Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339943

RESUMEN

Influenza viruses remain a major threat to human health. Four classes of drugs have been approved for the prevention and treatment of influenza infections. Oseltamivir, a neuraminidase inhibitor, is a first-line anti-influenza drug, and baloxavir is part of the newest generation of anti-influenza drugs that targets the viral polymerase. The emergence of drug resistance has reduced the efficacy of established antiviral drugs. Combination therapy is one of the options for controlling drug resistance and enhancing therapeutical efficacies. Here, we evaluate the antiviral effects of baloxavir combined with neuraminidase inhibitors (NAIs) against wild-type influenza viruses, as well as influenza viruses with drug-resistance mutations. The combination of baloxavir with NAIs led to significant synergistic effects; however, the combination of baloxavir with laninamivir failed to result in a synergistic effect on influenza B viruses. Considering the rapid emergence of drug resistance to baloxavir, we believe that these results will be beneficial for combined drug use against influenza.


Asunto(s)
Antivirales , Dibenzotiepinas , Farmacorresistencia Viral , Sinergismo Farmacológico , Inhibidores Enzimáticos , Morfolinas , Neuraminidasa , Piridonas , Triazinas , Dibenzotiepinas/farmacología , Antivirales/farmacología , Triazinas/farmacología , Morfolinas/farmacología , Piridonas/farmacología , Neuraminidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Humanos , Virus de la Influenza B/efectos de los fármacos , Animales , Piridinas/farmacología , Tiazoles/farmacología , Guanidinas/farmacología , Orthomyxoviridae/efectos de los fármacos , Perros , Células de Riñón Canino Madin Darby , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Ácidos Siálicos , Virus de la Influenza A/efectos de los fármacos , Tiepinas/farmacología , Triazoles/farmacología , Bencimidazoles/farmacología , Piranos
2.
Antiviral Res ; 229: 105956, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38969237

RESUMEN

Baloxavir marboxil (baloxavir), approved as an anti-influenza drug in Japan in March 2018, can induce reduced therapeutic effectiveness due to PA protein substitutions. We assessed PA substitutions in clinical samples from influenza-infected children and adults pre- and post-baloxavir treatment, examining their impact on fever and symptom duration. During the 2022-2023 influenza season, the predominant circulating influenza subtype detected by cycling-probe RT-PCR was A(H3N2) (n = 234), with a minor circulation of A(H1N1)pdm09 (n = 10). Of the 234 influenza A(H3N2) viruses collected prior to baloxavir treatment, 2 (0.8%) viruses carry PA/I38T substitution. One virus was collected from a toddler and one from an adult, indicating the presence of viruses with reduced susceptibility to baloxavir, without prior exposure to the drug. Of the 54 paired influenza A(H3N2) viruses collected following baloxavir treatment, 8 (14.8%) viruses carried E23 K/G, or I38 M/T substitutions in PA. Variant calling through next-generation sequencing (NGS) showed varying proportions (6-100 %), a polymorphism and a mixture of PA/E23 K/G, and I38 M/T substitutions in the clinical samples. These eight viruses were obtained from children aged 7-14 years, with a median fever duration of 16.7 h and a median symptom duration of 93.7 h, which were similar to those of the wild type. However, the delayed viral clearance associated with the emergence of PA substitutions was observed. No substitutions conferring resistance to neuraminidase inhibitors were detected in 37 paired samples collected before and following oseltamivir treatment. These findings underscore the need for ongoing antiviral surveillance, informing public health strategies and clinical antiviral recommendations for seasonal influenza.


Asunto(s)
Sustitución de Aminoácidos , Antivirales , Dibenzotiepinas , Farmacorresistencia Viral , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Morfolinas , Piridonas , Triazinas , Proteínas Virales , Humanos , Dibenzotiepinas/uso terapéutico , Dibenzotiepinas/farmacología , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/enzimología , Triazinas/uso terapéutico , Triazinas/farmacología , Japón , Antivirales/farmacología , Antivirales/uso terapéutico , Morfolinas/uso terapéutico , Farmacorresistencia Viral/genética , Niño , Adulto , Preescolar , Adolescente , Proteínas Virales/genética , ARN Polimerasa Dependiente del ARN/genética , Femenino , Masculino , Tiepinas/uso terapéutico , Tiepinas/farmacología , Lactante , Persona de Mediana Edad , Estaciones del Año , Piridinas/uso terapéutico , Piridinas/farmacología , Adulto Joven , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Anciano
3.
Antiviral Res ; 229: 105961, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002800

RESUMEN

Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.


Asunto(s)
Sustitución de Aminoácidos , Antivirales , Dibenzotiepinas , Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Morfolinas , Piridonas , Triazinas , Proteínas Virales , Replicación Viral , Dibenzotiepinas/farmacología , Farmacorresistencia Viral/genética , Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Piridonas/farmacología , Humanos , Morfolinas/farmacología , Proteínas Virales/genética , Animales , Tiepinas/farmacología , ARN Polimerasa Dependiente del ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Perros , Células de Riñón Canino Madin Darby , Gripe Humana/virología , Gripe Humana/tratamiento farmacológico , Oxazinas/farmacología
4.
Antiviral Res ; 228: 105938, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38897317

RESUMEN

We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012-2013 and 2019-2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.


Asunto(s)
Antivirales , Dibenzotiepinas , Fiebre , Guanidinas , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , Morfolinas , Oseltamivir , Piranos , Piridonas , Ácidos Siálicos , Triazinas , Zanamivir , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Antivirales/uso terapéutico , Antivirales/farmacología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Niño , Zanamivir/uso terapéutico , Zanamivir/análogos & derivados , Zanamivir/farmacología , Triazinas/uso terapéutico , Triazinas/farmacología , Guanidinas/uso terapéutico , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Piridonas/uso terapéutico , Dibenzotiepinas/uso terapéutico , Japón , Femenino , Masculino , Preescolar , Oseltamivir/uso terapéutico , Fiebre/tratamiento farmacológico , Fiebre/virología , Adolescente , Morfolinas/uso terapéutico , Lactante , Estaciones del Año , Tiepinas/uso terapéutico , Tiepinas/farmacología , Oxazinas/uso terapéutico , Factores de Tiempo , Benzoxazinas/uso terapéutico
5.
J Zoo Wildl Med ; 55(2): 313-321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875188

RESUMEN

High pathogenicity avian influenza is an acute zoonotic disease with high mortality in birds caused by a high pathogenicity avian influenza virus (HPAIV). Recently, HPAIV has rapidly spread worldwide and has killed many wild birds, including endangered species. Baloxavir marboxil (BXM), an anti-influenza agent used for humans, was reported to reduce mortality and virus secretion from HPAIV-infected chickens (Gallus domesticus, order Galliformes) at a dosage of ≥2.5 mg/kg when administered simultaneously with viral challenge. Application of this treatment to endangered birds requires further information on potential avian-specific toxicity caused by repeated exposure to BXM over the long term. To obtain information of potential avian-specific toxicity, a 4-wk oral repeated-dose study of BXM was conducted in chickens (n = 6 or 7 per group), which are commonly used as laboratory avian species. The study was conducted in reference to the human pharmaceutical guidelines for nonclinical repeated-dose drug toxicity studies to evaluate systemic toxicity and exposure. No adverse changes were observed in any organs examined, and dose proportional increases in systemic exposure to active pharmaceutical ingredients were noted from 12.5 to 62.5 mg/kg per day. BXM showed no toxicity to chickens at doses of up to 62.5 mg/kg per day, at which systemic exposure was approximately 71 times higher than systemic exposure at 2.5 mg/kg, the reported efficacious dosage amount, in HPAIV-infected chickens. These results also suggest that BXM could be considered safe for treating HPAIV-infected endangered birds due to its high safety margin compared with the efficacy dose. The data in this study could contribute to the preservation of endangered birds by using BXM as a means of protecting biodiversity.


Asunto(s)
Antivirales , Pollos , Dibenzotiepinas , Morfolinas , Piridonas , Triazinas , Animales , Triazinas/administración & dosificación , Dibenzotiepinas/administración & dosificación , Administración Oral , Antivirales/administración & dosificación , Antivirales/farmacología , Morfolinas/administración & dosificación , Morfolinas/farmacología , Piridonas/administración & dosificación , Piridonas/farmacología , Piridinas/administración & dosificación , Tiepinas/administración & dosificación , Tiepinas/farmacología , Masculino , Gripe Aviar/tratamiento farmacológico , Femenino , Oxazinas , Hidroxibutiratos/administración & dosificación
6.
Antiviral Res ; 227: 105890, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657838

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.


Asunto(s)
Antivirales , Dibenzotiepinas , Morfolinas , Piridinas , Piridonas , Triazinas , Replicación Viral , Animales , Morfolinas/farmacología , Morfolinas/farmacocinética , Morfolinas/química , Antivirales/farmacología , Antivirales/farmacocinética , Antivirales/química , Dibenzotiepinas/farmacología , Dibenzotiepinas/farmacocinética , Ratones , Piridinas/farmacología , Piridinas/farmacocinética , Piridinas/química , Replicación Viral/efectos de los fármacos , Triazinas/farmacología , Triazinas/farmacocinética , Triazinas/química , Triazinas/uso terapéutico , Piridonas/farmacología , Piridonas/farmacocinética , Piridonas/química , Tiepinas/farmacología , Tiepinas/uso terapéutico , Tiepinas/farmacocinética , Tiepinas/química , Carga Viral/efectos de los fármacos , Chlorocebus aethiops , Células Vero , Femenino , Oxazinas/farmacología , Oxazinas/farmacocinética , Oxazinas/uso terapéutico , Ratones Endogámicos BALB C , Humanos , Tiazoles/farmacología , Tiazoles/farmacocinética , Tiazoles/química
7.
Sci Adv ; 10(8): eadk9004, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394202

RESUMEN

Seasonal or pandemic illness caused by influenza A viruses (IAVs) is a major public health concern due to the high morbidity and notable mortality. Although there are several approved drugs targeting different mechanisms, the emergence of drug resistance calls for new drug candidates that can be used alone or in combinations. Small-molecule IAV entry inhibitor, ING-1466, binds to hemagglutinin (HA) and blocks HA-mediated viral infection. Here, we show that this inhibitor demonstrates preventive and therapeutic effects in a mouse model of IAV with substantial improvement in the survival rate. When administered orally it elicits a therapeutic effect in mice, even after the well-established infection. Moreover, the combination of ING-1466 with oseltamivir phosphate or baloxavir marboxil enhances the therapeutic effect in a synergistic manner. Overall, ING-1466 has excellent oral bioavailability and in vitro absorption, distribution, metabolism, excretion, and toxicity profile, suggesting that it can be developed for monotherapy or combination therapy for the treatment of IAV infections.


Asunto(s)
Dibenzotiepinas , Virus de la Influenza A , Morfolinas , Piridonas , Tiepinas , Triazinas , Animales , Ratones , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Antivirales/uso terapéutico , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas , Tiepinas/farmacología , Tiepinas/uso terapéutico
8.
J Med Chem ; 67(4): 2570-2583, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38301207

RESUMEN

Influenza viruses (IFVs) have caused several pandemics and have claimed numerous lives since their first record in the early 20th century. While the outbreak of COVID-19 seemed to expel influenza from the sight of people for a short period of time, it is not surprising that it will recirculate around the globe after the coronavirus has mutated into a less fatal variant. Baloxavir marboxil (1), the prodrug of baloxavir (2) and a cap-dependent endonuclease (CEN) inhibitor, were approved by the FDA for the first treatment in almost 20 years. Despite their high antiviral potency, drug-resistant variants have been observed in clinical trials. Herein, we report a novel CEN inhibitor 8 with a delicately designed macrocyclic scaffold that exhibits a significantly smaller shift of inhibitory activity toward baloxavir-resistant variants.


Asunto(s)
Dibenzotiepinas , Gripe Humana , Morfolinas , Tiepinas , Humanos , Gripe Humana/tratamiento farmacológico , Oxazinas/farmacología , Piridinas/farmacología , Endonucleasas , Antivirales/farmacología , Antivirales/uso terapéutico , Tiepinas/farmacología , Tiepinas/uso terapéutico , Piridonas/farmacología , Piridonas/uso terapéutico , Triazinas/farmacología , Triazinas/uso terapéutico
9.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216710

RESUMEN

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Asunto(s)
Dibenzotiepinas , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Morfolinas , Orthomyxoviridae , Piridonas , Tiepinas , Triazinas , Animales , Perros , Humanos , Porcinos , Virus de la Influenza A/genética , Oxazinas/farmacología , Piridinas/farmacología , Piridinas/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/genética , Tiepinas/farmacología , Tiepinas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Orthomyxoviridae/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Sustitución de Aminoácidos , Endonucleasas/genética , Farmacorresistencia Viral/genética
10.
Biochemistry ; 63(3): 264-272, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38190441

RESUMEN

Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein-inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants.


Asunto(s)
Dibenzotiepinas , Gripe Humana , Morfolinas , Tiepinas , Humanos , Oxazinas , Piridinas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Endonucleasas/genética , Tiepinas/farmacología , Tiepinas/uso terapéutico , Piridonas/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Zanamivir/uso terapéutico , Triazinas/farmacología , Triazinas/uso terapéutico
11.
Viruses ; 15(12)2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38140689

RESUMEN

Baloxavir marboxil (baloxavir) is an FDA-approved inhibitor of the influenza virus polymerase acidic (PA) protein. Here, we used next-generation sequencing to compare the genomic mutational profiles of IAV H1N1 and H3N2, and IBV wild type (WT) and mutants (MUT) viruses carrying baloxavir resistance-associated substitutions (H1N1-PA I38L, I38T, and E199D; H3N2-PA I38T; and IBV-PA I38T) during passaging in normal human bronchial epithelial (NHBE) cells. We determined the ratio of nonsynonymous to synonymous nucleotide mutations (dN/dS) and identified the location and type of amino acid (AA) substitutions that occurred at a frequency of ≥30%. We observed that IAV H1N1 WT and MUT viruses remained relatively stable during passaging. While the mutational profiles for IAV H1N1 I38L, I38T, and E199D, and IBV I38T MUTs were relatively similar after each passage compared to the respective WTs, the mutational profile of the IAV H3N2 I38T MUT was significantly different for most genes compared to H3N2 WT. Our work provides insight into how baloxavir resistance-associated substitutions may impact influenza virus evolution in natural settings. Further characterization of the potentially adaptive mutations identified in this study is needed.


Asunto(s)
Herpesvirus Cercopitecino 1 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Tiepinas , Humanos , Oxazinas/farmacología , Piridinas/farmacología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Tiepinas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Células Epiteliales/metabolismo , Genómica , Proteínas Virales/genética , Nucleotidiltransferasas
12.
Viruses ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005940

RESUMEN

Influenza remains a worldwide health concern. Antiviral drugs are considered as one of the useful options for its prevention as a complementary measure to vaccination. Baloxavir acid selectively inhibits the cap-dependent endonuclease of influenza viruses and exhibits marked viral titre reduction in patients. Here, we describe the prophylactic potency of baloxavir acid against lethal infection with influenza A and B viruses in mice. BALB/c mice were subcutaneously administered once with baloxavir acid suspension, or orally administered once daily for 10 days with oseltamivir phosphate solution at human relevant doses. Next, the mice were intranasally inoculated with A/PR/8/34 (H1N1) or B/Hong Kong/5/72 strain at 24 to 96 h after the initial dosing. Prophylactic treatment with the antiviral drugs significantly reduced the lung viral titres and prolonged survival time. In particular, baloxavir acid showed a greater suppressive effect on lung viral titres compared to oseltamivir phosphate. In this model, baloxavir acid maintained significant prophylactic effects against influenza A and B virus infections when the plasma concentration at the time of infection was at least 0.88 and 3.58 ng/mL, respectively. The significant prophylactic efficacy observed in our mouse model suggests the potential utility of baloxavir marboxil for prophylaxis against influenza in humans.


Asunto(s)
Herpesvirus Cercopitecino 1 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Tiepinas , Humanos , Animales , Ratones , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Oxazinas/uso terapéutico , Piridinas/uso terapéutico , Tiepinas/farmacología , Tiepinas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Endogámicos BALB C , Fosfatos
13.
Euro Surveill ; 28(39)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37768560

RESUMEN

A community cluster of influenza A(H3N2) caused by viruses with an E199G substitution in PA was detected in Nara, Japan, between February and March 2023. The three patients with these mutant viruses had not received antiviral treatment before specimen collection but patients in the same hospital had. The sequences of the mutant viruses were closely related, suggesting clonal spread in Nara. They showed reduced susceptibility to baloxavir in vitro; however, the clinical significance of the PA E199G substitution remains unclear.


Asunto(s)
Gripe Humana , Tiepinas , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Subtipo H3N2 del Virus de la Influenza A/genética , Oxazinas/farmacología , Piridinas/farmacología , Japón , Tiepinas/farmacología , Tiepinas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética
14.
J Virol ; 97(7): e0015423, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37404185

RESUMEN

Baloxavir marboxil (baloxavir) is a recently FDA-approved influenza virus polymerase acidic (PA) endonuclease inhibitor. Several PA substitutions have been demonstrated to confer reduced susceptibility to baloxavir; however, their impacts on measurements of antiviral drug susceptibility and replication capacity when present as a fraction of the viral population have not been established. We generated recombinant A/California/04/09 (H1N1)-like viruses (IAV) with PA I38L, I38T, or E199D substitutions and B/Victoria/504/2000-like virus (IBV) with PA I38T. These substitutions reduced baloxavir susceptibility by 15.3-, 72.3-, 5.4-, and 54.5-fold, respectively, when tested in normal human bronchial epithelial (NHBE) cells. We then assessed the replication kinetics, polymerase activity, and baloxavir susceptibility of the wild-type:mutant (WT:MUT) virus mixtures in NHBE cells. The percentage of MUT relative to WT virus necessary to detect reduced baloxavir susceptibility in phenotypic assays ranged from 10% (IBV I38T) to 92% (IAV E199D). While I38T did not alter IAV replication kinetics or polymerase activity, IAV PA I38L and E199D MUTs and the IBV PA I38T MUT exhibited reduced replication levels and significantly altered polymerase activity. Differences in replication were detectable when the MUTs comprised ≥90%, ≥90%, or ≥75% of the population, respectively. Droplet digital PCR (ddPCR) and next-generation sequencing (NGS) analyses showed that WT viruses generally outcompeted the respective MUTs after multiple replication cycles and serial passaging in NHBE cells when initial mixtures contained ≥50% of the WT viruses; however, we also identified potential compensatory substitutions (IAV PA D394N and IBV PA E329G) that emerged and appeared to improve the replication capacity of baloxavir-resistant virus in cell culture. IMPORTANCE Baloxavir marboxil, an influenza virus polymerase acidic endonuclease inhibitor, represents a recently approved new class of influenza antivirals. Treatment-emergent resistance to baloxavir has been observed in clinical trials, and the potential spread of resistant variants could diminish baloxavir effectiveness. Here, we report the impact of the proportion of drug-resistant subpopulations on the ability to detect resistance in clinical isolates and the impact of substitutions on viral replication of mixtures containing both drug-sensitive and drug-resistant variants. We also show that ddPCR and NGS methods can be successfully used for detection of resistant subpopulations in clinical isolates and to quantify their relative abundance. Taken together, our data shed light on the potential impact of baloxavir-resistant I38T/L and E199D substitutions on baloxavir susceptibility and other biological properties of influenza virus and the ability to detect resistance in phenotypic and genotypic assays.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Replicación Viral , Humanos , Sustitución de Aminoácidos , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Endonucleasas/genética , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Nucleotidiltransferasas/genética , Tiepinas/farmacología , Tiepinas/uso terapéutico , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Mutación , Línea Celular
15.
Virol Sin ; 38(4): 559-567, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290559

RESUMEN

Cap-dependent endonuclease (CEN) in the polymerase acidic protein (PA) of influenza A virus (IAV) represents a promising drug target due to its critical role in viral gene transcription. The CEN inhibitor, baloxavir marboxil (BXM), was approved in Japan and the US in 2018 and several other countries subsequently. Along with the clinical use of BXM, the emergence and spread of IAV variants with reduced susceptibility to BXM have aroused serious concern. Herein, we comprehensively characterized the in vitro and in vivo antiviral activities of ZX-7101A, an analogue of BXM. The active form of prodrug ZX-7101 showed broad-spectrum antiviral potency against various IAV subtypes, including pH1N1, H3N2, H7N9 and H9N2, in MDCK cells, and the 50% effective concentration (EC50) was calculated to nanomole level and comparable to that of baloxavir acid (BXA), the active form of BXM. Furthermore, in vivo assays showed that administration of ZX-7101A conferred significant protection against lethal pH1N1 challenge in mice, with reduced viral RNA loads and alleviated pulmonary damage. Importantly, serial passaging of H1N1 virus in MDCK cells under selection pressure of ZX-7101 led to a resistant variant at the 15th passage. Reverse genetic and sequencing analysis demonstrated that a single E18G substitution in the PA subunit contributed to the reduced susceptibility to both ZX-7101 and BXA. Taken together, our results not only characterized a new CEN inhibitor of IAV but also identified a novel amino acid substitution responsible for CEN inhibitor resistance, which provides critical clues for future drug development and drug resistance surveillance.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Tiepinas , Animales , Ratones , Humanos , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Endonucleasas/genética , Endonucleasas/química , Endonucleasas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A , Tiepinas/farmacología , Tiepinas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Farmacorresistencia Viral/genética
16.
Viruses ; 15(5)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37243240

RESUMEN

Although the prevalence of polymerase acidic (PA)/I38T strains of influenza virus with reduced susceptibility to baloxavir acid is low, there is a possibility of emergence under selective pressure. Furthermore, the virus may be transmitted between humans. We investigated the in vivo efficacy of baloxavir acid and oseltamivir phosphate against influenza A subtypes H1N1, H1N1pdm09, and H3N2, with PA/I38T substitution, at doses simulating human plasma concentrations. A pharmacokinetic/pharmacodynamic analysis was performed to strengthen the validity of the findings and the applicability in a clinical setting. Although the antiviral effect of baloxavir acid was attenuated in mice infected with PA/I38T-substituted viral strains compared with the wild type (WT), baloxavir acid significantly reduced virus titers at higher-but clinically relevant-doses. The virus titer reduction with baloxavir acid (30 mg/kg subcutaneous single dose) was comparable to that of oseltamivir phosphate (5 mg/kg orally twice daily) against H1N1 and H1N1pdm09 PA/I38T strains in mice, as well as the H3N2 PA/I38T strain in hamsters. Baloxavir acid demonstrated an antiviral effect against PA/I38T-substituted strains, at day 6, with no further viral rebound. In conclusion, baloxavir acid demonstrated dose-dependent antiviral effects comparable to that of oseltamivir phosphate, even though the degree of lung virus titer reduction was diminished in animal models infected with PA/I38T-substituted strains.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Tiepinas , Humanos , Animales , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Oxazinas/farmacología , Piridinas/farmacología , Subtipo H3N2 del Virus de la Influenza A , Tiepinas/farmacología , Tiepinas/uso terapéutico , Farmacorresistencia Viral , Nucleotidiltransferasas , Fosfatos
17.
Influenza Other Respir Viruses ; 17(1): e13079, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702798

RESUMEN

In a post-hoc analysis of the phase 3 BLOCKSTONE study (JapicCTI-184180), we investigated household transmission of baloxavir-resistant (PA/I38X) influenza viruses. Using baloxavir resistance rates from prior clinical trials and the rate of influenza transmission observed in the study, the predicted number of PA/I38X transmission events was 4.8, assuming wild type and PA/I38X viruses were equally transmissible. However, no PA/I38X viruses were observed. These results suggest a low potential for baloxavir-resistant influenza virus transmission from treated to untreated individuals, potentially due to reduced viral/transmission fitness for PA/I38X viruses and/or low viral titres at the time when resistant viruses arise.


Asunto(s)
Antivirales , Gripe Humana , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Piridinas/farmacología , Piridinas/uso terapéutico , Tiepinas/farmacología , Tiepinas/uso terapéutico , Ensayos Clínicos Fase III como Asunto
18.
PLoS Comput Biol ; 19(1): e1010797, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608108

RESUMEN

To aid understanding of the effect of antiviral treatment on population-level influenza transmission, we used a novel pharmacokinetic-viral kinetic transmission model to test the correlation between nasal viral load and infectiousness, and to evaluate the impact that timing of treatment with the antivirals oseltamivir or baloxavir has on influenza transmission. The model was run under three candidate profiles whereby infectiousness was assumed to be proportional to viral titer on a natural-scale, log-scale, or dose-response model. Viral kinetic profiles in the presence and absence of antiviral treatment were compared for each individual (N = 1000 simulated individuals); subsequently, viral transmission mitigation was calculated. The predicted transmission mitigation was greater with earlier administration of antiviral treatment, and with baloxavir versus oseltamivir. When treatment was initiated 12-24 hours post symptom onset, the predicted transmission mitigation was 39.9-56.4% for baloxavir and 26.6-38.3% for oseltamivir depending on the infectiousness profile. When treatment was initiated 36-48 hours post symptom onset, the predicted transmission mitigation decreased to 0.8-28.3% for baloxavir and 0.8-19.9% for oseltamivir. Model estimates were compared with clinical data from the BLOCKSTONE post-exposure prophylaxis study, which indicated the log-scale model for infectiousness best fit the observed data and that baloxavir affords greater reductions in secondary case rates compared with neuraminidase inhibitors. These findings suggest a role for baloxavir and oseltamivir in reducing influenza transmission when treatment is initiated within 48 hours of symptom onset in the index patient.


Asunto(s)
Gripe Humana , Tiepinas , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas/farmacología , Tiepinas/farmacología , Tiepinas/uso terapéutico , Triazinas/farmacología
19.
mBio ; 13(4): e0105622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35938724

RESUMEN

Amino acid substitutions I38T and E23K in the influenza polymerase acidic (PA) protein lead to reduced susceptibility to the influenza antiviral drug baloxavir. The in vivo effectiveness of baloxavir and oseltamivir for treatment of these viruses is currently unknown. Using patient-derived influenza isolates, combination therapy was equally effective as monotherapy in reducing viral titers in the upper respiratory tract of ferrets infected with A(H1N1pdm09)-PA/E23K or A(H3N2)-PA/I38T. When treated with baloxavir plus oseltamivir, infection with a mixture of PA/I38T or PA/E23K and corresponding wild-type virus was characterized by a lower selection of viruses with reduced baloxavir susceptibility over the course of infection compared to baloxavir monotherapy. De novo emergence of the oseltamivir resistance mutation NA/H275Y occurred in ferrets treated with oseltamivir alone but not in ferrets treated with baloxavir plus oseltamivir. Our data suggest that combination therapy with influenza drugs with different mechanisms of action decreased the selection pressure for viruses with reduced drug susceptibility. IMPORTANCE Influenza viruses cause significant morbidity and mortality worldwide but can be treated with antiviral drugs. In 2018, a highly effective antiviral drug, baloxavir marboxil, was licensed. However, the selection of viruses with baloxavir resistance was relatively high following treatment, which may compromise the effectiveness of the drug. Here, we took two different influenza viruses that are resistant to baloxavir and tested the effectiveness alone and in combination with oseltamivir (a second influenza antiviral drug) in the ferret model. Our findings suggest that combination treatment may be a more effective method than monotherapy to reduce the selection of resistant viruses. These results may have important clinical implications for the treatment of influenza.


Asunto(s)
Gripe Humana , Tiepinas , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Dibenzotiepinas , Farmacorresistencia Viral/genética , Hurones , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Morfolinas , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas/farmacología , Piridonas/farmacología , Piridonas/uso terapéutico , Tiepinas/farmacología , Tiepinas/uso terapéutico , Triazinas/farmacología , Triazinas/uso terapéutico
20.
PLoS Pathog ; 18(7): e1010698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35830486

RESUMEN

Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC50. EC50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA-BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Tiepinas , Sustitución de Aminoácidos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Dibenzotiepinas , Farmacorresistencia Viral/genética , Endonucleasas/metabolismo , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Morfolinas , Oxazinas/farmacología , Piridinas/farmacología , Piridonas/farmacología , Tiepinas/farmacología , Triazinas , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...