Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(20): e202400129, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38409630

RESUMEN

Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.


Asunto(s)
Péptidos , Tetraspanina 28 , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Tetraspanina 28/metabolismo , Tetraspanina 28/química , Metástasis de la Neoplasia , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo
2.
Front Biosci (Landmark Ed) ; 28(10): 239, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37919063

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) infection is a global health threat to the public, and vaccines against it are not yet available. The HCV envelope glycoprotein E2 is a key target for anti-HCV vaccines. The majority of previous studies have focused on the hypervariable region and the glycosylation sites of the_HCV structural protein. This study aims to investigate a conserved domain of HCV E2 glycoprotein and explore its potential to induce an immune response against HCV. METHODS: HCV E2 conserved domain (encompassing amino acids 505-702) was prepared in Escherichia coli (E. coli). Peripheral blood mononuclear cells (PBMCs) were isolated from patients with HCV or healthy controls. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot assay was conducted to examine the HCV E2-specific immune response as reflected by IFN-γ-secreting cells/106 PBMCs. RESULTS: HCV E2 conserved domain was highly conserved among 25 HCV subtypes, and its recombinant soluble production in E. coli was recognized by anti-HCV E2 monoclonal antibodies. This study characterized in vitro direct interaction between bacterially expressed HCV E2 conserved domain and human CD81 (hCD81). Furthermore, the recombinant HCV E2_conserved domain markedly induced the production of IFN-γ by PBMCs from patients with HCV. Its stimulated specific immune response was significantly different from non-specific peptide controls or PBMCs isolated from healthy controls. CONCLUSIONS: HCV E2 conserved domain directly binds hCD81 and activates the production of IFN-γ in the PBMCs of patients with HCV. Therefore, the conserved domain of HCV E2 glycoprotein may be a new candidate for developing an HCV vaccine.


Asunto(s)
Hepatitis C , Vacunas , Humanos , Escherichia coli/genética , Hepacivirus/fisiología , Hepatitis C/metabolismo , Interferón gamma/metabolismo , Leucocitos Mononucleares/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo
3.
Nat Commun ; 14(1): 433, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702826

RESUMEN

Hepatitis C virus (HCV) uses a hybrid entry mechanism. Current structural data suggest that upon exposure to low pH and Cluster of Differentiation 81 (CD81), the amino terminus of envelope glycoprotein E2 becomes ordered and releases an internal loop with two invariant aromatic residues into the host membrane. Here, we present the structure of an amino-terminally truncated E2 with the membrane binding loop in a bent conformation and the aromatic side chains sequestered. Comparison with three previously reported E2 structures with the same Fab indicates that this internal loop is flexible, and that local context influences the exposure of hydrophobic residues. Biochemical assays show that the amino-terminally truncated E2 lacks the baseline membrane-binding capacity of the E2 ectodomain. Thus, the amino terminal region is a critical determinant for both CD81 and membrane interaction. These results provide new insights into the HCV entry mechanism.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/metabolismo , Unión Proteica , Proteínas del Envoltorio Viral/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo
4.
J Phys Chem B ; 126(42): 8391-8403, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36255318

RESUMEN

Hepatitis C virus (HCV) is the second viral agent that causes the majority of chronic hepatic infections worldwide, following Hepatitis B virus (HBV) infection. HCV infection comprises several steps, from the attachment to the receptors to the delivery of the viral genetic material and replication inside the cells. Tetraspanin CD81 is a key entry factor for HCV as it accompanies the virus during attachment and internalization through clathrin-mediated endocytosis. HCV-CD81 binding takes place through the viral glycoprotein E2. We performed full-atom molecular dynamics simulations reproducing the pH conditions that occur during the viral attachment to the hepatocytes (pH 7.4) and internalization (pH 6.2-4.6). We observed that changing the pH from 7.4 to 6.2 triggers a large conformational change in the binding orientation between E2core (E2core corresponds to residues 412-645 of the viral glycoprotein E2) and CD81LEL (CD81LEL corresponds to residues 112-204 of CD81) that occurs even more rapidly at low pH 4.6. This pH-induced switching mechanism has never been observed before and could allow the virus particles to sense the right moment during the maturation of the endosome to start fusion.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Hepacivirus/metabolismo , Proteínas del Envoltorio Viral/química , Clatrina/metabolismo
5.
Nature ; 598(7881): 521-525, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526719

RESUMEN

Hepatitis C virus (HCV) infection is a causal agent of chronic liver disease, cirrhosis and hepatocellular carcinoma in humans, and afflicts more than 70 million people worldwide. The HCV envelope glycoproteins E1 and E2 are responsible for the binding of the virus to the host cell, but the exact entry process remains undetermined1. The majority of broadly neutralizing antibodies block interaction between HCV E2 and the large extracellular loop (LEL) of the cellular receptor CD81 (CD81-LEL)2. Here we show that low pH enhances the binding of CD81-LEL to E2, and we determine the crystal structure of E2 in complex with an antigen-binding fragment (2A12) and CD81-LEL (E2-2A12-CD81-LEL); E2 in complex with 2A12 (E2-2A12); and CD81-LEL alone. After binding CD81, residues 418-422 in E2 are displaced, which allows for the extension of an internal loop consisting of residues 520-539. Docking of the E2-CD81-LEL complex onto a membrane-embedded, full-length CD81 places the residues Tyr529 and Trp531 of E2 proximal to the membrane. Liposome flotation assays show that low pH and CD81-LEL increase the interaction of E2 with membranes, whereas structure-based mutants of Tyr529, Trp531 and Ile422 in the amino terminus of E2 abolish membrane binding. These data support a model in which acidification and receptor binding result in a conformational change in E2 in preparation for membrane fusion.


Asunto(s)
Hepacivirus/metabolismo , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Internalización del Virus , Animales , Anticuerpos Neutralizantes/inmunología , Membrana Celular/química , Membrana Celular/metabolismo , Células HEK293 , Hepacivirus/química , Hepacivirus/genética , Humanos , Leontopithecus , Fusión de Membrana , Modelos Moleculares , Receptores Virales/inmunología , Tetraspanina 28/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
6.
Biosystems ; 209: 104505, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34403719

RESUMEN

The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Tetraspanina 28/metabolismo , Algoritmos , Membrana Celular/química , Colesterol/química , Humanos , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Unión Proteica , Conformación Proteica , Tetraspanina 28/química , Termodinámica
7.
Science ; 371(6526): 300-305, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33446559

RESUMEN

Signaling through the CD19-CD81 co-receptor complex, in combination with the B cell receptor, is a critical determinant of B cell development and activation. It is unknown how CD81 engages CD19 to enable co-receptor function. Here, we report a 3.8-angstrom structure of the CD19-CD81 complex bound to a therapeutic antigen-binding fragment, determined by cryo-electron microscopy (cryo-EM). The structure includes both the extracellular domains and the transmembrane helices of the complex, revealing a contact interface between the ectodomains that drives complex formation. Upon binding to CD19, CD81 opens its ectodomain to expose a hydrophobic CD19-binding surface and reorganizes its transmembrane helices to occlude a cholesterol binding pocket present in the apoprotein. Our data reveal the structural basis for CD19-CD81 complex assembly, providing a foundation for rational design of therapies for B cell dysfunction.


Asunto(s)
Antígenos CD19/química , Receptores de Antígenos de Linfocitos B/química , Tetraspanina 28/química , Secuencia de Aminoácidos , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/inmunología , Antígenos CD19/inmunología , Linfocitos B/inmunología , Microscopía por Crioelectrón , Humanos , Maitansina/análogos & derivados , Maitansina/química , Maitansina/inmunología , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Receptores de Antígenos de Linfocitos B/inmunología , Tetraspanina 28/genética , Tetraspanina 28/inmunología
8.
EMBO J ; 39(18): e105246, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32974937

RESUMEN

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Asunto(s)
Movimiento Celular , Células Precursoras de Linfocitos B/metabolismo , Tetraspanina 25 , Tetraspanina 28 , Animales , Antígenos CD19/química , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Ratones , Ratones Noqueados , Dominios Proteicos , Tetraspanina 25/química , Tetraspanina 25/genética , Tetraspanina 25/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
9.
Biochim Biophys Acta Biomembr ; 1862(11): 183419, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735789

RESUMEN

Tetraspanins exert a wide range of cellular functions of broad medical importance. Despite this, their biophysical characteristics are incompletely understood. Only two high-resolution structures of full-length tetraspanins have been solved. One is that of human CD81, which is involved in the infectivity of human pathogens including influenza, HIV, the malarial Plasmodium parasite and hepatitis C virus (HCV). The CD81 crystal structure identifies a cholesterol-binding pocket, which has been suggested to be important in the regulation of tetraspanin function. Here we investigate the use of styrene-maleic anhydride co-polymers (SMA) for the solubilisation and purification of CD81 within a lipid environment. When CD81 was expressed in the yeast Pichia pastoris, it could be solubilised and purified using SMA2000. This SMALP-encapsulated CD81 retained its native folded structure, as determined by the binding of two conformation-sensitive anti-CD81 antibodies. Analysis by size exclusion chromatography revealed two distinct populations of CD81, only one of which bound the HCV glycoprotein, E2. Optimization of expression and buffer conditions increased the proportion of E2-binding competent CD81 protein. Mass spectrometry analysis indicated that the lipid environment surrounding CD81 is enriched with negatively charged lipids. These results establish a platform to study the influence of protein-lipid interactions in tetraspanin biology.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Tetraspanina 28/química , Cristalografía por Rayos X , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-31501263

RESUMEN

Hepatitis C virus (HCV) represents an important and growing public health problem, chronically infecting an estimated 70 million people worldwide. This blood-borne pathogen is generating a new wave of infections in the United States, associated with increasing intravenous drug use over the last decade. In most cases, HCV establishes a chronic infection, sometimes causing cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Although a curative therapy exists, it is extremely expensive and provides no barrier to reinfection; therefore, a vaccine is urgently needed. The virion is asymmetric and heterogeneous with the buoyancy and protein content similar to low-density lipoparticles. Core protein is unstructured, and of the two envelope glycoproteins, E1 and E2, the function of E1 remains enigmatic. E2 is responsible for specifically binding host receptors CD81 and scavenger receptor class B type I (SR-BI). This review will focus on structural progress on HCV virion, core protein, envelope glycoproteins, and specific host receptors.


Asunto(s)
Hepacivirus/química , Proteínas del Envoltorio Viral/química , Anticuerpos Neutralizantes/química , Cristalografía por Rayos X , Hepacivirus/inmunología , Hepacivirus/metabolismo , Humanos , Estructura Terciaria de Proteína , Tetraspanina 28/química , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunología , Internalización del Virus
11.
Nanoscale ; 11(13): 6036-6044, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30869094

RESUMEN

Membrane partition and remodeling play a key role in numerous cell mechanisms, especially in viral replication cycles where viruses subvert the plasma membrane to enter and escape from the host cell. Specifically assembly and release of HIV-1 particles require specific cellular components, which are recruited to the egress site by the viral protein Gag. We previously demonstrated that HIV-1 assembly alters both partitioning and dynamics of the tetraspanins CD9 and CD81, which are key players in many infectious processes, forming enriched areas where the virus buds. In this study we correlated super resolution microscopy mapping of tetraspanins with membrane topography delineated by atomic force microscopy (AFM) in Gag-expressing cells. We revealed that CD9 is specifically trapped within the nascent viral particles, especially at buds tips, suggesting that Gag mediates CD9 and CD81 depletion from the plasma membrane. In addition, we showed that CD9 is organized as small membrane assemblies of few tens of nanometers that can coalesce upon Gag expression.


Asunto(s)
VIH-1/fisiología , Tetraspanina 28/química , Tetraspanina 29/química , Membrana Celular/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Microscopía de Fuerza Atómica , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Infect Genet Evol ; 69: 48-60, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30639544

RESUMEN

Hepatitis C Virus is a blood borne pathogen responsible for chronic hepatitis in more than 71 million people. Wide variations across strains and genotypes are one of the major hurdles in therapeutic development. While genotype 1 remains the most extensively studied and abundant strain, genotype 3 is more virulent and second most prevalent. This study aimed to compare differences in the glycoprotein E2 across HCV genotypes at nucleotide, protein and structural levels. Nucleotide sequences of E2 from 29 strains across genotypes 1a, 1b, 3a and 3b revealed a stark preference for C-richness which was attributed to a distinct bias for C-rich codons in genotype 1. Genotype 3 exhibited a similar preference to a lesser extent. Amino acid level comparison revealed majority of the changes at the C-terminal half of the proteins leaving the N-terminal region conspicuously conserved apart from the two hyper variable regions. Amino acid changes across genotypes were mostly polar-nonpolar alterations. In silico models of E2 glycoproteins and docking analysis with the energy minimized PDB-CD81 model revealed unique interacting residues in both E2 and CD81. While several CD81 binding residues were common for all four genotypes, number and composition of interacting residues varied. The interacting residues of E2 were however unique for each genotype. E2 of genotype 3a and CD81 had the strongest interaction. In conclusion this is the first comprehensive study comparing E2 sequences across genotypes 1a, 1b, 3a and 3b revealing stark genotype-specific differences which requires more extensive investigation.


Asunto(s)
Genotipo , Hepacivirus/fisiología , Hepatitis C/virología , Interacciones Huésped-Patógeno , Internalización del Virus , Aminoácidos , Sitios de Unión , Codón , Evolución Molecular , Hepatitis C/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Selección Genética , Relación Estructura-Actividad , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
13.
Infect Immun ; 86(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30037792

RESUMEN

Enteropathogenic Escherichia coli (EPEC) belongs to a group of enteric human pathogens known as attaching-and-effacing (A/E) pathogens, which utilize a type III secretion system (T3SS) to translocate a battery of effector proteins from their own cytoplasm into host intestinal epithelial cells. Here we identified EspH to be an effector that prompts the recruitment of the tetraspanin CD81 to infection sites. EspH was also shown to be an effector that suppresses the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) signaling pathway at longer infection times. The inhibitory effect was abrogated upon deletion of the last 38 amino acids located at the C terminus of the protein. The efficacy of EspH-dependent Erk suppression was higher in CD81-deficient cells, suggesting that CD81 may act as a positive regulator of Erk, counteracting Erk suppression by EspH. EspH was found within CD81 microdomains soon after infection but was largely excluded from these domains at a later time. Based on our results, we propose a mechanism whereby CD81 is initially recruited to infection sites in response to EspH translocation. At a later stage, EspH moves out of the CD81 clusters to facilitate effective Erk inhibition. Moreover, EspH selectively inhibits the tumor necrosis factor alpha (TNF-α)-induced Erk signaling pathway. Since Erk and TNF-α have been implicated in innate immunity and cell survival, our studies suggest a novel mechanism by which EPEC suppresses these processes to promote its own colonization and survival in the infected gut.


Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Tetraspanina 28/metabolismo , Adolescente , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/enzimología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Intestinos/patología , Masculino , Dominios Proteicos , Transducción de Señal , Tetraspanina 28/química , Tetraspanina 28/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Mol Biol ; 430(14): 2139-2152, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29778602

RESUMEN

Hepatitis C viral infection is the major cause of chronic hepatitis that affects as many as 71 million people worldwide. Rather than target the rapidly shifting viruses and their numerous serotypes, four independent antibodies were made to target the host antigen CD81 and were shown to block hepatitis C viral entry. The single-chain variable fragment of each antibody was crystallized in complex with the CD81 large extracellular loop in order to guide affinity maturation of two distinct antibodies by phage display. Affinity maturation of antibodies using phage display has proven to be critical to therapeutic antibody development and typically involves modification of the paratope for increased affinity, improved specificity, enhanced stability or a combination of these traits. One antibody was engineered for increased affinity for human CD81 large extracellular loop that equated to increased efficacy, while the second antibody was engineered for cross-reactivity with cynomolgus CD81 to facilitate animal model testing. The use of structures to guide affinity maturation library design demonstrates the utility of combining structural analysis with phage display technologies.


Asunto(s)
Hepacivirus/fisiología , Anticuerpos contra la Hepatitis C/química , Hepatitis C/inmunología , Anticuerpos de Cadena Única/química , Tetraspanina 28/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Línea Celular , Células Hep G2 , Hepacivirus/efectos de los fármacos , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/farmacología , Humanos , Modelos Moleculares , Biblioteca de Péptidos , Conformación Proteica , Anticuerpos de Cadena Única/farmacología , Relación Estructura-Actividad , Tetraspanina 28/química , Internalización del Virus/efectos de los fármacos
15.
Viruses ; 10(4)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677132

RESUMEN

Hepatitis C virus (HCV) enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81). The tetraspanin hCD81 contains a large extracellular loop (LEL), which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop) is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81) functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F) do not and tetraspanins with intermediate homology (hCD9) show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.


Asunto(s)
Hepacivirus/fisiología , Hepatocitos/virología , Receptores Virales/química , Receptores Virales/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Internalización del Virus , Secuencia de Aminoácidos , Animales , Línea Celular , Hepacivirus/patogenicidad , Humanos , Mutación , Unión Proteica , Dominios Proteicos , Receptores Virales/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Tetraspanina 28/genética , Células Tumorales Cultivadas , Proteínas del Envoltorio Viral/metabolismo
16.
Biochem Soc Trans ; 45(2): 489-497, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28408489

RESUMEN

Members of the tetraspanin family have been identified as essential cellular membrane proteins in infectious diseases by nearly all types of pathogens. The present review highlights recently published data on the role of tetraspanin CD151, CD81, and CD63 and their interaction partners in host cell entry by human cytomegalo- and human papillomaviruses. Moreover, we discuss a model for tetraspanin assembly into trafficking platforms at the plasma membrane. These platforms might persist during intracellular viral trafficking.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Tetraspaninas/metabolismo , Proteínas Virales/metabolismo , Membrana Celular/metabolismo , Citomegalovirus/fisiología , Humanos , Modelos Moleculares , Papillomaviridae/fisiología , Tetraspanina 24/química , Tetraspanina 24/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Tetraspanina 30/química , Tetraspanina 30/metabolismo , Tetraspaninas/química , Internalización del Virus
17.
Protein Expr Purif ; 135: 8-15, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28442431

RESUMEN

The human tetraspanin family of scaffold proteins comprises 33 isoforms. Being integral membrane proteins, they organize a so-called tetraspanin web via homomeric and heteromeric protein-protein interactions with integrins, immunoglobulins, growth factors, receptor tyrosine kinases, proteases, signaling proteins, and viral capsid proteins. Tetraspanins promote cellular effects, such as adhesion, migration, invasion, signaling, membrane fusion, protein trafficking, cancer progression, and infections. The ubiquitous expression of multiple tetraspanin isoforms and partner proteins hampers specific interaction studies. Here, we evaluated Dictyostelium discoideum as a non-mammalian expression system for human tetraspanins. Using high-content imaging we quantified tetraspanins in D. discoideum via fusion with green fluorescent protein. Three human tetraspanins, CD9, CD81, and CD151, served as test cases for which optimizations were carried out. We swapped the GFP domain between the N- and C-termini, added a Kozak sequence, and partially or fully adapted of the codon usage. This way, CD81 and CD151 were successfully produced. A conformation specific antibody further confirmed correct folding of CD81 and flow cytometry indicated an intracellular localization. Based on these data, we envision a D. discoideum-based co-expression platform with human partner proteins for studying tetraspanin interactions and their selective druggability on a large scale without the interference of endogenous human proteins.


Asunto(s)
Dictyostelium/genética , Ensayos Analíticos de Alto Rendimiento , Tetraspanina 24/genética , Tetraspanina 28/genética , Tetraspanina 29/genética , Transgenes , Animales , Anticuerpos/química , Clonación Molecular , Dictyostelium/metabolismo , Citometría de Flujo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Conformación Proteica , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tetraspanina 24/química , Tetraspanina 24/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Tetraspanina 29/química , Tetraspanina 29/metabolismo
18.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031364

RESUMEN

The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies in vivo and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design. A high-resolution structural definition of the intact HCV envelope glycoprotein complex containing E1 and E2 remains to be elucidated, while crystallographic structures of a recombinant E2 ectodomain failed to resolve HVR1, HVR2, and a major neutralization determinant adjacent to HVR1. To obtain further information on E2, we characterized the role of all three variable regions in E2 ectodomain folding and function in the context of a recombinant ectodomain fragment (rE2). We report that removal of the variable regions accelerates binding to the major host cell receptor CD81 and that simultaneous deletion of HVR2 and the igVR is required to maintain wild-type CD81-binding characteristics. The removal of the variable regions also rescued the ability of rE2 to form a functional homodimer. We propose that the rE2 core provides novel insights into the role of the variable motifs in the higher-order assembly of the E2 ectodomain and may have implications for E1E2 structure on the virion surface. IMPORTANCE Hepatitis C virus (HCV) infection affects ∼2% of the population globally, and no vaccine is available. HCV is a highly variable virus, and understanding the presentation of key antigenic sites at the virion surface is important for the design of a universal vaccine. This study investigates the role of three surface-exposed variable regions in E2 glycoprotein folding and function in the context of a recombinant soluble ectodomain. Our data demonstrate the variable motifs modulate binding of the E2 ectodomain to the major host cell receptor CD81 and have an impact on the formation of an E2 homodimer with high-affinity binding to CD81.


Asunto(s)
Hepacivirus/fisiología , Proteínas del Envoltorio Viral/química , Internalización del Virus , Regulación Alostérica , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Línea Celular Tumoral , Epítopos/química , Epítopos/inmunología , Células HEK293 , Hepatocitos/virología , Humanos , Cinética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Tetraspanina 28/química , Proteínas del Envoltorio Viral/fisiología
19.
Structure ; 25(1): 53-65, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27916518

RESUMEN

Hepatitis C virus (HCV) enters into human hepatocytes via tetraspanin hCD81. HCV glycoprotein E2 recognizes the "head" subdomain of the large extracellular loop (LEL) of CD81 (hCD81LEL), but the precise mechanism of virus cell attachment and entry remains elusive. Here, by combining the structural analysis of a conspicuous number of crystallized CD81LEL molecules with molecular dynamics simulations, we show that the conformational plasticity of the hCD81LEL head subdomain is a molecular property of the receptor. The observed closed, intermediate, and open conformations of the head subdomain provide distinct binding platforms. Simulations at pH 7.4 and 4.0 indicate that this dynamism is pH modulated. The crystallized double conformation of the disulfide bridge C157-C175 at the base of the head subdomain identifies this bond as the molecular zipper of the plasticity of hCD81LEL. We propose that this conformational dependence of hCD81LEL, which is finely tuned by pH and redox conditions, enables the virus-receptor interactions to diversely re-engage at endosomal conditions.


Asunto(s)
Hepacivirus/fisiología , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Oxidación-Reducción , Conformación Proteica , Acoplamiento Viral , Internalización del Virus
20.
Cytometry A ; 91(1): 62-72, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27490854

RESUMEN

In mass cytometry, the isolation of pure lymphocytes is very important to obtain reproducible results and to shorten the time spent on data acquisition. To prepare highly purified cell suspensions of peripheral blood lymphocytes for further analysis on mass cytometer, we used the new CD81+ immune affinity chromatography cell isolation approach. Using 21 metal conjugated antibodies in a single tube we were able to identify all basic cell subsets and compare their relative abundance in final products obtained by density gradient (Ficoll-Paque) and immune affinity chromatography (CD81+ T-catch™) isolation approach. We show that T-catch isolation approach results in purer final product than Ficoll-Paque (P values 0.0156), with fewer platelets bound to target cells. As a result acquisition time of 105 nucleated cells was 3.5 shorter. We then applied unsupervised high dimensional analysis viSNE algorithm to compare the two isolation protocols, which allowed us to evaluate the contribution of unsupervised analysis over supervised manual gating. ViSNE algorithm effectively characterized almost all supervised cell subsets. Moreover, viSNE uncovered previously overseen cell subsets and showed inaccuracies in Maxpar™ Human peripheral blood phenotyping panel kit recommended gating strategy. These findings emphasize the use of unsupervised analysis tools in parallel with conventional gating strategy to mine the complete information from a set of samples. They also stress the importance of the impurity removal to sensitively detect rare cell populations in unsupervised analysis. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Separación Celular/métodos , Citometría de Imagen/métodos , Leucocitos Mononucleares/citología , Linfocitos/citología , Anticuerpos/química , Anticuerpos/inmunología , Supervivencia Celular/inmunología , Ficoll/química , Humanos , Linfocitos/inmunología , Tetraspanina 28/química , Tetraspanina 28/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...