Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Sci Rep ; 14(1): 9399, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658654

RESUMEN

Edwardsiella piscicida causes significant economic losses to the aquaculture industry worldwide. Phage-based biocontrol methods are experiencing a renaissance because of the spread of drug-resistant genes and bacteria resulting from the heavy use of antibiotics. Here, we showed that the novel Edwardsiella phage EPP-1 could achieve comparable efficacy to florfenicol using a zebrafish model of Edwardsiella piscicida infection and could reduce the content of the floR resistance gene in zebrafish excreta. Specifically, phage EPP-1 inhibited bacterial growth in vitro and significantly improved the zebrafish survival rate in vivo (P = 0.0035), achieving an efficacy comparable to that of florfenicol (P = 0.2304). Notably, integrating the results of 16S rRNA sequencing, metagenomic sequencing, and qPCR, although the effects of phage EPP-1 converged with those of florfenicol in terms of the community composition and potential function of the zebrafish gut microbiota, it reduced the floR gene content in zebrafish excreta and aquaculture water. Overall, our study highlights the feasibility and safety of phage therapy for edwardsiellosis control, which has profound implications for the development of antibiotic alternatives to address the antibiotic crisis.


Asunto(s)
Antibacterianos , Bacteriófagos , Edwardsiella , Infecciones por Enterobacteriaceae , Tianfenicol/análogos & derivados , Pez Cebra , Animales , Pez Cebra/microbiología , Edwardsiella/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/terapia , Bacteriófagos/genética , Bacteriófagos/fisiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal , Terapia de Fagos/métodos , ARN Ribosómico 16S/genética , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/terapia , Enfermedades de los Peces/prevención & control , Tianfenicol/farmacología , Acuicultura/métodos
2.
BMC Vet Res ; 20(1): 156, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664683

RESUMEN

The present study aimed to determine the major cause of the high mortality affecting farmed gilthead seabream (Sparus aurata) and controlling this disease condition. Fifteen diseased S. aurata were sampled from a private fish farm located at Eldeba Triangle, Damietta, fish showed external skin hemorrhages, and ulceration. Bacterial isolates retrieved from the diseased fish were identified biochemically as Pseudomonas putida and then confirmed by phylogenetic analysis of the 16 S rRNA gene sequence. P. putida was also isolated from three batches of tilapia-trash feed given to S. aurata. Biofilm and hemolytic assay indicated that all P. putida isolates produced biofilm, but 61.11% can haemolyse red blood cells. Based on the antibiotic susceptibility test results, P. putida was sensitive to florfenicol with minimum inhibitory concentrations ranging between 0.25 and 1.0 µg mL- 1, but all isolates were resistant to ampicillin and sulfamethoxazole-trimethoprim. Pathogenicity test revealed that P. putida isolate (recovered from the tilapia-trash feed) was virulent for S. aurata with LD50 equal to 4.67 × 107 colony forming unit (CFU) fish- 1. After intraperitoneal (IP) challenge, fish treated with 10 mg kg- 1 of florfenicol showed 16.7% mortality, while no mortality was recorded for the fish group that received 20 mg kg- 1. The non-treated fish group showed 46.7% mortality after bacterial challenge. HPLC analysis of serum florfenicol levels reached 1.07 and 2.52 µg mL- 1 at the 5th -day post-drug administration in the fish groups received 10 and 20 mg kg- 1, respectively. In conclusion, P. putida was responsible for the high mortality affecting cultured S. aurata, in-feed administration of florfenicol (20 mg kg- 1) effectively protected the challenged fish.


Asunto(s)
Alimentación Animal , Antibacterianos , Enfermedades de los Peces , Pseudomonas putida , Dorada , Tianfenicol , Tianfenicol/análogos & derivados , Animales , Tianfenicol/uso terapéutico , Tianfenicol/farmacología , Tianfenicol/administración & dosificación , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/tratamiento farmacológico , Pseudomonas putida/efectos de los fármacos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Alimentación Animal/análisis , Dorada/microbiología , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana/veterinaria , Tilapia , Filogenia , ARN Ribosómico 16S/genética , Biopelículas/efectos de los fármacos
3.
Sci Rep ; 14(1): 4920, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418677

RESUMEN

The food animal sector's use of antimicrobials is heavily critiqued for its role in allowing resistance to develop against critically important antimicrobials in human health. The WHO recommends using lower tier antimicrobials such as florfenicol for disease treatment. The primary objective of this study was to assess the differences in resistance profiles of enteric microbes following administration of florfenicol to steers using both FDA-approved dosing regimens and two different detection methods. Our hypothesis was that we would identify an increased prevalence of resistance in the steers administered the repeated, lower dose of florfenicol; additionally, we hypothesized resistance profiles would be similar between both detection methods. Twelve steers were administered either two intramuscular (20 mg/kg q 48 h; n = 6) or a single subcutaneous dose (40 mg/kg, n = 6). Fecal samples were collected for 38 days, and E. coli and Enterococcus were isolated and tested for resistance. Fecal samples were submitted for metagenomic sequencing analysis. Metagenomics revealed genes conferring resistance to aminoglycosides as the most abundant drug class. Most multidrug resistance genes contained phenicols. The genotypic and phenotypic patterns of resistance were not similar between drug classes. Observed increases in resistant isolates and relative abundance of resistance genes peaked after drug administration and returned to baseline by the end of the sampling period. The use of a "lower tier" antimicrobial, such as florfenicol, may cause an increased amount of resistance to critically important antimicrobials for a brief period, but these changes largely resolve by the end of the drug withdrawal period.


Asunto(s)
Microbioma Gastrointestinal , Tianfenicol , Tianfenicol/análogos & derivados , Animales , Humanos , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Tianfenicol/farmacología , Antibacterianos/farmacología , Enterobacteriaceae , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
4.
Bioresour Technol ; 395: 130318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219924

RESUMEN

Quorum sensing potentially helps microorganisms adapt to antibiotic stress encountered in the environment. This experiment investigated the effect of acyl homoserine endolipid-like signaling molecules on microbial antibiotic resistance gene structures in aqueous sediments under florfenicol stress. Additional acyl homoserine endolipid-like signaling molecules (AHLs) alter the structure of multidrug resistance genes in florfenicol-stressed sediments, particularly the multidrug resistance efflux pump gene family. Prophages and integrative and conjugative elements (ICEs) determined the resistance genes structure, and pathways related to mobile genetic elements (MGEs) transfer may play an essential role in this process. The practical application of AHLs to regulate quorum sensing systems may alter bacterial stress responses to environmental florfenicol residues, thereby reducing the development of antibiotic resistance in the environment.


Asunto(s)
Homoserina , Tianfenicol , Tianfenicol/análogos & derivados , Homoserina/metabolismo , Tianfenicol/farmacología , Percepción de Quorum/genética , Antibacterianos/farmacología , Acil-Butirolactonas/metabolismo
5.
Poult Sci ; 103(2): 103373, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150832

RESUMEN

This study investigates the combined effects of chitooligosaccharide (COS) and florfenicol (FLO) on the inhibition of Escherichia coli in vitro, as well as the pharmacokinetic interactions between these compounds in healthy chickens. The minimum inhibitory concentration (MIC) of COS and FLO alone and the fractional inhibitory concentration index (FICI) after combined treatment were determined using the broth microdilution method and checkerboard method, respectively. Additionally, we evaluated the pharmacokinetic interactions between the 2 types of COS and FLO in healthy chickens. Thirty chickens were randomly divided into 3 groups: Florfenicol group (30 mg/kg), COS J85 group (COS J85 20 mg/kg + florfenicol 30 mg/kg), COS H85 group (COS H85 20 mg/kg + florfenicol 30 mg/kg). Either FLO or COS was orally administered by gavage. The concentrations of FLO in chicken plasma were measured at different time points after the drug withdrawal using high-performance liquid chromatography (HPLC), and pharmacokinetic parameters were calculated by a compartmental method. The results showed that COS J85 and COS H85, when combined with FLO, had FICI values of 0.1875 to 0.75 and 0.3125 to 1, respectively, indicating good synergistic or additive effects against Escherichia coli. The pharmacokinetics of FLO alone and in combination with COS followed a 1-compartment model with first-order absorption and elimination. Furthermore, the pharmacokinetic analysis revealed that the elimination half-life (t1/2ke) of florfenicol was significantly increased in the COS H85 group compared to oral administration of florfenicol alone (P < 0.05). Other pharmacokinetic parameters did not show significant changes (P > 0.05), except between the 2 combined treatment groups, where statistical differences were observed for various parameters, excluding the area under the concentration-time curve from the time of dosing to infinity (AUC) and peak concentration (Cmax).


Asunto(s)
Pollos , Quitosano , Oligosacáridos , Tianfenicol , Tianfenicol/análogos & derivados , Animales , Escherichia coli , Tianfenicol/farmacología , Antibacterianos , Semivida
6.
J Antibiot (Tokyo) ; 76(12): 711-719, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821539

RESUMEN

Polymyxins are last-line antibiotics against multidrug-resistant Klebsiella pneumoniae but using polymyxins alone may not be effective due to emerging resistance. A previous study found that combining polymyxin B with chloramphenicol effectively kills MDR K. pneumoniae, although the bone marrow toxicity of chloramphenicol is concerning. The aim of this study is to assess the antibacterial efficacy and cytotoxicity of polymyxin B when combined with chloramphenicol and its derivatives, namely thiamphenicol and florfenicol (reported to have lesser toxicity compared to chloramphenicol). The antibacterial activity was evaluated with antimicrobial susceptibility testing using broth microdilution and time-kill assays, while the cytotoxic effect on normal bone marrow cell line, HS-5 was evaluated using the MTT assay. All bacterial isolates tested were found to be susceptible to polymyxin B, but resistant to chloramphenicol, thiamphenicol, and florfenicol when used alone. The use of polymyxin B alone showed bacterial regrowth for all isolates at 24 h. The combination of polymyxin B and florfenicol demonstrated additive and synergistic effects against all isolates (≥ 2 log10 cfu ml-1 reduction) at 4 and 24 h, respectively, while the combination of polymyxin B and thiamphenicol resulted in synergistic killing at 24 h against ATCC BAA-2146. Furthermore, the combination of polymyxin B with florfenicol had the lowest cytotoxic effect on the HS-5 cells compared to polymyxin B combination with chloramphenicol and thiamphenicol. Overall, the combination of polymyxin B with florfenicol enhanced bacterial killing against MDR K. pneumoniae and exerted minimal cytotoxic effect on HS-5 cell line.


Asunto(s)
Polimixina B , Tianfenicol , Polimixina B/farmacología , Cloranfenicol/farmacología , Klebsiella pneumoniae , Tianfenicol/farmacología , Sinergismo Farmacológico , Antibacterianos/farmacología , Polimixinas/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
7.
Sci Rep ; 13(1): 9644, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316527

RESUMEN

This study was conducted during the period of August 2021 to April 2022 and divided into two parts. The first part involved the isolation and characterization of Salmonella from 200 diseased broiler chickens collected from farms in Dakahlia Governorate, Egypt, with the detection of its antimicrobial susceptibility. The second experimental part involved in ovo inoculation of probiotics and florfenicol to evaluate their effects on hatchability, embryonic viability, growth performance traits and the control of multidrug-resistant Salmonella Enteritidis infections post hatching. The point prevalence of Salmonella in the internal organs of diseased chickens was 13% (26/200), including 6 serotypes: S. Enteritidis, S. Typhimurium, S. Santiago, S. Colindale, S. Takoradi and S. Daula. Multidrug resistance was found in 92% (24/26) of the isolated strains with a multiantibiotic resistance index of 0.33-0.88 and 24 antibiotic resistance patterns. The in ovo inoculation of probiotic with florfenicol showed significant improvement in the growth performance parameters compared with other groups and had the ability to prevent colonization of multidrug resistant S. Enteritidis in the majority of the experimental chicks, and the remaining chicks showed very low colonization, as detected by RT‒PCR. These findings suggested the application of in ovo inoculation techniques with both probiotics and florfenicol as a promising tool to control multidrug-resistant S. Enteritidis in poultry farms.


Asunto(s)
Probióticos , Tianfenicol , Animales , Pollos , Salmonella enteritidis , Tianfenicol/farmacología
8.
J Fish Dis ; 46(5): 591-596, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36639965

RESUMEN

Public health is facing a new challenge due to the increased bacterial resistance to most of the conventional antibacterial agents. Inadequate use of antibiotics in the Chilean aquaculture industry leads to the generation of multidrug resistance bacteria. Many fish pathogenic bacteria produce biofilm upon various sources of stress such as antibiotics, which provides several survival advantages for the bacterial life in community and can constitute a reservoir of pathogens in the marine environment. Being florfenicol a broad-spectrum antibiotic commonly used to treat infections in aquaculture, the aim of this study was to assess whether this antibiotic modulates in vitro the biofilm formation in several isolates of Piscirickettsia salmonis. Standard antibiotic-micro broth 96-flat well plates were used to determinate the minimal inhibitory concentration of florfenicol in eight different P. salmonis isolates. In vitro findings, with P. salmonis growing in the presence and absence of the antibiotic, exhibited a statistically significantly increase (p < .05) in biofilm formation in all the bacterial isolates cultivated with sub-MIC (defined as the half of the minimal inhibitory concentration in the presence of antibiotic) of florfenicol compared with controls (antibiotic-free broth). In conclusion, sub-MIC of florfenicol induced an increased biofilm formation in all P. salmonis isolates tested.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Tianfenicol , Animales , Enfermedades de los Peces/microbiología , Tianfenicol/farmacología , Antibacterianos/farmacología , Biopelículas , Infecciones por Piscirickettsiaceae/microbiología
9.
Appl Environ Microbiol ; 89(1): e0154722, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36519886

RESUMEN

Antibiotic resistance mediated by bacterial enzyme inactivation plays a crucial role in the degradation of antibiotics in the environment. Chloramphenicol (CAP) resistance by enzymatic inactivation comprises nitro reduction, amide bond hydrolysis, and acetylation modification. However, the molecular mechanism of enzymatic oxidation of CAP remains unknown. Here, a novel oxidase gene, cmO, was identified and confirmed biochemically. The encoded CmO oxidase could catalyze the oxidation at the C-1' and C-3' positions of CAP and thiamphenicol (TAP) in Sphingobium sp. strain CAP-1. CmO is highly conserved in members of the family Sphingomonadaceae and shares the highest amino acid similarity of 41.05% with the biochemically identified glucose methanol choline (GMC) oxidoreductases. Molecular docking and site-directed mutagenesis analyses demonstrated that CAP was anchored inside the protein pocket of CmO with the hydrogen bonding of key residues glycine (G) 99, asparagine (N) 518, methionine (M) 474, and tyrosine (Y) 380. CAP sensitivity tests demonstrated that the acetyltransferase and CmO could enable a higher level of resistance to CAP than the amide bond-hydrolyzing esterase and nitroreductase. This study provides a better theoretical basis and a novel diagnostic gene for understanding and assessing the fate and resistance risk of CAP and TAP in the environment. IMPORTANCE Rising levels of antibiotic resistance are undermining ecological and human health as a result of the indiscriminate usage of antibiotics. Various resistance mechanisms have been characterized-for example, genes encoding proteins that degrade antibiotics-and yet, this requires further exploration. In this study, we report a novel gene encoding an oxidase involved in the inactivation of typical amphenicol antibiotics (chloramphenicol and thiamphenicol), and the molecular mechanism is elucidated. The findings provide novel data with which to understand the capabilities of bacteria to tackle antibiotic stress, as well as the complex function of enzymes in the contexts of antibiotic resistance development and antibiotic removal. The reported gene can be further employed as an indicator to monitor amphenicol's fate in the environment, thus benefiting risk assessment in this era of antibiotic resistance.


Asunto(s)
Antibacterianos , Cloranfenicol , Farmacorresistencia Bacteriana , Oxidorreductasas , Sphingomonadaceae , Tianfenicol , Humanos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Simulación del Acoplamiento Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Tianfenicol/metabolismo , Tianfenicol/farmacología , Farmacorresistencia Bacteriana/genética
10.
Sci Rep ; 12(1): 20413, 2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36437351

RESUMEN

The aim of this study was to assess the dynamics of microbial communities and antimicrobial resistance genes (ARGs) in the chicken gut following amoxicillin and thiamphenicol treatments and potential co-selection of ARGs. To this purpose, the microbial community composition, using 16S rRNA NGS, and the abundance of ARGs conferring resistance to ß-lactams and phenicols, using qPCRs, were determined. Results revealed that the administered antimicrobials did not significantly reduce the gut microbiota diversity, but changed its composition, with taxa (e.g. Gallibacterium and Megamonas) being enriched after treatment and replacing other bacteria (e.g. Streptococcus and Bifidobacterium). Positive correlations were found between ARGs (e.g. cmlA, blaCMY-2, and blaSHV) and the relative abundance of specific taxa (e.g. Lactobacillus and Subdoligranulum). The selective pressure exerted by both amoxicillin and thiamphenicol resulted in an increased abundance of ARGs conferring resistance to ß-lactams (e.g. blaTEM-1, blaSHV, and blaCTX-M1-like) and phenicols (e.g. floR and cmlA). These findings, together with the co-occurrence of genes conferring resistance to the two antimicrobial classes (e.g. blaTEM-1 and cmlA), suggest a possible interaction among antimicrobials on resistance emergence, possibly due to the presence of mobile genetic elements (MGEs) carrying multiple resistance determinants.


Asunto(s)
Microbioma Gastrointestinal , Tianfenicol , Animales , Tianfenicol/farmacología , Amoxicilina/farmacología , Microbioma Gastrointestinal/genética , Pollos/genética , Farmacorresistencia Microbiana/genética , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Antibacterianos/análisis , beta-Lactamas
11.
J Microencapsul ; 39(7-8): 589-600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36369854

RESUMEN

To study the effects of nanocrystallisation technology on the intestinal absorption properties and antibacterial activity of florfenicol (FF). The florfenicol nanocrystals (FF-NC) were prepared by wet grinding and spray drying. Additionally, changes in particle size, charge, morphology, and dissolution of FF-NC in the long-term stability were monitored by laser particle sizer, TEM, SEM, paddle method, and the structure of FF-NC powder was characterised by nuclear magnetic resonance (NMR) test. The antibacterial activity, intestinal absorption and intestinal histocompatibility of FF-NC were investigated by the stiletto, mini broth dilution susceptibility test, in situ single-pass intestinal perfusion (SPIP) and haematoxylin-eosin (H-E) staining. After 12 months of storage, the particle size and zeta potential of FF-NC were 280.43 ± 8.21 nm and -19.64 ± 3.45 mV, and the electron microscopy results showed that FF-NC were nearly circular with no adhesion between particles. In addition, the drug loading, encapsulation efficiency, and dissolution of FF-NC did not change significantly during storage. The inhibition zone of FF-NC against Escherichia coli and Staphylococcus aureus was 21.37 ± 1.70 mm and 25.17 ± 2.47 mm, respectively. Compared with the FF, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of FF-NC are reduced, and the absorption rate constant (Ka) and efficient permeability coefficient (Peff) of FF-NC in the three intestinal segments were increased by 1.28, 0.25, and 9.10 times and 0.59, 0.17, and 6.0 times, respectively. The results of tissue sections showed that FF-NC had little damage to the small intestinal. Nanocrystallisation technology is an effective method to increase the intestinal absorption and antibacterial activity of FF.


Asunto(s)
Antibacterianos , Tianfenicol , Antibacterianos/farmacología , Antibacterianos/química , Tianfenicol/farmacología , Tianfenicol/química , Absorción Intestinal , Tecnología
12.
Food Chem Toxicol ; 169: 113431, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116547

RESUMEN

Most of the studies on doxycycline (DOX) and florfenicol (FF) remain focused on the improvement of antimicrobial activity and antimicrobial spectrum, and there is no relevant report on whether there is interaction between the two drugs after the combination. This research study evaluated the effect of DOX on FF metabolism in vitro and its mechanisms. The findings of this study showed that DOX inhibits FF metabolism in two ways. Firstly, DOX significantly inhibits the expression of CYP3A29, leading to the slower metabolism of FF; secondly, DOX affects the binding of FF to R106 and R372 by competing for the R372 and/or by a "steric-like effect", thus slowing down FF metabolism, which may increase the residual concentration of FF in edible tissues of food producing animals.


Asunto(s)
Antibacterianos , Citocromo P-450 CYP3A , Doxiciclina , Tianfenicol , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Unión Competitiva , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Doxiciclina/farmacología , Interacciones Farmacológicas , Tianfenicol/análogos & derivados , Tianfenicol/metabolismo , Tianfenicol/farmacología , Porcinos , Mutación
13.
Arch Microbiol ; 204(7): 392, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35704068

RESUMEN

Natural products with antimicrobial activity and their association with synthetic antimicrobials are a sustainable option in fish farming. The objective of this study was to determine antimicrobial activity, antibiofilm potential and synergism of five essential oils (EOs) with florfenicol against motile Aeromonas isolated from Amazonian Colossoma macropomum. As their major constituent, the EOs of the species of Aloysia triphylla, Croton cajucara (red and white morphotype), Cymbopongo citratus and Lippia gracilis present ß-pinene (22.1%), germacrene D (11.5%), linalool (23%), geranial (45.7%) and carvacrol (42.2%), respectively. The EOs of L. gracilis and C. citratus showed the best antimicrobial activities against the Aeromonas strains (5 mg mL-1). All EOs interfered with biofilm formation and consolidated biofilm. The EOs of A. triphylla, C. citratus and L. gracilis showed a synergistic effect with florfenicol, reducing the amount of the chemical into the water systems while treatment.


Asunto(s)
Aeromonas , Antiinfecciosos , Aceites Volátiles , Tianfenicol , Animales , Aceites Volátiles/farmacología , Tianfenicol/análogos & derivados , Tianfenicol/farmacología
14.
World J Microbiol Biotechnol ; 38(3): 37, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35018528

RESUMEN

Thiamphenicol (TAP) is an amphenicol antibiotic, which has a broad-spectrum inhibitory effect on both gram-positive and gram-negative bacteria. Since it is widely used in animals and aquaculture, its residues in environment may bring potential risk for human health and ecosystems. While TAP can be removed through conventional physical or chemical methods, its bioremediation using microorganisms is less studied. Here, we report the removal of TAP by a bacterial strain, Aeromonas hydrophila HS01, which can remove more than 90.0% of TAP in a living cell-dependent manner. Our results indicated that its removal efficiency can be greatly affected by the growth condition. Proteomics studies revealed a number of differentially expressed proteins of HS01 in the presence of TAP, which may play critical roles in the transportation and degradation of TAP. All these results indicate bacterial strain A. hydrophila HS01 is a new microbial resource for efficiently removing TAP, and may shed new insights in developing bioremediation approaches for TAP pollution.


Asunto(s)
Aeromonas hydrophila/metabolismo , Antibacterianos/metabolismo , Tianfenicol/metabolismo , Animales , Antibacterianos/farmacología , Acuicultura , Biodegradación Ambiental , Ecosistema , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Proteómica/métodos , Tianfenicol/farmacología
15.
Appl Environ Microbiol ; 87(24): e0168121, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613752

RESUMEN

Florfenicol is an important antibiotic commonly used in poultry production to prevent and treat Salmonella infection. However, oral administration of florfenicol may alter the animals' natural microbiota and metabolome, thereby reducing intestinal colonization resistance and increasing susceptibility to Salmonella infection. In this study, we determined the effect of florfenicol (30 mg/kg of body weight) on gut colonization of neonatal chickens challenged with Salmonella enterica subsp. enterica serovar Enteritidis. We then analyzed the microbial community structure and metabolic profiles of cecal contents using microbial 16S amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics, respectively. We also screened the marker metabolites using a multi-omics technique and assessed the effect of these markers on intestinal colonization by S. Enteritidis. Florfenicol administration significantly increased the loads of S. Enteritidis in cecal contents, spleen, and liver and prolonged the residence of S. Enteritidis. Moreover, florfenicol significantly affected cecal colony structures, with reduced abundances of Lactobacillus and Bacteroidetes and increased levels of Clostridia, Clostridium, and Dorea. The metabolome was greatly influenced by florfenicol administration, and perturbation in metabolic pathways related to linoleic acid metabolism (linoleic acid, conjugated linoleic acid [CLA], 12,13-EpOME, and 12,13-diHOME) was most prominently detected. We screened CLA and 12,13-diHOME as marker metabolites, which were highly associated with Lactobacillus, Clostridium, and Dorea. Supplementation with CLA maintained intestinal integrity, reduced intestinal inflammation, and accelerated Salmonella clearance from the gut and remission of enteropathy, whereas treatment with 12,13-diHOME promoted intestinal inflammation and disrupted intestinal barrier function to sustain Salmonella infection. Thus, these results highlight that florfenicol alters the intestinal microbiota and metabolism of neonatal chickens and promotes Salmonella infection mainly by affecting linoleic acid metabolism. IMPORTANCE Florfenicol is a broad-spectrum fluorine derivative of chloramphenicol frequently used in poultry to prevent/treat Salmonella. However, oral administration of florfenicol may lead to alterations in the microbiota and metabolome in the chicken intestine, thereby reducing colonization resistance to Salmonella infection, and the possible mechanisms linking antibiotics and Salmonella colonization in poultry have not yet been fully elucidated. In the current study, we show that increased colonization by S. Enteritidis in chickens administered florfenicol is associated with large shifts in the gut microbiota and metabolic profiles. The most influential linoleic acid metabolism is highly associated with the abundances of Lactobacillus, Clostridium, and Dorea in the intestine. The screened target metabolites in linoleic acid metabolism affect S. Enteritidis colonization, intestinal inflammation, and intestinal barrier function. Our findings provide a better understanding of the susceptibility of animal species to Salmonella after antibiotic intervention, which may help to elucidate infection mechanisms that are important for both animal and human health.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Salmonelosis Animal/microbiología , Salmonella enteritidis/efectos de los fármacos , Tianfenicol/análogos & derivados , Animales , Animales Recién Nacidos/microbiología , Antibacterianos/farmacología , Carga Bacteriana , Pollos/microbiología , Inflamación , Ácido Linoleico/metabolismo , Salmonella enteritidis/crecimiento & desarrollo , Tianfenicol/efectos adversos , Tianfenicol/farmacología
16.
mSphere ; 6(3)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980673

RESUMEN

Previous studies indicated that Campylobacter has developed several mechanisms that confer resistance to florfenicol, which is used in food animal production. This study describes the coexistence of optrA and fexA in Campylobacter jejuni and Campylobacter coli isolates from pigs and poultry. Moreover, whole-genome sequencing data showed that the two genes are located in various multidrug resistance genomic islands within different regions of the Campylobacter genomes. The emergence of optrA and fexA may support the spread of florfenicol-resistant Campylobacter strains of animal origin.IMPORTANCE Florfenicol is widely used for the treatment of respiratory infections and as a feed additive in food animal production. As a foodborne pathogen, Campylobacter is constantly exposed to florfenicol, and resistance to this antimicrobial agent has increased in recent years. Previous studies indicated that Campylobacter has developed several mechanisms that confer resistance to florfenicol. This study describes for the first time the coexistence of the florfenicol exporter FexA and the ribosomal protective protein OptrA in Campylobacter jejuni isolated from pigs. The two genes were located in various multidrug resistance genomic islands within different regions of the Campylobacter genomes. Although phenicols are not commonly used for the treatment of Campylobacter infections, the extensive use of florfenicol in food animals may play a role in the coselection of multidrug resistance genomic island (MDRGI)-carrying Campylobacter isolates which also exhibited resistance to critically important antimicrobial agents (macrolides, aminoglycosides, and tetracyclines) commonly used for the treatment of human campylobacteriosis.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Campylobacter/veterinaria , Campylobacter coli/genética , Campylobacter jejuni/genética , Farmacorresistencia Bacteriana Múltiple/genética , Animales , Antibacterianos/farmacología , Infecciones por Campylobacter/microbiología , Campylobacter coli/efectos de los fármacos , Campylobacter jejuni/efectos de los fármacos , Islas Genómicas , Aves de Corral/microbiología , Porcinos/microbiología , Tianfenicol/análogos & derivados , Tianfenicol/farmacología
17.
Microb Drug Resist ; 27(11): 1555-1559, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33956523

RESUMEN

Apramycin and florfenicol are two antimicrobial agents exclusively used in veterinary medicine. Resistance determinants to these antimicrobial agents have been described in several staphylococci, yet no inhibition zone-based epidemiological cutoff (ECOFF) values are available to detect populations harboring resistance mechanisms. In this study, we propose disk diffusion inhibition zone ECOFF values of Staphylococcus aureus for apramycin and florfenicol. The susceptibility to apramycin and florfenicol was evaluated by disk diffusion of five S. aureus collections, comprising 352 isolates of animal (n = 265) and human (n = 87) origin. The aggregated distributions of inhibition zone diameters were analyzed by the normalized resistance interpretation method to obtain normalized wild-type (WT) population distributions and corresponding ECOFF values. The putative WT populations of S. aureus were characterized by an inhibition zone ≥15 mm (ECOFF = 15 mm) for apramycin and ≥21 mm for florfenicol (ECOFF = 21 mm). Five nonwild-type (NWT) isolates were detected for apramycin, all without inhibition zone and harboring the apmA gene, whereas five NWT isolates were identified for florfenicol, all carrying the fexA gene. The proposed ECOFF values for apramycin and florfenicol may be a valuable tool in future antimicrobial resistance monitoring and surveillance studies to identify S. aureus NWT populations toward these antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/normas , Nebramicina/análogos & derivados , Staphylococcus aureus/efectos de los fármacos , Tianfenicol/análogos & derivados , Farmacorresistencia Bacteriana , Nebramicina/farmacología , Tianfenicol/farmacología , Medicina Veterinaria
19.
Rev. bras. ciênc. vet ; 28(2): 75-80, abr./jun. 2021. graf, tab
Artículo en Portugués | LILACS, VETINDEX | ID: biblio-1491705

RESUMEN

O objetivo deste trabalho foi avaliar a eficácia do florfenicol na dose usualmente empregada em equinos de 22 mg/kg pelas vias intravenosa, intramuscular e oral para o tratamento de adenite equina por Streptococcus equi. subsp. equi, usando a modelagem farmacocinética/farmacodinâmica (PK/PD – Pharmacokinetic/Pharmacodynamic) e a simulação de Monte Carlo. Foi realizada uma simulação de Monte Carlo a partir dos parâmetros PK, logo depois, efetuou-se a modelagem PK/PD para determinar as taxas de eficácia do antimicrobiano para o tratamento dessa infecção bacteriana, de acordo com o valor da concentração inibitória mínima (CIM), em um intervalo de CIM de 0,125 – 4 μg/mL. Pela via intravenosa, a probabilidade de erradicação bacteriana foi de 100% para CIM até 0,5 μg/mL e efeito bacteriostático com probabilidades de 99% e 80% para CIMs de 2 e 4 μg/mL, respectivamente. Já pelas vias intramuscular e oral a probabilidade de se atingir o índice de erradicação bacteriológica foi de 100% para CIM de até 0,5 μg/mL, contudo, atinge valores de 80% e 81%, respectivamente, para CIM de 1 μg/mL considerando o efeito bactericida (p<0,01). Portanto, através desse estudo é evidenciado a eficácia do florfenicol até a CIM de 0,5 μg/mL para as três vias de administração citadas, entretanto, para CIMs superiores a esse valor, é imprescindível o ajuste da dose farmacológica, evitando falhas na terapêutica e possível resistência microbiana.


The objective of this study was to evaluate the efficacy of florfenicol at the dose usually used in horses of 22 mg/kg by intravenous, intramuscular and oral routes for the treatment of equine adenitis caused by Streptococcus equi. subsp. equi, using Pharmacokinetic/Pharmacodynamic (PK/PD) modeling and Monte Carlo simulation. A Monte Carlo simulation was performed from the PK parameters, then PK/PD modeling was performed to determine the antimicrobial efficacy rates for the treatment of this bacterial infection, according to the minimum inhibitory concentration (MIC) value, in a MIC range of 0.125 - 4 μg/mL. Intravenously, the probability of bacterial eradication was 100% for MICs up to 0.5 μg/mL, and the bacteriostatic effect was 99% and 80% for MICs of 2 and 4 μg/mL, respectively. However, for the intramuscular and oral routes, the probability of reaching the bacteriologic eradication index was 100% for MICs of up to 0.5 μg/mL, however, it reaches values of 80% and 81%, respectively, for MICs of 1 μg/mL considering the bactericidal effect (p<0.01). Therefore, through this study the efficacy of florfenicol is evidenced up to the MIC of 0.5 μg/mL for the three routes of administration cited, however, for MICs higher than this value, it is essential to adjust the pharmacological dose, avoiding failures in therapy and possible microbial resistance.


Asunto(s)
Animales , Caballos/fisiología , Caballos/lesiones , Farmacocinética , Linfadenitis/terapia , Linfadenitis/veterinaria , Tianfenicol/análogos & derivados , Tianfenicol/farmacocinética , Tianfenicol/farmacología , Streptococcus equi
20.
J Fish Dis ; 44(7): 979-985, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33749839

RESUMEN

Standard disc diffusion and MIC test procedure were used to investigate the susceptibility of two hundred and fifty-one isolates collected from infected fish in France to florfenicol, oxolinic acid and tetracycline. The tests were performed at 22 ± 2℃ and for the 177 Yersinia ruckeri they were read after 24-28 hr incubation and for the 74 Aeromonas salmonicida isolates they were read after 44-48 hr. Applying epidemiological cut-off values to the susceptibility data generated in these tests, the isolates were categorized as wild-type or non-wild-type. The agent-specific categories into each isolate were placed on the basis of the data generated by the two methods were in agreement in 98% of the determinations made. It is argued that, with respect to categorising isolates, disc diffusion and MIC methods can be considered as equally valid at this temperature and after both periods of incubation.


Asunto(s)
Aeromonas salmonicida/efectos de los fármacos , Antibacterianos/farmacología , Yersinia ruckeri/efectos de los fármacos , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Ácido Oxolínico/farmacología , Tetraciclina/farmacología , Tianfenicol/análogos & derivados , Tianfenicol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA