermediates and free radicals to explore possible inhibitory mechanisms for HAAs. 3 % red chili and 0.03 % capsaicin reduced the total HAAs content by 57.09 % and 68.79 %, respectively. DFT demonstrated that this was due to the stronger interaction between capsaicin and the ß-carboline HAAs intermediate (Ebind = -32.95 kcal/mol). The interaction between quercetin and phenylacetaldehyde was found to be the strongest (Ebind = -17.47 kcal/mol). Additionally, DFT indicated that capsaicin reduced the carbonyl content by transferring hydrogen atoms (HAT) to eliminate HO·, HOO·, and carbon-centered alkyl radicals. This study provided a reference for the development of DFT in the control of HAAs.


Asunto(s)
Aminas , Culinaria , Teoría Funcional de la Densidad , Compuestos Heterocíclicos , Fenoles , Aminas/química , Bovinos , Compuestos Heterocíclicos/química , Animales , Fenoles/análisis , Capsaicina/química , Capsaicina/farmacología , Capsaicina/análogos & derivados , Capsicum/química , Escatol/análisis , Especias/análisis , Carne Roja/análisis , Productos de la Carne/análisis , Calor , Quercetina/análogos & derivados , Quercetina/análisis , Quercetina/farmacología
3.
Phys Chem Chem Phys ; 26(19): 14160-14170, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712976

RESUMEN

Protonated ions of fucose-containing oligosaccharides are prone to undergo internal glycan rearrangement which results in chimeric fragments that obfuscate mass-spectrometric analysis. Lack of accessible tools that would facilitate systematic analysis of glycans in the gas phase limits our understanding of this phenomenon. In this work, we use density functional theory modeling to interpret cryogenic IR spectra of Lewis a and blood group type H1 trisaccharides and to establish whether these trisaccharides undergo the rearrangement during gas-phase analysis. Structurally unconstrained search reveals that none of the parent ions constitute a thermodynamic global minimum. In contrast, predicted collision cross sections and anharmonic IR spectra provide a good match to available experimental data which allowed us to conclude that fucose migration does not occur in these antigens. By comparing the predicted structures with those obtained for Lewis x and blood group type H2 epitopes, we demonstrate that the availability of the mobile proton and a large difference in the relative stability of the parent ions and rearrangement products constitute the prerequisites for the rearrangement reaction.


Asunto(s)
Antígenos del Grupo Sanguíneo de Lewis , Antígenos del Grupo Sanguíneo de Lewis/química , Epítopos/química , Termodinámica , Polisacáridos/química , Teoría Funcional de la Densidad , Antígenos de Grupos Sanguíneos/química , Espectrofotometría Infrarroja , Oligosacáridos/química , Trisacáridos/química
4.
Org Biomol Chem ; 22(19): 3966-3978, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690804

RESUMEN

Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.


Asunto(s)
Aminoácidos , Cationes , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Aminoácidos/química , Cationes/química , Radicales Libres/química , Termodinámica , Agua/química , Modelos Moleculares
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124346, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692105

RESUMEN

Considering the health relevance of Chagas' disease, recent research efforts have focused on developing more efficient drug delivery systems containing nifurtimox (NFX). This paper comprehensively investigates NFX through conformational analysis and spectroscopic characterization. Using a conformer-rotamer ensemble sampling tool (CREST-xtb), five distinct conformers of NFX were sampled within a 3.0 kcal mol-1 relative energy window. Subsequently, such structures were used as inputs for geometry optimization by density functional theory (DFT) at B3LYP-def2-TZVP level of theory. Notably, harmonic vibrational frequencies were calculated to establish an in-depth comparison with experimental results and existing literature for the NFX or similar molecules and functional groups, thereby achieving a widely reasoned assignment of the mid-infrared band absorptions for the first time. Moreover, UV-VIS spectra of NFX were obtained in several solvents, enabling the determination of the molar absorptivity coefficient for the two electronic transitions observed for NFX. Among the aprotic solvents, a bathochromic effect was observed in the function of the dielectric constants. Furthermore, a hypochromic effect was observed when the drug was dissolved in protic solvents. These findings offer crucial support for new drug delivery systems containing NFX while demonstrating the potential of spectrophotometric studies in establishing quality control assays for NFX drug products.


Asunto(s)
Enfermedad de Chagas , Conformación Molecular , Nifurtimox , Enfermedad de Chagas/tratamiento farmacológico , Nifurtimox/química , Espectrofotometría Ultravioleta , Tripanocidas/química , Modelos Moleculares , Teoría Funcional de la Densidad , Trypanosoma cruzi/efectos de los fármacos , Solventes/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124325, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701574

RESUMEN

A Schiff-base Ethyl (E)-2-(3-((2-carbamothioylhydrazono)methyl)-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (TZTS) dual functional colorimetric and photoluminescent chemosensor which includes thiazole and thiosemicarbazide has been synthesized to detect arsenic (As3+) ions selectively in DMSO: H2O (7:3, v/v) solvent system. The molecular structure of the probe was characterized via FT-IR, 1H, and 13C NMR & HRMS analysis. Interestingly, the probe exhibits a remarkable and specific colorimetric and photoluminescence response to As3+ ions when exposed to various metal cations. The absorption spectral changes of TZTS were observed upon the addition of As3+ ions, with a naked eye detectable color change from colorless to yellow color. Additionally, the chemosensor (TZTS) exhibited a new absorption band at 412 nm and emission enhancements in photoluminescence at 528 nm after adding As3+ ions. The limit of detection (LOD) for As3+ ions was calculated to be 16.5 and 7.19 × 10-9 M by the UV-visible and photoluminescent titration methods, respectively. The underlying mechanism and experimental observations have been comprehensively elucidated through techniques such as Job's plot, Benesi-Hildebrand studies, and density functional theory (DFT) calculations. For practical application, the efficient determination of As3+ ions were accomplished using a spike and recovery approach applied to real water samples. In addition, the developed probe was successfully employed in test strip applications, allowing for the naked-eye detection of arsenic ions. Moreover, fluorescence imaging experiments of As3+ ions in the breast cancer cell line (MCF-7) demonstrated their practical applications in biological systems. Consequently, these findings highlight the significant potential of the TZTS sensor for detecting As3+ ions in environmental analysis systems.


Asunto(s)
Arsénico , Colorimetría , Teoría Funcional de la Densidad , Tiazoles , Colorimetría/métodos , Humanos , Tiazoles/química , Tiazoles/análisis , Arsénico/análisis , Límite de Detección , Células MCF-7 , Iones/análisis , Imagen Óptica
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732115

RESUMEN

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Asunto(s)
Antivirales , Aprendizaje Automático , Simulación de Dinámica Molecular , Antivirales/química , Antivirales/farmacología , Teoría Funcional de la Densidad , Termodinámica , Isoindoles/química , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Azoles/química , Azoles/farmacología
8.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732218

RESUMEN

Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B-F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands n → π* and π → π* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom.


Asunto(s)
Benzaldehídos , Benzaldehídos/química , Espectroscopía de Resonancia Magnética , Teoría Funcional de la Densidad , Flúor/química , Boro/química , Modelos Moleculares , Ésteres/química , Espectrofotometría Infrarroja , Estructura Molecular , Iones/química
9.
Sci Rep ; 14(1): 10826, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734799

RESUMEN

Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.


Asunto(s)
ADN , Guanina , Nanotubos de Carbono , Nanotubos de Carbono/química , ADN/química , Guanina/química , Teoría Funcional de la Densidad , Adenina/química , Citosina/química , Timina/química , Análisis de Secuencia de ADN/métodos , Electrones , Modelos Moleculares , Humanos
10.
Luminescence ; 39(5): e4760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738510

RESUMEN

The present communication reports on the synthesis of a novel methyl-pyridone azo fluorescent tag (MPAFT) were proven through 1H (NMR), FT-IR, UV-vis, and high-resolution mass spectrometry. The quantum chemical parameters of MPAFT were evaluated using density functional theory (DFT) analysis. It was further investigated for its latent fingerprint (LFPs) in various surfaces and anticounterfeiting applications. By exposing Level I-Level III, ridge features to UV light with a wavelength of 365 nm, a bioimaging investigation has also demonstrated the potential of MPAFT's emission behaviour. The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at MPAFT/MGCE (modified glassy carbon electrode) were used to explore the electrochemical sensitivity and reliable detection of dopamine (DA) in neutral PBS (pH 7) electrolyte solution, and the results show good sensitivity and detection. The lower detection limit for LSV was 0.81 µM under optimum conditions.


Asunto(s)
Dopamina , Técnicas Electroquímicas , Colorantes Fluorescentes , Pirazoles , Piridonas , Piridonas/química , Dopamina/análisis , Dopamina/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Pirazoles/química , Humanos , Estructura Molecular , Teoría Funcional de la Densidad , Imagen Óptica , Procesos Fotoquímicos
11.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38717304

RESUMEN

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Asunto(s)
Simulación de Dinámica Molecular , Canal Liberador de Calcio Receptor de Rianodina , Zinc , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Zinc/química , Zinc/metabolismo , Ligandos , Calcio/química , Calcio/metabolismo , Teoría Funcional de la Densidad , Sitios de Unión , Unión Proteica , Dedos de Zinc , Cafeína/química , Cafeína/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Humanos
12.
J Am Chem Soc ; 146(20): 14213-14224, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739765

RESUMEN

The formation of an amide bond is an essential step in the synthesis of materials and drugs, and in the assembly of amino acids to form peptides. The mechanism of this reaction has been studied extensively, in particular to understand how it can be catalyzed, but a representation capable of explaining all the experimental data is still lacking. Numerical simulation should provide the necessary molecular description, but the solvent involvement poses a number of challenges. Here, we combine the efficiency and accuracy of neural network potential-based reactive molecular dynamics with the extensive and unbiased exploration of reaction pathways provided by transition path sampling. Using microsecond-scale simulations at the density functional theory level, we show that this method reveals the presence of two competing distinct mechanisms for peptide bond formation between alanine esters in aqueous solution. We describe how both reaction pathways, via a general base catalysis mechanism and via direct cleavage of the tetrahedral intermediate respectively, change with pH. This result contrasts with the conventional mechanism involving a single pathway in which only the barrier heights are affected by pH. We show that this new proposal involving two competing mechanisms is consistent with the experimental data, and we discuss the implications for peptide bond formation under prebiotic conditions and in the ribosome. Our work shows that integrating deep potential molecular dynamics with path sampling provides a powerful approach for exploring complex chemical mechanisms.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Agua , Agua/química , Péptidos/química , Teoría Funcional de la Densidad , Concentración de Iones de Hidrógeno , Alanina/química , Amidas/química
13.
J Mol Model ; 30(6): 177, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775913

RESUMEN

CONTEXT: Bismuth complexes with dithiocarbamate ligands have attracted attention because of their biological applications, such as antimicrobial, antileishmanial, and anticancer properties. These complexes have high cytotoxic activity against cancer cells, being more active than the standard drugs cisplatin, doxorubicin, and tamoxifen. In the present study, we investigated the ability of some DFT methods to reproduce the geometries and NMR spectra of the Bi(III) dithiocarbamate complexes, selected based on their proven antitumor activity. Our investigation revealed that the M06-L/def2-TZVP/ECP/CPCM method presented good accuracy in predicting geometries, while the TPSSh/def2-SVP/ECP/CPCM method proved effective in analyzing the 13C NMR spectra of these molecules. In general, all examined methods exhibited comparable performance in predicting 1H NMR signals. METHODS: Calculations were performed with the Gaussian 09 program using the def2-SVP and def2-TZVP basis sets, employing relativistic effective core potential (ECP) for Bi and using the CPCM solvent model. The exchange-correlation functionals BP86, PBE, OLYP, M06-L, B3LYP, B3LYP-D3, M06-2X, TPSSh, CAM-B3LYP, and ωB97XD were used in the study. Geometry optimizations were started from crystallographic structures available at the Cambridge Structural Database. The theoretical results were compared with experimental data using the mean root-mean-square deviation (RMSD), mean absolute deviations (MAD), and linear correlation coefficient (R2).


Asunto(s)
Antineoplásicos , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Tiocarbamatos , Antineoplásicos/química , Antineoplásicos/farmacología , Tiocarbamatos/química , Espectroscopía de Resonancia Magnética/métodos , Bismuto/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Modelos Moleculares , Humanos
14.
Sci Rep ; 14(1): 10976, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745055

RESUMEN

Among the actinomycetes in the rare genera, Micromonospora is of great interest since it has been shown to produce novel therapeutic compounds. Particular emphasis is now on its isolation from plants since its population from soil has been extensively explored. The strain CR3 was isolated as an endophyte from the roots of Hieracium canadense, and it was identified as Micromonospora chokoriensis through 16S gene sequencing and phylogenetic analysis. The in-vitro analysis of its extract revealed it to be active against the clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Candida tropicalis (15 mm). No bioactivity was observed against Gram-negative bacteria, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 706003. The Micromonospora chokoriensis CR3 extract was also analyzed through the HPLC-DAD-UV-VIS resident database, and it gave a maximum match factor of 997.334 with the specialized metabolite BagremycinA (BagA). The in-silico analysis indicated that BagA strongly interacted with the active site residues of the sterol 14-α demethylase and thymidylate kinase enzymes, with the lowest binding energies of - 9.7 and - 8.3 kcal/mol, respectively. Furthermore, the normal mode analysis indicated that the interaction between these proteins and BagA was stable. The DFT quantum chemical properties depicted BagA to be reasonably reactive with a HOMO-LUMO gap of (ΔE) of 4.390 eV. BagA also passed the drug-likeness test with a synthetic accessibility score of 2.06, whereas Protox-II classified it as a class V toxicity compound with high LD50 of 2644 mg/kg. The current study reports an endophytic actinomycete, M. chokoriensis, associated with H. canadense producing the bioactive metabolite BagA with promising antimicrobial activity, which can be further modified and developed into a safe antimicrobial drug.


Asunto(s)
Micromonospora , Micromonospora/metabolismo , Micromonospora/genética , Asteraceae/microbiología , Asteraceae/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Filogenia , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Antibacterianos/química , Simulación por Computador , Simulación del Acoplamiento Molecular , Candida tropicalis/efectos de los fármacos , Candida tropicalis/metabolismo , Teoría Funcional de la Densidad , Antiinfecciosos/farmacología , Antiinfecciosos/química , Raíces de Plantas/microbiología
15.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38697834

RESUMEN

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Luz , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Estructura Molecular , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/química , Tamaño de la Partícula , Compuestos de Boro/química , Compuestos de Boro/farmacología , Compuestos de Boro/síntesis química , Procesos Fotoquímicos , Teoría Funcional de la Densidad
16.
Chirality ; 36(5): e23675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38699899

RESUMEN

This study describes the interaction of human serum albumin (HSA) with the binol derivative (R)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol (R-BrB), which has its optical activity based on the prohibitive energetic barrier for conversion into the enantiomer (S)-(+)-3,3'-dibromo-1,1'-bi-2-naphthol (S-BrB). The objective was to assess the ability of HSA to differentiate axial enantiomers based on their binding efficiency and their impact on the CD spectra. We discovered that both enantiomers were effective ligands, and the CD signal disappeared when equimolar amounts of R-BrB and S-BrB were simultaneously added, indicating no preference for either enantiomer. The complexation resulted in a significant signal increase at 250 nm and a bathochromic effect at 370 nm. Molecular docking simulations were performed, and the lower energy pose of R-BrB was selected for DFT calculations. The theoretical CD spectra of free and complexed R-BrB were obtained and showed alterations corroborating the experimental results. By comparing the difference spectrum (HSA:R-BrB minus HSA) with the spectrum of free RBrB in water or ethyl alcohol, we concluded that the CD signal intensification was due to the increased solubilization of R-BrB upon binding to HSA.


Asunto(s)
Dicroismo Circular , Simulación del Acoplamiento Molecular , Naftoles , Albúmina Sérica Humana , Dicroismo Circular/métodos , Naftoles/química , Albúmina Sérica Humana/química , Estereoisomerismo , Humanos , Teoría Funcional de la Densidad , Simulación por Computador , Unión Proteica
17.
Luminescence ; 39(5): e4769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720528

RESUMEN

Fluorene nucleus derivatives show great potential for building outstanding fluorescence probes. In this paper, a novel fluorescent probe was developed by reacting with fluorene core with azacyclobutane, which exhibits typical solvation chromogenic effect in solvent. The fluorescence of the probe quenched in highly polar solvent. Based on this phenomenon, a novel fluorescence system for trace water was constructed. The response of this probe was fast (30 s) and sensitive for the detection of trace water in organic solvents, and the detection limit of water content in DMSO reached 0.13%. In addition, the probe can also be made as a test strip combined with homemade portable device and a smartphone for rapid detection of trace water. The luminescence mechanism of the probe is theoretically calculated based on time-contained density functional theory (TDDFT). To showcase its practicality, it has been applied for the detection of trace water in honey and alcohol by dipstick. This method provides a new idea for designing efficient fluorescent probes based on dipstick and mobile phone rapid detection.


Asunto(s)
Fluorenos , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Agua , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Fluorenos/química , Agua/química , Estructura Molecular , Límite de Detección , Teoría Funcional de la Densidad , Fluorescencia , Contaminantes Químicos del Agua/análisis
18.
Chemosphere ; 358: 142237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705406

RESUMEN

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Asunto(s)
Carbono , Ciprofloxacina , Miel , Leche , Nanocompuestos , Nanofibras , Óxidos , Nanocompuestos/química , Ciprofloxacina/análisis , Ciprofloxacina/química , Óxidos/química , Leche/química , Nanofibras/química , Animales , Miel/análisis , Carbono/química , Molibdeno/química , Límite de Detección , Compuestos de Calcio/química , Titanio/química , Teoría Funcional de la Densidad , Técnicas Electroquímicas/métodos , Cerio/química , Contaminación de Alimentos/análisis , Electrodos , Magnesio/química , Magnesio/análisis
19.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613974

RESUMEN

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Asunto(s)
Cobalto , Hidróxidos , Manganeso , Metronidazol , Cobalto/química , Metronidazol/química , Hidróxidos/química , Manganeso/química , Porosidad , Propiedades de Superficie , Sulfitos/química , Catálisis , Tamaño de la Partícula , Teoría Funcional de la Densidad , Contaminantes Químicos del Agua/química
20.
Phys Chem Chem Phys ; 26(16): 12610-12618, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38597505

RESUMEN

In the present study, we have used the MEI196 set of interaction energies to investigate low-cost computational chemistry approaches for the calculation of binding between a molecule and its environment. Density functional theory (DFT) methods, when used with the vDZP basis set, yield good agreement with the reference energies. On the other hand, semi-empirical methods are less accurate as expected. By examining different groups of systems within MEI196 that contain species of a similar nature, we find that chemical similarity leads to cancellation of errors in the calculation of relative binding energies. Importantly, the semi-empirical method GFN1-xTB (XTB1) yields reasonable results for this purpose. We have thus further assessed the performance of XTB1 for calculating relative energies of docking poses of substrates in enzyme active sites represented by cluster models or within the ONIOM protocol. The results support the observations on error cancellation. This paves the way for the use of XTB1 in parts of large-scale virtual screening workflows to accelerate the drug discovery process.


Asunto(s)
Dominio Catalítico , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Termodinámica , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Enzimas/química , Enzimas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA