Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 32(9): 1298-1300, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241762

RESUMEN

In this issue of Structure, Elghondakly et al.1 present the crystal structure of Thermoanaerobacter pseudethanolicus antiterminator LoaP, a member of a ubiquitous family of NusG transcription factors, bound to its target, a dfn RNA hairpin. LoaP uses RNA as a recognition determinant, which is unique among NusG paralogs and makes unusual contacts in the major groove of the RNA.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Thermoanaerobacter , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Thermoanaerobacter/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , Modelos Moleculares , ARN/metabolismo , ARN/química
2.
Faraday Discuss ; 252(0): 279-294, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38842386

RESUMEN

Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.


Asunto(s)
Biocatálisis , Iminas , Iminas/química , Iminas/metabolismo , Ingeniería de Proteínas , Thermoanaerobacter/enzimología , Acroleína/química , Acroleína/análogos & derivados , Acroleína/metabolismo , Modelos Moleculares
3.
Int J Biol Macromol ; 270(Pt 2): 132404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754672

RESUMEN

To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.


Asunto(s)
Glicósido Hidrolasas , Dominios Proteicos , Thermoanaerobacter , Thermoanaerobacter/enzimología , Thermoanaerobacter/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Almidón/metabolismo , Especificidad por Sustrato , Cinética , Estabilidad de Enzimas , Glucanos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
4.
Nucleic Acids Res ; 52(1): 462-473, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38033326

RESUMEN

Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.


Asunto(s)
Proteínas Asociadas a CRISPR , Endorribonucleasas , Thermoanaerobacter , Sitios de Unión , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Endorribonucleasas/metabolismo , ARN/metabolismo , Sistemas de Mensajero Secundario , Thermoanaerobacter/enzimología , Thermoanaerobacter/metabolismo
5.
Enzyme Microb Technol ; 164: 110176, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36529061

RESUMEN

Bifunctional debranching-enzyme amylopullulanases belong to the glycoside hydrolases (GHs) family and catalyze both the hydrolysis of α-1,4 and α-1,6 glycosidic bonds in starch, pullulan, amylopectin and glycogen polysaccharides. Among these, especially thermostable ones are essential in starch processing applications. In this study, we focused to elucidate the complete sequence of the apu gene and the role of C-term domains on biochemical properties and enzyme activity of Thermoanaerobacter brockii brockii amylopullulanase (TbbApu). After the gene sequence was defined, C- term truncated variants were constructed. The most suitable host organism and expression vector were determined as E. coli BL21(DE3) and pET-28a(+) depending on the highest yield/biomass ratio for recombinant production of all constructs. It was seen that the expression yield increased approximately threefold in the case of the SH3 region truncation. In the biochemical characterization, TbbApu and its truncated variants exhibited maximum activity at 70 °C and 75 °C for pullulan and starch hydrolysis respectively, and the optimum pH of TbbApu were 6.5 and 6 for truncated variants. Moreover, hydrolysis activities of all recombinant enzymes were enhanced by Mn2+, Co2+ and Cu2+, detergents, and almost all organic solvents; except butanol, DMF and DMSO. All recombinant amylopullulanases remained 80% stable up to 80 °C in the wide range of pH and also retained > 85% stability in the presence of defined volatile organic solvents. No significant difference was observed between the raw starch adsorption capacity and the specific activity of the three variants. These results indicated that the C-terminal regions of TbbApu are non-essential for the enzyme activity, stability and substrate binding capacity; furthermore, hexane and acetone organic solvents enhanced both pullulanase and α-amylase activity of these enzymes, interestingly. With these features, TbbApu and its truncated variants are distinguished from other thermophilic amylopullulanases and also make them promising candidates for industrial use.


Asunto(s)
Proteínas Bacterianas , Glicósido Hidrolasas , Thermoanaerobacter , Proteínas Bacterianas/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Solventes/química , Almidón/metabolismo , Especificidad por Sustrato , Thermoanaerobacter/enzimología
6.
Nature ; 607(7920): 823-830, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859174

RESUMEN

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Asunto(s)
Dióxido de Carbono , Membrana Celular , Hidrógeno , Hidrogenasas , Nanocables , Dióxido de Carbono/metabolismo , Membrana Celular/enzimología , Microscopía por Crioelectrón , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hidrogenasas/ultraestructura , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Thermoanaerobacter/citología , Thermoanaerobacter/enzimología
7.
J Am Chem Soc ; 143(48): 20320-20325, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34813699

RESUMEN

Studies of molecular catalysts traditionally aim at understanding how a certain mechanism allows the reaction to be fast. A distinct question, which has only recently received attention in the case of bidirectional molecular catalysts, is how much thermodynamic driving force is required to achieve fast catalysis in either direction of the reaction. "Reversible" catalysts are bidirectional catalysts that work either way in response to even a small departure from equilibrium and thus do not waste input free energy as heat; conversely, "irreversible" catalysts require a large driving force to proceed at an appreciable rate [Fourmond et al. Nat. Rev. Chem. 2021, 5, 348-360]. Numerous mechanistic rationales for these contrasting behaviors have been proposed. To understand the determinants of catalytic (ir)reversibility, we examined the steady-state, direct electron transfer voltammetry of a particular FeFe hydrogenase, from Thermoanaerobacter mathranii, which is very unusual in that it irreversibly catalyzes H2 oxidation and production: a large overpotential is required for the reaction to proceed in either direction [Land et al. Chem. Sci. 2020, 11, 12789-12801]. In contrast to previous hypotheses, we demonstrate that in this particular enzyme catalytic irreversibility can be explained without invoking slow interfacial electron transfer or variations in the mechanism: the observed kinetics is fully consistent with the same catalytic pathway being used in both directions of the reaction.


Asunto(s)
Proteínas Bacterianas/química , Hidrógeno/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Biocatálisis , Oxidación-Reducción , Thermoanaerobacter/enzimología
8.
Biochem Biophys Res Commun ; 579: 54-61, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34587555

RESUMEN

1,2-ß-Mannobiose phosphorylases (1,2-ß-MBPs) from glycoside hydrolase 130 (GH130) family are important bio-catalysts in glycochemistry applications owing to their ability in synthesizing oligomannans. Here, we report the crystal structure of a thermostable 1,2-ß-MBP from Thermoanaerobacter sp. X-514 termed Teth514_1789 to reveal the molecular basis of its higher thermostability and mechanism of action. We also solved the enzyme complexes of mannose, mannose-1-phosphate (M1P) and 1,4-ß-mannobiose to manifest the enzyme-substrate interaction networks of three main subsites. Notably, a Zn ion that should be derived from crystallization buffer was found in the active site and coordinates the phosphate moiety of M1P. Nonetheless, this Zn-coordination should reflect an inhibitory status as supplementing Zn severely impairs the enzyme activity. These results indicate that the effects of metal ions should be taken into consideration when applying Teth514_1789 and other related enzymes. Based on the structure, a reliable model of Teth514_1788 that shares 61.7% sequence identity to Teth514_1789 but displays a different substrate preference was built. Analyzing the structural features of these two closely related enzymes, we hypothesized that the length of a loop fragment that covers the entrance of the catalytic center might regulate the substrate selectivity. In conclusion, these information provide in-depth understanding of GH130 1,2-ß-MBPs and should serve as an important guidance for enzyme engineering for further applications.


Asunto(s)
Thermoanaerobacter/enzimología , beta-Manosidasa/química , Sitios de Unión , Catálisis , Dominio Catalítico , Glicósido Hidrolasas/química , Iones , Ligandos , Mananos/química , Manosa/química , Manosafosfatos/química , Fosforilasas/química , Plásmidos/metabolismo , Conformación Proteica , Reproducibilidad de los Resultados , Electricidad Estática , Temperatura , Zinc/química
9.
Biochemistry ; 60(40): 3016-3026, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569243

RESUMEN

The [FeFe] hydrogenase catalyzes the redox interconversion of protons and H2 with a Fe-S "H-cluster" employing CO, CN, and azadithiolate ligands to two Fe centers. The biosynthesis of the H-cluster is a highly interesting reaction carried out by a set of Fe-S maturase enzymes called HydE, HydF, and HydG. HydG, a member of the radical S-adenosylmethionine (rSAM) family, converts tyrosine, cysteine, and Fe(II) into an organometallic Fe(II)(CO)2(CN)cysteine "synthon", which serves as the substrate for HydE. Although key aspects of the HydG mechanism have been experimentally determined via isotope-sensitive spectroscopic methods, other important mechanistic questions have eluded experimental determination. Here, we use computational quantum chemistry to refine the mechanism of the HydG catalytic reaction. We utilize quantum mechanics/molecular mechanics simulations to investigate the reactions at the canonical Fe-S cluster, where a radical cleavage of the tyrosine substrate takes place and proceeds through a relay of radical intermediates to form HCN and a COO•- radical anion. We then carry out a broken-symmetry density functional theory study of the reactions at the unusual five-iron auxiliary Fe-S cluster, where two equivalents of CN- and COOH• coordinate to the fifth "dangler iron" in a series of substitution and redox reactions that yield the synthon as the final product for further processing by HydE.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Coordinación/química , Cisteína/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Biocatálisis , Hierro/química , Ligandos , Modelos Químicos , Teoría Cuántica , Thermoanaerobacter/enzimología , Tirosina/química
10.
J Inorg Biochem ; 220: 111446, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865209

RESUMEN

Artificial metalloenzymes result from the insertion of a catalytically active metal complex into a biological scaffold, generally a protein devoid of other catalytic functionalities. As such, their design requires efforts to engineer substrate binding, in addition to accommodating the artificial catalyst. Here we constructed and characterised artificial metalloenzymes using alcohol dehydrogenase as starting point, an enzyme which has both a cofactor and a substrate binding pocket. A docking approach was used to determine suitable positions for catalyst anchoring to single cysteine mutants, leading to an artificial metalloenzyme capable to reduce both natural cofactors and the hydrophobic 1-benzylnicotinamide mimic. Kinetic studies revealed that the new construct displayed a Michaelis-Menten behaviour with the native nicotinamide cofactors, which were suggested by docking to bind at a surface exposed site, different compared to their native binding position. On the other hand, the kinetic and docking data suggested that a typical enzyme behaviour was not observed with the hydrophobic 1-benzylnicotinamide mimic, with which binding events were plausible both inside and outside the protein. This work demonstrates an extended substrate scope of the artificial metalloenzymes and provides information about the binding sites of the nicotinamide substrates, which can be exploited to further engineer artificial metalloenzymes for cofactor regeneration. SYNOPSIS ABOUT GRAPHICAL ABSTRACT: The manuscript provides information on the design of artificial metalloenzymes based on the bioconjugation of rhodium complexes to alcohol dehydrogenase, to improve their ability to reduce hydrophobic substrates. The graphical abstract presents different binding modes and results observed with native cofactors as substrates, compared to the hydrophobic benzylnicotinamide.


Asunto(s)
Alcohol Deshidrogenasa/química , Complejos de Coordinación/química , NADP/química , NAD/química , Niacinamida/análogos & derivados , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Complejos de Coordinación/metabolismo , Simulación del Acoplamiento Molecular , Mutación , NAD/metabolismo , NADP/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Oxidación-Reducción , Unión Proteica , Rodio/química , Thermoanaerobacter/enzimología
11.
Biotechnol Bioeng ; 118(7): 2548-2558, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788276

RESUMEN

Modification of alkyl glycosides, to alter their properties and widen the scope of potential applications, is of considerable interest. Here, we report the synthesis of new anionic alkyl glycosides with long carbohydrate chains, using two different approaches: laccase/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation of a long-carbohydrate-chain alkyl glycoside and cyclodextrin glucanotransferase (CGTase)-catalyzed elongation of anionic alkyl glycosides. The laccase/TEMPO oxidation of dodecyl ß- d-maltooctaoside proceeded efficiently with the formation of aldehyde and acid products. However, depolymerization occurred to a large extent, limiting the product yield and purity. On the other hand, CGTase-catalyzed coupling/disproportionation reactions with α-cyclodextrin and dodecyl ß- d-maltoside diuronic acid (DDM-2COOH) or octyl ß- d-glucuronic acid (OG-COOH) as substrates gave high conversions, especially when the CGTase Toruzyme was used. It was found that pH had a strong influence on both the enzyme activity and the acceptor specificity. With non-ionic substrates (dodecyl ß- d-maltoside and octyl ß- d-glucoside), Toruzyme exhibited high catalytic activity at pH 5-6, but for the acidic substrates (DDM-2COOH and OG-COOH) the activity was highest at pH 4. This is most likely due to the enzyme favoring the protonated forms of DDM-2COOH and OG-COOH, which exist at lower pH (pKa about 3).


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Glicósidos , Lacasa/química , Paenibacillus/enzimología , Thermoanaerobacter/enzimología , Catálisis , Glicósidos/síntesis química , Glicósidos/química , Oxidación-Reducción
12.
Chembiochem ; 22(11): 1884-1893, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33594812

RESUMEN

Alcohol dehydrogenases (ADHs) are an important type of enzyme that have significant applications as biocatalysts. Secondary ADHs from Thermoanaerobacter pseudoethanolicus (TeSADH) and Thermoanaerobacter brockii (TbSADH) are well-known as robust catalysts. However, like most other ADHs, these enzymes suffer from their high substrate specificities (i. e., limited substrate scope), which to some extent restricts their use as biocatalysts. This minireview discusses recent efforts to expand the substrate scope and tune the enantioselectivity of TeSADH and TbSADH by using site-directed mutagenesis and directed evolution. Various examples of asymmetric synthesis of optically active alcohols using both enzymes are highlighted. Moreover, the unique thermal stability and organic solvent tolerance of these enzymes is illustrated by their concurrent inclusion with other interesting reactions to synthesize optically active alcohols and amines. For instance, TeSADH has been used in quantitative non-stereoselective oxidation of alcohols to deracemize alcohols via cyclic deracemization and in the racemization of enantiopure alcohols to accomplish a bienzymatic dynamic kinetic resolution.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Alcoholes/metabolismo , Thermoanaerobacter/enzimología , Alcohol Deshidrogenasa/genética , Alcoholes/química , Biocatálisis , Estructura Molecular , Mutagénesis Sitio-Dirigida
13.
J Agric Food Chem ; 69(3): 1011-1019, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428404

RESUMEN

Luo Han Guo fruit extract (Siraitia grosvenorii), mainly composed of mogroside V (50%), could be considered a suitable alternative to free sugars; however, its commercial applications are limited by its unpleasant off-notes. In the present work, a central composite design method was employed to optimize the transglycosylation of a mogroside extract using cyclodextrin glucosyltransferases (CGTases) from three different bacteriological sources (Paenibacillus macerans, Geobacillus sp., and Thermoanaerobacter sp.) considering various experimental parameters such as maltodextrin and mogroside concentration, temperature, time of reaction, enzymatic activity, and pH. Product structures were determined by liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Sensory analysis of glucosylated mogrosides showed an improvement in flavor attributes relevant to licorice flavor and aftereffect. Consequently, an optimum methodology was developed to produce new modified mogrosides more suitable when formulating food products as free sugar substitutes.


Asunto(s)
Proteínas Bacterianas/química , Cucurbitaceae/química , Glucósidos/biosíntesis , Glucosiltransferasas/química , Extractos Vegetales/química , Edulcorantes/síntesis química , Biocatálisis , Cromatografía Líquida de Alta Presión , Frutas/química , Geobacillus/enzimología , Glucósidos/química , Paenibacillus/enzimología , Extractos Vegetales/síntesis química , Espectrometría de Masa por Ionización de Electrospray , Edulcorantes/química , Thermoanaerobacter/enzimología
14.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33067194

RESUMEN

Thermoanaerobacter ethanolicus can produce acetate, lactate, hydrogen, and ethanol from sugars resulting from plant carbohydrate polymer degradation at temperatures above 65°C. T. ethanolicus is a promising candidate for thermophilic ethanol fermentations due to the utilization of both pentose and hexose. Although an ethanol balance model in T. ethanolicus has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in ethanol formation have been carried out. To address this issue, we developed a thermostable Cas9-based system for genome editing of T. ethanolicus As a proof of principle, three genes, including the thymidine kinase gene (tdk), acetaldehyde-alcohol dehydrogenase gene (adhE), and redox sensing protein gene (rsp), were chosen as editing targets, and these genes were edited successfully. As a genetic tool, we tested the gene knockout and a small DNA fragment knock-in. After optimization of the transformation strategies, 77% genome-editing efficiency was observed. Furthermore, our in vivo results revealed that redox sensing protein (RSP) plays a more important role in regulation of energy metabolism, including hydrogen production and ethanol formation. The genetic system provides us with an effective strategy to identify genes involved in biosynthesis and energy metabolism.IMPORTANCE Interest in thermophilic microorganisms as emerging metabolic engineering platforms to produce biofuels and chemicals has surged. Thermophilic microbes for biofuels have attracted great attention, due to their tolerance of high temperature and wide range of substrate utilization. On the basis of the biochemical experiments of previous investigation, the formation of ethanol was controlled via transcriptional regulation and influenced by the relevant properties of specific enzymes in T. ethanolicus Thus, there is an urgent need to understand the physiological function of these key enzymes, which requires genetic manipulations such as deletion or overexpression of genes encoding putative key enzymes. Here, we developed a thermostable Cas9-based engineering tool for gene editing in T. ethanolicus The thermostable Cas9-based genome-editing tool may further be applied to metabolically engineer T. ethanolicus to produce biofuels. This genetic system represents an important expansion of the genetic tool box of anaerobic thermophile T. ethanolicus strains.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Edición Génica , Thermoanaerobacter/genética , Anaerobiosis , Proteínas Bacterianas/metabolismo , Etanol/metabolismo , Fermentación , Thermoanaerobacter/enzimología
15.
J Ind Microbiol Biotechnol ; 47(8): 585-597, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32783103

RESUMEN

Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.


Asunto(s)
Caldicellulosiruptor/genética , Ácidos Carboxílicos/metabolismo , Etanol/metabolismo , Lignina/metabolismo , Microorganismos Modificados Genéticamente , Panicum/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Biocombustibles/análisis , Biomasa , Fermentación , Oxidación-Reducción , Panicum/microbiología , Pyrococcus furiosus/enzimología , Thermoanaerobacter/enzimología
16.
Angew Chem Int Ed Engl ; 59(48): 21745-21751, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32776678

RESUMEN

The amination of racemic alcohols to produce enantiopure amines is an important green chemistry reaction for pharmaceutical manufacturing, requiring simple and efficient solutions. Herein, we report the development of a cascade biotransformation to aminate racemic alcohols. This cascade utilizes an ambidextrous alcohol dehydrogenase (ADH) to oxidize a racemic alcohol, an enantioselective transaminase (TA) to convert the ketone intermediate to chiral amine, and isopropylamine to recycle PMP and NAD+ cofactors via the reversed cascade reactions. The concept was proven by using an ambidextrous CpSADH-W286A engineered from (S)-enantioselective CpSADH as the first example of evolving ambidextrous ADHs, an enantioselective BmTA, and isopropylamine. A biosystem containing isopropylamine and E. coli (CpSADH-W286A/BmTA) expressing the two enzymes was developed for the amination of racemic alcohols to produce eight useful and high-value (S)-amines in 72-99 % yield and 98-99 % ee, providing with a simple and practical solution to this type of reaction.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Alcoholes/metabolismo , Aminas/metabolismo , Alcoholes/química , Aminas/química , Cristalografía por Rayos X , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , Sphingomonadaceae/enzimología , Estereoisomerismo , Thermoanaerobacter/enzimología
17.
J Microbiol Biotechnol ; 29(12): 1938-1946, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31838796

RESUMEN

Isomaltooligosaccharides (IMOs) have good prebiotic effects, and long IMOs (LIMOs) with a degree of polymerization (DP) of 7 or above show improved effects. However, they are not yet commercially available, and require costly enzymes and processes for production. The Nterminal region of the thermostable Thermoanaerobacter thermocopriae cycloisomaltooligosaccharide glucanotransferase (TtCITase) shows cyclic isomaltooligosaccharide (CI)-producing activity owing to a catalytic domain of glycoside hydrolase (GH) family 66 and carbohydrate-binding module (CBM) 35. In the present study, we elucidated the activity of the C-terminal region of TtCITase (TtCITase-C; Met740-Phe1,559), including a CBM35-like region and the GH family 15 domain. The domain was successfully cloned, expressed, and purified as a single protein with a molecular mass of 115 kDa. TtCITase-C exhibited optimal activity at 40°C and pH 5.5, and retained 100% activity at pH 5.5 after 18-h incubation. TtCITase-C synthesized α-1,6 glucosyl products with over seven degrees of polymerization (DP) by an α-1,6 glucosyl transfer reaction from maltopentaose, isomaltopentaose, or commercialized maltodextrins as substrates. These results indicate that TtCITase-C could be used for the production of α-1,6 glucosyl oligosaccharides with over DP7 (LIMOs) in a more cost-effective manner, without requiring cyclodextran.


Asunto(s)
Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Thermoanaerobacter/enzimología , Dominio Catalítico , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Glucosiltransferasas/genética , Glicósido Hidrolasas , Concentración de Iones de Hidrógeno , Peso Molecular , Polimerizacion , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Temperatura , Thermoanaerobacter/genética
18.
Environ Microbiol ; 21(10): 3728-3736, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219674

RESUMEN

Acetogenic bacteria recently attracted attention because they reduce carbon dioxide (CO2 ) with hydrogen (H2 ) to acetate or to other products such as ethanol. Besides gases, acetogens use a broad range of substrates, but conversion of the sugar alcohol mannitol has rarely been reported. We found that the thermophilic acetogenic bacterium Thermoanaerobacter kivui grew on mannitol with a specific growth rate of 0.33 h-1 to a final optical density (OD600 ) of 2.2. Acetate was the major product formed. A lag phase was observed only in cultures pre-grown on glucose, not in those pre-grown on mannitol, indicating that mannitol metabolism is regulated. Mannitol-1-phosphate dehydrogenase (MtlD) activity was observed in cell-free extracts of cells grown on mannitol only. A gene cluster (TKV_c02830-TKV_c02860) for mannitol uptake and conversion was identified in the T. kivui genome, and its involvement was confirmed by deleting the mtlD gene (TKV_c02860) encoding the key enzyme MtlD. Finally, we overexpressed mtlD, and the recombinant MtlD carried out the reduction of fructose-6-phosphate with NADH, at a high VMAX of 1235 U mg-1 at 65°C. The enzyme was thermostable for 40 min at 75°C, thereby representing the first characterized MtlD from a thermophile.


Asunto(s)
Manitol/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Thermoanaerobacter/enzimología , Estabilidad de Enzimas , Genes Bacterianos , Familia de Multigenes , Thermoanaerobacter/genética , Thermoanaerobacter/crecimiento & desarrollo
19.
Biomol NMR Assign ; 13(2): 287-293, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31025174

RESUMEN

Enzyme I (EI) of the bacterial phosphotransferase system (PTS) utilizes phosphoenolpyruvate (PEP) as a source of energy in order to transport sugars across the cellular membrane. PEP binding to EI initiates a phosphorylation cascade that regulates a variety of essential pathways in the metabolism of bacterial cells. Given its central role in controlling bacterial metabolism, EI has been often suggested as a good target for antimicrobial research. Here, we report the 1HN, 15N, 13C', 1Hmethyl, and 13Cmethyl chemical shifts of the 128 kDa homodimer EI from the thermophile Thermoanaerobacter tengcongensis. In total 79% of the expected backbone amide correlations and 80% of the expected methyl TROSY peaks from U-[2H, 13C, 15N], Ileδ1-[13CH3], Val-Leu-[13CH3/12CD3] labeled EI were assigned. The reported assignments will enable future structural studies aimed at illuminating the fundamental mechanisms governing long-range interdomain communication in EI and at indicating new therapeutic strategies to combat bacterial infections.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Multimerización de Proteína , Thermoanaerobacter/enzimología , Estructura Cuaternaria de Proteína
20.
Proc Natl Acad Sci U S A ; 116(13): 6329-6334, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850546

RESUMEN

The ancient reductive acetyl-CoA pathway is employed by acetogenic bacteria to form acetate from inorganic energy sources. Since the central pathway does not gain net ATP by substrate-level phosphorylation, chemolithoautotrophic growth relies on the additional formation of ATP via a chemiosmotic mechanism. Genome analyses indicated that some acetogens only have an energy-converting, ion-translocating hydrogenase (Ech) as a potential respiratory enzyme. Although the Ech-encoding genes are widely distributed in nature, the proposed function of Ech as an ion-translocating chemiosmotic coupling site has neither been demonstrated in bacteria nor has it been demonstrated that it can be the only energetic coupling sites in microorganisms that depend on a chemiosmotic mechanism for energy conservation. Here, we show that the Ech complex of the thermophilic acetogenic bacterium Thermoanaerobacter kivui is indeed a respiratory enzyme. Experiments with resting cells prepared from T. kivui cultures grown on carbon monoxide (CO) revealed CO oxidation coupled to H2 formation and the generation of a transmembrane electrochemical ion gradient ([Formula: see text]). Inverted membrane vesicles (IMVs) prepared from CO-grown cells also produced H2 and ATP from CO (via a loosely attached CO dehydrogenase) or a chemical reductant. Finally, we show that Ech activity led to the translocation of both H+ and Na+ across the membrane of the IMVs. The H+ gradient was then used by the ATP synthase for energy conservation. These data demonstrate that the energy-converting hydrogenase in concert with an ATP synthase may be the simplest form of respiration; it combines carbon dioxide fixation with the synthesis of ATP in an ancient pathway.


Asunto(s)
Fenómenos Bioquímicos , Redes y Vías Metabólicas , Oxidorreductasas/metabolismo , Fuerza Protón-Motriz/fisiología , Thermoanaerobacter/metabolismo , Adenosina Trifosfato/metabolismo , Aldehído Oxidorreductasas/metabolismo , Ciclo del Carbono , Monóxido de Carbono/metabolismo , Membrana Celular/metabolismo , Hidrógeno/metabolismo , Complejos Multienzimáticos/metabolismo , Familia de Multigenes , Oxidación-Reducción , Vesículas Secretoras/metabolismo , Sodio/metabolismo , Thermoanaerobacter/enzimología , Thermoanaerobacter/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...