Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.401
Filtrar
1.
Exp Appl Acarol ; 93(1): 211-227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864992

RESUMEN

Acaricides used against Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) in cotton fields cause control failure over time. To determine the resistance status of T. urticae populations to tebufenpyrad and bifenazate, different populations collected from Aydin (AYD), Adana (ADA), Sanliurfa (SAN), and Diyarbakir (DIY) provinces of Türkiye, between 2019 and 2020, were subjected to diagnostic dose bioassays. Firstly, the spider mites were eliminated with a discriminating dose. Afterwards, LC50 and LC90 of the remaining populations were determined and the ten highest resistant populations were selected. The highest phenotypic resistance to bifenazate was observed in AYD4 and DIY2 (LC50 57.14 mg L- 1 with 85.01-fold and LC50 30.15 mg L- 1with 44.86-fold, respectively), while the lowest phenotypic resistance was found in SAN6 (LC50 1.5 mg L- 1; 2.28-fold). Considering the phenotypic resistance to tebufenpyrad, the highest resistance was found in AYD4 population (LC50 96.81 mg L- 1; 12.92-fold), while the lowest - in DIY28 population (LC50 21.23 mg L- 1; 2.83-fold). In pharmacokinetic studies, the ADA16 population was compared with the sensitive German Susceptible Strain population and it was determined that carboxylesterase activity was statistically higher (1.46 ± 0.04 nmol/min/mg protein enzyme activation 2.70-fold). The highest activation of glutathione S-transferase was detected in ADA16 (1.49 ± 0.01 nmol/min/mg protein; 2.32-fold). No mutations were found in PSST (METI 1), the point mutation site for tebufenpyrad, and Cytb (METI 3), the point mutation site for bifenazate. In terms of phenotypic resistance, bifenazate was found to be moderately resistant in two populations (85.01 and 44.86-fold), while tebufenpyrad was moderately resistant in one population (12.92-fold). This study showed that both acaricides are still effective against T. urticae populations.


Asunto(s)
Acaricidas , Gossypium , Tetranychidae , Animales , Tetranychidae/efectos de los fármacos , Tetranychidae/enzimología , Acaricidas/farmacología , Inactivación Metabólica , Resistencia a Medicamentos , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética
2.
BMC Plant Biol ; 24(1): 509, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844865

RESUMEN

BACKGROUND: Among the Citrus species, lemon (Citrus limon Burm f.) is one of the most affected by the two-spotted spider mite (Tetranychus urticae Koch). Moreover, chemical control is hampered by the mite's ability to develop genetic resistance against acaricides. In this context, the identification of the genetic basis of the host resistance could represent a sustainable strategy for spider mite control. In the present study, a marker-trait association analysis was performed on a lemon population employing an association mapping approach. An inter-specific full-sib population composed of 109 accessions was phenotyped through a detached-leaf assays performed in modified Huffaker cells. Those individuals, complemented with two inter-specific segregating populations, were genotyped using a target-sequencing approach called SPET (Single Primer Enrichment Technology), the resulting SNPs were employed for the generation of an integrated genetic map. RESULTS: The percentage of damaged area in the full-sib population showed a quantitative distribution with values ranging from 0.36 to 9.67%. A total of 47,298 SNPs were selected for an association mapping study and a significant marker linked with resistance to spider mite was detected on linkage group 5. In silico gene annotation of the QTL interval enabled the detection of 13 genes involved in immune response to biotic and abiotic stress. Gene expression analysis showed an over expression of the gene encoding for the ethylene-responsive transcription factor ERF098-like, already characterized in Arabidopsis and in rice for its involvement in defense response. CONCLUSION: The identification of a molecular marker linked to the resistance to spider mite attack can pave the way for the development of marker-assisted breeding plan for the development of novel selection coupling favorable agronomical traits (e.g. fruit quality, yield) with a higher resistance toward the mite.


Asunto(s)
Citrus , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/fisiología , Citrus/genética , Citrus/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética
3.
Pestic Biochem Physiol ; 202: 105914, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879295

RESUMEN

Indoor cases of Tetranychus cinnabarinus displaying resistance have been documented, but the resistance level in field populations remains unexplored in China. This study delves into the resistance dynamics of T. cinnabarinus to fenpropathrin in various field populations across China, a pressing concern in contemporary agricultural pest control. The conventional bioassay and amplicon sequencing reveal a notable absence of significant fenpropathrin resistance in field populations, contrasting with known resistance in indoor cases. Current study highlights the limitations of traditional bioassays in detecting early-stage resistance and underscores the nuanced capabilities and constraints of amplicon sequencing in resistance gene frequency analysis. By employing an integrated approach, we combined dose-response bioassays, amplicon sequencing, and statistical modeling to assess resistance levels and investigate underlying genetic factors. The model with empirical data indicates that a 5% mutation frequency represents the threshold before resistance emerges. However, the detection of the kdr mutation in certain populations ranging from 0 to 1.2%, signals an early looming threat of future resistance emergence. Additionally, we further assessed a specific dsRNA targeting VGSC genes at two concentrations (10 ng/µL and 100 ng/µL), both inducing substantial mortality by silencing target genes effectively. The exploration of RNA interference (RNAi) as a novel, more environmentally friendly pest control measure opens new avenues, despite the ongoing challenge of resistance evolution. Overall, this study underscores the necessity for evolving pest management strategies, integrating advanced biotechnological approaches with traditional methods, to effectively counter pesticide resistance and ensure sustainable agricultural productivity.


Asunto(s)
Resistencia a los Insecticidas , Piretrinas , Interferencia de ARN , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/efectos de los fármacos , Piretrinas/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología
4.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879311

RESUMEN

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Asunto(s)
Péptidos , Venenos de Araña , Animales , Venenos de Araña/química , Venenos de Araña/genética , Péptidos/farmacología , Péptidos/química , Ácaros/efectos de los fármacos , Spodoptera/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Tetranychidae/genética , Control Biológico de Vectores/métodos , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Conducta Predatoria/efectos de los fármacos
5.
Pestic Biochem Physiol ; 202: 105952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879306

RESUMEN

The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.


Asunto(s)
Compuestos de Espiro , Animales , Compuestos de Espiro/farmacología , Compuestos de Espiro/metabolismo , Acaricidas/farmacología , Propionatos/farmacología , Propionatos/metabolismo , Tetranychidae/efectos de los fármacos , Tetranychidae/genética , Tetranychidae/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Resistencia a Medicamentos/genética , 4-Butirolactona/análogos & derivados
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230139, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38913066

RESUMEN

One of the fundamental aims of ecological, epidemiological and evolutionary studies of host-parasite interactions is to unravel which factors affect parasite virulence. Theory predicts that virulence and transmission are correlated by a trade-off, as too much virulence is expected to hamper transmission owing to excessive host damage. Coinfections may affect each of these traits and/or their correlation. Here, we used inbred lines of the spider mite Tetranychus urticae to test how coinfection with T. evansi impacted virulence-transmission relationships at different conspecific densities. The presence of T. evansi on a shared host did not change the relationship between virulence (leaf damage) and the number of transmitting stages (i.e. adult daughters). The relationship between these traits was hump-shaped across densities, both in single and coinfections, which corresponds to a trade-off. Moreover, transmission to adjacent hosts increased in coinfection, but only at low T. urticae densities. Finally, we tested whether virulence and the number of daughters were correlated with measures of transmission to adjacent hosts, in single and coinfections at different conspecific densities. Traits were mostly independent, meaning that interspecific competitors may increase transmission without affecting virulence. Thus, coinfections may impact epidemiology and parasite trait evolution, but not necessarily the virulence-transmission trade-off.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Asunto(s)
Coinfección , Interacciones Huésped-Parásitos , Tetranychidae , Animales , Virulencia , Tetranychidae/fisiología , Coinfección/parasitología , Coinfección/transmisión , Femenino
7.
Arch Microbiol ; 206(7): 311, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900220

RESUMEN

In this study, the pathogenicity of local Beauveria bassiana strains was elucidated using molecular and metabolomics methodologies. Molecular verification of the B. bassiana-specific chitinase gene was achieved via phylogenetic analysis of the Bbchit1 region. Subsequent metabolomic analyses employing UPLC-Q-TOF-MS revealed a different number of non-volatile metabolite profiles among the six B. bassiana strains. Bb6 produced the most non-volatile compounds (17) out of a total of 18, followed by Bb15 (16) and Bb12 (15). Similarly, Bb5, Bb8, and Bb21, three non-virulent B. bassiana strains, produced 13, 14, and 14 metabolites, respectively. But unique secondary metabolites like bassianolide and beauvericin, pivotal for virulence and mite management, were exclusively found in the virulent strains (Bb6, Bb12, and Bb15) of B. bassiana. The distinctive non-volatile metabolomic profiles of these strains underscore their pathogenicity against Tetranychus truncatus, suggesting their promise in bio-control applications.


Asunto(s)
Beauveria , Metabolómica , Filogenia , Tetranychidae , Beauveria/genética , Beauveria/patogenicidad , Beauveria/metabolismo , Animales , Tetranychidae/microbiología , Tetranychidae/genética , Virulencia , Quitinasas/metabolismo , Quitinasas/genética , Metaboloma , Metabolismo Secundario
8.
Exp Appl Acarol ; 93(1): 169-195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744726

RESUMEN

Trichomes are well-known efficient plant defense mechanisms to limit arthropod herbivory, especially in Solanaceae. The present study aims to evaluate the impact of trichome types on the development, survival and dispersal of Tetranychus urticae, and the phytoseiid predatory mite Typhlodromus (Anthoseius) recki. Six Solanum lycopersicum cultivars and two wild Solanum species, S. cheesmaniae and S. peruvianum, presenting contrasting densities and types of trichomes, were considered. Cultivars and species were characterized by counting each trichome type on leaves, petioles and stems. Mites stuck on petiole and stem and alive mites on the leaflet used for mite release and in the whole plant were counted three weeks after T. urticae plant infestation. Tetranychus urticae settlement and dispersal were differently affected by trichomes. Trichome types V and VI did not affect settlement and dispersal, whereas trichome types I and IV on the petiole had the highest impacton mites. Trichomes on leaves slightly affected mite establishment, there appears to be a repellent effect of trichome types I and IV. The low densities of both T. urticae and its predator detected for the cv. Lancaster could not be clearly associated to the trichome types here considered. The predator did not seem to be affected by plant characteristics, but rather by T. urticae numbers on the plant. The trichome traits unfavorable to T. urticae, did not affect the predator which showed high efficiency to control this pest on all the plant genotypes considered, but at a favorable predator:prey ratio (1:1). Altogether, these results are encouraging for the use of T. (A.) recki as a biological control agent of T. urticae regardless of the trichome structure of the tomato cultivars, but other conditions should be tested to conclude on practical implementations.


Asunto(s)
Ácaros , Conducta Predatoria , Solanum lycopersicum , Tetranychidae , Tricomas , Animales , Tetranychidae/fisiología , Ácaros/fisiología , Solanum lycopersicum/parasitología , Cadena Alimentaria , Control Biológico de Vectores , Hojas de la Planta/parasitología , Herbivoria
9.
Plant Sci ; 345: 112118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776983

RESUMEN

Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of ß-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.


Asunto(s)
Phaseolus , Tetranychidae , Tetranychidae/fisiología , Animales , Phaseolus/parasitología , Phaseolus/fisiología , Phaseolus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Defensa de la Planta contra la Herbivoria , Herbivoria , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/parasitología , Hojas de la Planta/metabolismo
10.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578501

RESUMEN

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Asunto(s)
Bacillus thuringiensis , Gossypium , Longevidad , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Reproducción , Animales , Gossypium/genética , Gossypium/parasitología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología , Bacillus thuringiensis/genética , Reproducción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conducta Predatoria , Fertilidad/genética , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Spodoptera/genética , Larva/crecimiento & desarrollo , Larva/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Heterópteros/genética , Heterópteros/fisiología , Heterópteros/crecimiento & desarrollo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tetranychidae/genética , Femenino
11.
Exp Appl Acarol ; 93(1): 155-167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600348

RESUMEN

Some predators prefer to settle on leaf patches with microstructures (e.g., trichomes and domatia), leaving traces on the patches. Herbivorous arthropods, in turn, select leaf patches in response to these traces left by predators. It remains unclear whether traces of predators on leaf patches affect the distribution of herbivorous prey within plants through plant microstructure. Therefore, we examined the distribution of herbivorous mite (Tetranychus urticae) and predatory mite (Phytoseiulus persimilis) by investigating their oviposition pattern. We used a kidney bean plant (Phaseolus vulgaris) with two expanded primary leaves and the first trifoliate leaf, focusing on leaf trichomes as the microstructure. The density of trichomes was higher on the first trifoliate leaf than on the primary leaves and on the abaxial surface of the leaves than on the adaxial surface. Adult female P. persimilis laid more eggs on the first trifoliate leaf to the primary leaves. Although adult female T. urticae preferred to oviposit on the abaxial surface of primary leaves, previous exposure of plants to predators diminished this preference. The altered egg distribution would be a response to the traces of P. persimilis rather than eggs of P. persimilis. Our findings indicate that T. urticae reproduces on leaf patches with traces of predators without altering their oviposition preference. Given that the presence of predator traces is known to reduce the reproduction of T. urticae, it may have a substantial effect on the population of T. urticae in the next generations on kidney bean plants.


Asunto(s)
Herbivoria , Ácaros , Oviposición , Phaseolus , Hojas de la Planta , Conducta Predatoria , Tetranychidae , Tricomas , Animales , Phaseolus/fisiología , Hojas de la Planta/fisiología , Femenino , Ácaros/fisiología , Tricomas/fisiología , Tetranychidae/fisiología , Cadena Alimentaria , Distribución Animal
12.
J Econ Entomol ; 117(3): 834-842, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38687636

RESUMEN

Southern red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae), is an important polyphagous spider mite pest that causes economic damage to many ornamentals, coffee, and fruit crops. Blueberry growers in the Southeastern United States, including Florida and Georgia, have experienced severe losses due to outbreaks of O. ilicis. Predatory mites are an important management tool used for controlling spider mites; however, predators have not been studied and successfully evaluated in blueberry systems. Amblyseius swirskii Athias-Henriot, Phytoseiulus persimilis Athias-Henriot, and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) are among the most economically important arthropod agents used in augmentative biological control worldwide. To evaluate the potential of these 3 commercially available predatory mites for use in blueberry plantings, we conducted experiments under controlled laboratory conditions and in the greenhouse. In preliminary laboratory experiments, P. persimilis and N. californicus significantly reduced the number of O. ilicis motile stages below those found in the untreated control, indicating the potential for these 2 predatory mite species to suppress O. ilicis populations. Amblyseius swirskii did not perform well controlling O. ilicis motiles in the laboratory. Under greenhouse conditions, N. californicus and P. persimilis significantly reduced the number of eggs after 7 days of release and the number of motile stages after 14 days of release. This is the first report of using phytoseiid mites to suppress O. ilicis in blueberry systems in the United States. Further studies on predator behavior, feeding preferences, and acaricide compatibility with predators are required to investigate the possibility of using P. persimilis, and N. californicus as biological control agents of O. ilicis in blueberry systems.


Asunto(s)
Arándanos Azules (Planta) , Control Biológico de Vectores , Conducta Predatoria , Tetranychidae , Animales , Tetranychidae/fisiología , Femenino
13.
Insect Biochem Mol Biol ; 170: 104127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657708

RESUMEN

Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/efectos de los fármacos , Acaricidas/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Mutación , Sitios de Unión , Ubiquinona/análogos & derivados , Resistencia a Medicamentos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Propionatos/farmacología
14.
Pestic Biochem Physiol ; 201: 105905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685227

RESUMEN

Recently, the first sprayable RNAi biopesticide, Ledprona, against the Colorado potato beetle, Leptinotarsa decemlineata, has been registered at the United States Environmental Protection Agency. Spider mites (Acari: Tetranychidae), a group of destructive agricultural and horticultural pests, are notorious for rapid development of insecticide/acaricide resistance. The management options, on the other hand, are extremely limited. RNAi-based biopesticides offer a promising control alternative to address this emerging issue. In this study, we i) developed an egg-soaking dsRNA delivery method; ii) evaluated the factors influencing RNAi efficiency, and finally iii) investigated the potential mode of entry of this newly developed egg-soaking RNAi method. In comparison to other dsRNA delivery methods, egg-soaking method was the most efficient, convenient/practical, and cost-effective method for delivering dsRNAs into spider mites. RNAi efficiency of this RNAi method was affected by target genes, dsRNA concentration, developmental stages, and mite species. In general, the hawthorn spider mite, Amphitetranychus viennensis, is more sensitive to RNAi than the two-spotted spider mite, Tetranychus urticae, and both of them have dose-dependent RNAi effect. For different life stages, egg and larvae are the most sensitive life stages to dsRNAs. For different target genes, there is no apparent association between the suppression level and the resultant phenotype. Finally, we demonstrated that this egg-soaking RNAi method acts as both stomach and contact toxicity. Our combined results demonstrate the effectiveness of a topically applied dsRNA delivery method, and the potential of a spray induced gene silencing (SIGS) method as a control alternative for spider mites.


Asunto(s)
Interferencia de ARN , ARN Bicatenario , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/efectos de los fármacos , ARN Bicatenario/genética , Óvulo , Femenino
15.
Sci Rep ; 14(1): 9392, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658769

RESUMEN

A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.


Asunto(s)
Aminoácidos , Antifúngicos , Diseño de Fármacos , Insecticidas , Simulación del Acoplamiento Molecular , Insecticidas/farmacología , Insecticidas/síntesis química , Insecticidas/química , Animales , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Aminoácidos/química , Áfidos/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Relación Estructura-Actividad , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Pruebas de Sensibilidad Microbiana
16.
J Invertebr Pathol ; 204: 108102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604562

RESUMEN

The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.


Asunto(s)
Microbiota , Tetranychidae , Animales , Tetranychidae/microbiología , Tetranychidae/fisiología , Femenino , Control Biológico de Vectores
17.
Exp Appl Acarol ; 92(4): 777-794, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637448

RESUMEN

The European red mite Panonychus ulmi (Koch) is widely distributed and it can severely affect pome fruit crops, particularly apple. Pest outbreaks are related to an overuse of non-selective pesticide treatments that lead to the development of resistance and the absence of natural enemies in the orchard. A key aspect to optimize the use of pesticide treatments in the context of IPM is to increase the knowledge on the biology and ecology of the pest to better predict population dynamics and outbreaks. For the European red mite, knowledge on the conditions that lead to diapause breaking by winter eggs is essential to model population dynamics. To increase this knowledge, winter eggs were collected during field surveys in northen Spain during three years and egg hatching was monitored under controlled temperature and photoperiod conditions in the laboratory. The "number of days exposed to cold temperatures" was the most significant factor that positively affected hatching of overwintering eggs. The time required for 50% of the egg population to hatch (T50%) was also negatively modulated by the duration of exposure to cold temperature. The temperature threshold for postdiapause eggs development collected from the field was estimated between 5 and 6 ºC in 2005 and 2007, respectively. Moreover, the degree-days required for post diapause development were estimated between 263.2 and 270.3, depending on the year of collection. Collectively, we provide additional information on the diapause termination and postdiapause development of the European red mite that may effectively contribute to optimize pest population models.


Asunto(s)
Diapausa , Óvulo , Temperatura , Tetranychidae , Animales , Tetranychidae/fisiología , Tetranychidae/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Óvulo/fisiología , España , Fotoperiodo , Frío , Femenino , Estaciones del Año
18.
Sci Rep ; 14(1): 8020, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580663

RESUMEN

The two-spotted spider mite (TSSM), Tetranychus urticae, is among the most destructive piercing-sucking herbivores, infesting more than 1100 plant species, including numerous greenhouse and open-field crops of significant economic importance. Its prolific fecundity and short life cycle contribute to the development of resistance to pesticides. However, effective resistance loci in plants are still unknown. To advance research on plant-mite interactions and identify genes contributing to plant immunity against TSSM, efficient methods are required to screen large, genetically diverse populations. In this study, we propose an analytical pipeline utilizing high-resolution imaging of infested leaves and an artificial intelligence-based computer program, MITESPOTTER, for the precise analysis of plant susceptibility. Our system accurately identifies and quantifies eggs, feces and damaged areas on leaves without expert intervention. Evaluation of 14 TSSM-infested Arabidopsis thaliana ecotypes originating from diverse global locations revealed significant variations in symptom quantity and distribution across leaf surfaces. This analytical pipeline can be adapted to various pest and host species, facilitating diverse experiments with large specimen numbers, including screening mutagenized plant populations or phenotyping polymorphic plant populations for genetic association studies. We anticipate that such methods will expedite the identification of loci crucial for breeding TSSM-resistant plants.


Asunto(s)
Arabidopsis , Tetranychidae , Animales , Tetranychidae/genética , Inteligencia Artificial , Fitomejoramiento , Plantas
19.
Sci Data ; 11(1): 340, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580722

RESUMEN

Despite the rapid advances in sequencing technology, limited genomic resources are currently available for phytophagous spider mites, which include many important agricultural pests. One of these pests is Tetranychus piercei (McGregor), a serious banana pest in East Asia exhibiting remarkable tolerance to high temperature. In this study, we assembled a high-quality genome of T. piercei using a combination of PacBio long reads and Illumina short reads sequencing. With the assistance of chromatin conformation capture technology, 99.9% of the contigs were anchored into three pseudochromosomes with a total size of 86.02 Mb. Repetitive elements, accounting for 14.16% of this genome (12.20 Mb), are predominantly composed of long-terminal repeats (30.7%). By combining evidence of ab initio prediction, transcripts, and homologous proteins, we annotated 11,881 protein-coding genes. Both the genome and proteins have high BUSCO completeness scores (>94%). This high-quality genome, along with reliable annotation, provides a valuable resource for investigating the high-temperature tolerance of this species and exploring the genomic basis that underlies the host range evolution of spider mites.


Asunto(s)
Tetranychidae , Animales , Cromosomas , Genoma , Genómica , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Tetranychidae/genética
20.
Environ Entomol ; 53(3): 425-432, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38491991

RESUMEN

Habitat manipulation such as intercropping can be used as a simple and common cultural practice in pest management. This method is based on the principle of reducing pest populations by increasing the diversity of an ecosystem. This study has been carried out to evaluate the influence of additive series intercropping common bean with some aromatic plants (AP), and 2 acaricides on the different life stages (egg, immature mobile stages, and adult) of Tetranychus urticae Koch (Trombidiformes: Tetranychidae), over 2 yr of experimentation (2020 and 2021). This experiment was conducted following a randomized complete block design with 7 treatments including common bean monoculture, common bean sprayed by spiromesifen or Dayabon, and common bean + companion plants (coriander, ajwain, basil, or dill). Each treatment was replicated 3 replicates. The lowest and highest number of eggs, immature mobile stages, and adults were observed in common bean + spiromesifen and the common bean monoculture, respectively. Additionally, the common bean + Dayabon supported significantly different T. urticae life stage densities compared to common bean monoculture. Also, among intercropped treatments, common bean + basil showed the lowest number of T. urticae (eggs, immature mobile stages, and adults). The highest yield and land equivalent ratio were recorded in common bean + basil and common bean + spiromesifen, respectively. Finally, it can be concluded that additive intercropping with these AP can effectively decrease the T. urticae population density, which is useful for the safe production of common bean.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Tetranychidae/fisiología , Phaseolus , Control de Ácaros y Garrapatas , Producción de Cultivos/métodos , Femenino , Compuestos de Espiro/farmacología , Ninfa/crecimiento & desarrollo , Ninfa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...