Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Braz J Biol ; 84: e282485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140504

RESUMEN

A total of 381 specimens of the tilapia Oreochromis mossambicus collected monthly from May 2017 to May 2018 in the Laguna de Los Patos, Cumaná, Venezuela, to evaluate reproductive parameters of this non-native species. Significant differences were found in relation to average height and weight between males and females, with the highest values in males. The sex ratio was 1:1.5 (males:females), which deviates significantly from the expected 1:1 ratio. The mean length of sexual maturity (Lm50) was 18.0 cm in females and 20.1 cm in males, reflecting that females mature at smaller sizes than males. The monthly variations of the gonadosomatic index (GSI) and the stages of sexual maturity show two reproductive peaks during the study, in October 2017 and April 2018, coinciding with the rainy and dry seasons in the region respectively. The condition factor (CF) showed significant differences between months, but not between sexes, with an average of 1.87 in females and 1.84 in males. The average absolute fecundity was 921 ± 604.6 eggs per fish, with a relative fecundity of 8.36 ± 3.09 eggs per gram of fish. Differences in oocyte size in mature females confirm that the species can spawn repeatedly over a period, which is considered an important factor for the establishment of tilapia in non-native environments.


Asunto(s)
Reproducción , Estaciones del Año , Razón de Masculinidad , Maduración Sexual , Tilapia , Animales , Venezuela , Masculino , Femenino , Tilapia/fisiología , Tilapia/crecimiento & desarrollo , Tilapia/anatomía & histología , Reproducción/fisiología , Maduración Sexual/fisiología , Fertilidad/fisiología
2.
BMC Genomics ; 25(1): 785, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138417

RESUMEN

To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.


Asunto(s)
Alimentación Animal , Bidens , Microbioma Gastrointestinal , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Tilapia/genética , Tilapia/metabolismo , Bidens/metabolismo , Bidens/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Hígado/metabolismo
3.
Front Endocrinol (Lausanne) ; 15: 1302672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974572

RESUMEN

Somatostatin (SST) plays diverse physiological roles in vertebrates, particularly in regulating growth hormone secretion from the pituitary. While the function of SST as a neuromodulator has been studied extensively, its role in fish and mammalian reproduction remains poorly understood. To address this gap, we investigated the involvement of the somatostatin system in the regulation of growth and reproductive hormones in tilapia. RNA sequencing of mature tilapia brain tissue revealed the presence of three SST peptides: SST6, SST3, and low levels of SST1. Four different isoforms of the somatostatin receptor (SSTR) subfamily were also identified in the tilapia genome. Phylogenetic and synteny analysis identified tiSSTR2-like as the root of the tree, forming two mega clades, with SSTR1 and SSTR4 in one and SSTR2a, SSTR3a, and SSTR5b in the other. Interestingly, the tiSSTR-5 isoforms 5x1, 5x2, and 5x3 were encoded in the sstr3b gene and were an artifact of misperception in the nomenclature in the database. RNA-seq of separated pituitary cell populations showed that SSTRs were expressed in gonadotrophs, with sstr3a enriched in luteinizing hormone (LH) cells and sstr3b significantly enriched in follicle-stimulating hormone (FSH) cells. Notably, cyclosomatostatin, an SSTR antagonist, induced cAMP activity in all SSTRs, with SSTR3a displaying the highest response, whereas octreotide, an SSTR agonist, showed a binding profile like that observed in human receptors. Binding site analysis of tiSSTRs from tilapia pituitary cells revealed the presence of canonical binding sites characteristic of peptide-binding class A G-protein-coupled receptors. Based on these findings, we explored the effect of somatostatin on gonadotropin release from the pituitary in vivo. Whereas cyclosomatostatin increased LH and FSH plasma levels at 2 h post-injection, octreotide decreased FSH levels after 2 h, but the LH levels remained unaffected. Overall, our findings provide important insights into the somatostatin system and its mechanisms of action, indicating a potential role in regulating growth and reproductive hormones. Further studies of the complex interplay between SST, its receptors, and reproductive hormones may advance reproductive control and management in cultured populations.


Asunto(s)
Receptores de Somatostatina , Somatostatina , Tilapia , Animales , Femenino , Masculino , Filogenia , Hipófisis/metabolismo , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Reproducción/fisiología , Somatostatina/metabolismo , Tilapia/metabolismo , Tilapia/crecimiento & desarrollo
4.
PLoS One ; 19(7): e0293775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046994

RESUMEN

Tilapia, a significant aquaculture species globally, relies heavily on feed for its production. While numerous studies have investigated the impact of soybean and seaweed-based diets on tilapia, a comprehensive understanding remains elusive. This review aimed at evaluating and synthesizing the existing literature on these diets' effects, focusing on growth performance, feed utilization, and gut microbiota. A systematic search of databases was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a total of 57 studies were included in the qualitative analysis and 24 in the meta-analysis. The results indicated that soybean-based diets, at a 59.4% inclusion level improved the Specific Growth Rate (SGR) of tilapia with an effect size of -2.14 (95% CI: -2.92, -1.37; p < 0.00001; I2 = 99%) and did not improve the feed conversion rate (FCR), as the effect size was 1.80 (95% CI: 0.72, 2.89; p = 0.001; I2 = 100%). For seaweed-based diets, at a 15,9% inclusion level did not improve SGR, with an effect size of -0.74 (95% CI: -1.70, 0.22; p = 0.13; I2 = 99%), and the FCR with an effect size of -0.70 (95% CI: -1.94, 0.54; p = 0.27; I2 = 100%). Regarding the gut microbiota, was noted a lack of studies meeting the inclusion criteria for tilapia. However, findings from studies on other farmed fishes suggested that soybean and seaweed-based diets could have diverse effects on gut microbiota composition and promote the growth of beneficial microbiota. This study suggests that incorporating soybean-based diets at 59.4% inclusion can improve the SGR of tilapia. Seaweed-based diets, while not demonstrating improvement in the analyzed parameters with an inclusion level of 15.9%, have the potential to contribute to the sustainability of the aquaculture industry when incorporated at lower levels.


Asunto(s)
Alimentación Animal , Acuicultura , Microbioma Gastrointestinal , Glycine max , Algas Marinas , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Acuicultura/métodos , Dieta/veterinaria
5.
J Endocrinol ; 262(3)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954845

RESUMEN

Irisin is a recently discovered myokine that facilitates the browning of white adipose tissue, increases glucose uptake in skeletal muscle, and influences metabolic processes in the liver. However, its potential effects on amino acid absorption remained largely unexplored. This study aimed to elucidate the role of irisin in modulating amino acid uptake and delineate the underlying molecular mechanisms involved. To this end, juvenile tilapia were administered intraperitoneal irisin injections at 100 ng/g body weight over 8 weeks. Evaluation of various physiological parameters revealed that irisin supplementation significantly improved the specific growth rate and feed conversion efficiency while reducing feed consumption. Muscle tissue analysis revealed that irisin significantly modified the proximate composition by increasing protein content and reducing lipid levels. It also significantly raised the levels of both essential and non-essential amino acids in the muscle. Histological analysis demonstrated that irisin-stimulated muscle growth through hyperplasia rather than hypertrophy, corroborated by upregulated IGF-1 mRNA and downregulated myostatin mRNA expression. Mechanistic studies in cultured tilapia muscle cells elucidated that irisin activated integrin receptors on muscle cells, which subsequently engaged IGF-1/IGF-1R signaling. Downstream of IGF-1R activation, irisin simultaneously stimulates the ERK1/2 and PI3K/mTORC2/Akt pathways. The convergence of these pathways upregulates L-type amino acid transporter 1 expression, thereby augmenting amino acid uptake into muscle cells. In summary, irisin supplementation in tilapia leads to improved muscle growth, predominantly via hyperplasia and augmented amino acid assimilation, governed by intricate cellular signaling pathways. These findings provide valuable aquaculture applications and novel insights into muscle development.


Asunto(s)
Aminoácidos , Fibronectinas , Factor I del Crecimiento Similar a la Insulina , Músculo Esquelético , Transducción de Señal , Tilapia , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Tilapia/metabolismo , Tilapia/crecimiento & desarrollo , Fibronectinas/metabolismo , Fibronectinas/genética , Aminoácidos/metabolismo , Transducción de Señal/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo
6.
Food Chem ; 455: 139874, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838624

RESUMEN

Molecules of natural origin often possess useful biological activities. For instance, the natural peptide Tilapia Piscidin 4 (TP4) exhibits potent antimicrobial activity against a broad spectrum of pathogens. In this study, we explored the potential application of TP4 as a food preservative, asking whether it can prevent spoilage due to microbial contamination. A preliminary in silico analysis indicated that TP4 should interact strongly with fungal cell membrane components. Hence, we tested the activity of TP4 toward Candida albicans within fruit juice and found that the addition of TP4 could abolish fungal growth. We further determined that the peptide acts via a membranolytic mechanism and displays concentration-dependent killing efficiency. In addition, we showed that TP4 inhibited growth of Rhizopus oryzae in whole fruit (tomato) samples. Based on these findings, we conclude that TP4 should be further evaluated as a potentially safe and green solution to prevent food spoilage.


Asunto(s)
Candida albicans , Conservantes de Alimentos , Rhizopus , Animales , Candida albicans/efectos de los fármacos , Rhizopus/efectos de los fármacos , Rhizopus/crecimiento & desarrollo , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Tilapia/microbiología , Tilapia/crecimiento & desarrollo , Proteínas de Peces/farmacología , Proteínas de Peces/química , Conservación de Alimentos/métodos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Antifúngicos/farmacología , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química
7.
Sci Prog ; 107(2): 368504241257128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860303

RESUMEN

The primary objective of this trial was to study the effects of stress caused by stocking density in tilapia (Oreochromis niloticus) cultured in the in-pond raceway system (IPRS). Fingerlings (Initial body weight = 30.00 ± 1.20 g) were reared at different stocking densities i.e. low stocking density (n = 13,000; 1.77 kg/m3), medium stocking density (MSD) (n = 17,000; 2.32 kg/m3), and high stocking density (HSD) (n = 21,000; 2.86 kg/m3), all confined within the raceways of the IPRS. Each group was studied in triplicates. The observed growth revealed a regression in the HSD treatment, evident in its reduced weight gain per fish per day, in contrast to other treatments. Survival rate across all treatments was above 99%. Notably, the HSD treatment exhibited an elevated level of cortisol; however, this intensified crowding stress did not significantly undermine the nutritional value of the fish in HSD and other experimental treatments. Furthermore, an elevation in the levels of superoxide dismutase, catalase, and glutathione peroxidase was noted within the HSD treatment in comparison to the other treatments to reduce the damage caused by reactive oxygen species. As the trial proceeded, functions of digestive enzymes like amylase, protease, and lipase diminished consistently across all treatments. This could possibly signify a deliberate redirection of energy resources toward stress alleviation rather than the usual digestive processes. In summation, it can be reasonably deduced that a stocking density of approximately 2.32 kg/m3 (MSD) emerges as the optimal threshold for effectively cultivating tilapia within an intensive aquaculture framework.


Asunto(s)
Acuicultura , Tilapia , Animales , Acuicultura/métodos , Tilapia/crecimiento & desarrollo , Tilapia/fisiología , Densidad de Población , Cíclidos/crecimiento & desarrollo , Cíclidos/fisiología , Estrés Fisiológico , Glutatión Peroxidasa/metabolismo , Hidrocortisona/metabolismo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo
8.
Sci Rep ; 14(1): 14878, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937517

RESUMEN

Water quality in land-based fish production can be controlled through either instantaneous water exchange or costly wastewater treatment followed by recirculation. Agricultural-aquaculture integration is an excellent alternative technique for reducing nutrient discharge levels, boosting profitability, and converting fish culture wastewater into valuable products. The current study employed a solar energy system to power two separate IMTA-aquaponics systems (Nutrient Film Technique, NFT, and Floating Raft Systems, FRS) for the cultivation of Nile tilapia, African catfish, thin-lipped grey mullet, freshwater crayfish, freshwater mussels, and a variety of vegetables. Tilapia and catfish were fed exclusively on diets under the IMTA system. All wastewater from tilapia and catfish ponds, both dissolved and solid, flows sequentially to ponds containing other cultivated species. The water then flows through the IMTA system's terminal point to the NFT and FRS systems before returning to the tilapia and catfish ponds, allowing complete control of the nutrient flow throughout this entire circular system. Two 147-day production cycles were concluded. The results from the second production cycle are reported. Total biomass gain for aquatic species in the IMTA system was 736.46 kg, compared to 145.49 kg in the tilapia and 271.01 kg in the catfish monoculture systems. The current IMTA system had a cumulative feed conversion ratio (FCR) of 0.90, while the FCRs for tilapia and catfish were 1.28 and 1.42, respectively. Nile tilapia and catfish consumed 571.90 kg of feed containing 25.70 kg of nitrogen (N) and 9.70 kg of phosphorus (P), reflecting, and gaining 11.41 and 3.93 kg of dietary N and P, representing 44.40 and 40.46% dietary N and P retention, respectively. In the IMTA system, the addition of mullet and prawn as detrivores aquatic animals improves dietary N and P utilization efficiency to 59.06 and 51.19%, respectively, while the addition of mussels as herbivore animals improves dietary N and P utilization efficiency to 65.61 and 54.67%, respectively. Finally, using FRS and NFT as hydroponic systems increased dietary N and P efficiency to 83.51% N and 96.82% P, respectively. This study shows that the IMTA-Aquaponic system, as a bio-integrated food production system, can convert the majority of fish-fed residues into valuable products suitable for desert, rural, and urban areas in impoverished and developing countries.


Asunto(s)
Acuicultura , Agua Dulce , Hidroponía , Acuicultura/métodos , Animales , Hidroponía/métodos , Alimentación Animal/análisis , Nutrientes/metabolismo , Bagres/metabolismo , Bagres/fisiología , Aguas Residuales , Tilapia/metabolismo , Tilapia/crecimiento & desarrollo , Tilapia/fisiología , Cíclidos/metabolismo , Cíclidos/fisiología , Cíclidos/crecimiento & desarrollo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fósforo/análisis
9.
Food Chem ; 455: 139950, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917654

RESUMEN

To investigate the mechanisms of flavor formation in dry-fermented tilapia sausages, the volatiles, bacterial community, and lipid composition during fermentation were analyzed using gas chromatography-ion mobility spectrometry, 16S high throughput sequencing, and ultra-performance liquid chromatography-mass spectrometer. Pediococcus pentosaceus, Staphylococcus xylosus, and Staphylococcus carnosus became dominant bacteria during the fermentation. A total of 66 volatiles and 293 lipids (48 differential lipids) were identified. PC and PE content decreased. Aldehyde and 1-octen-3-ol content decreased. Most esters and ketones content increased during fermentation. Six metabolic pathways associated with differential lipids were identified by enrichment analysis. Glycerophospholipid metabolism was the main metabolic pathway. Correlation analysis revealed that PC and PE were precursors for volatiles, including PC 16:0/18:2 and PE 18:0/22:6. The dominant bacteria facilitate the hydrolysis of PC and PE, leading to the formation of esters and ketones. This study provides a theoretical basis for the targeted regulation of fermented sausage flavors.


Asunto(s)
Fermentación , Aromatizantes , Lipidómica , Productos de la Carne , Tilapia , Compuestos Orgánicos Volátiles , Animales , Productos de la Carne/análisis , Productos de la Carne/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/metabolismo , Aromatizantes/química , Tilapia/metabolismo , Tilapia/microbiología , Tilapia/crecimiento & desarrollo , Gusto , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Pesqueros/análisis , Productos Pesqueros/microbiología
10.
Pak J Biol Sci ; 27(4): 190-195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38812110

RESUMEN

<b>Background and Objective:</b> The sustainable management and conservation of fish biodiversity depends on studying fish biology. In this study, the length-weight relationships and condition factors of <i>Tilapia sparrmanii</i> were observed to gain a better understanding of their ecological and nutritional conditions. This information is crucial for the effective management of fisheries. <b>Materials and Methods:</b> During the study, 100 <i>T. sparrmanii</i> were collected from the Molepo Dam from October, 2022 to March, 2023. This fish's condition factor (CF) and length-weight relationship (LWR) were studied. To determine the size of each fish, the total length was measured using a caliper with a precision of 0.1 mm and the weight using a balance with an accuracy of 0.1 g. Differences were analyzed using ANOVA with the Tukey's <i>post hoc</i> test. A non-parametric Chi-square test was employed to evaluate the differences in sexes each month. <b>Results:</b> Their total length and body weight ranged from 4-15 cm and 0.96-57.96 g, respectively. The study found a strong positive relationship between the length and weight of the fish (r = 0.96). The regression coefficient (b) was more than 3.0, indicating a positive allometric growing rate. The condition factors (K) of males and females were not significantly different (p>0.05). The lowest CF value was observed in March (K = 1.01±0.03) and the highest in December (K = 1.73±0.12). The sex ratio of 1.0 male to 1.15 female was observed, which was significantly different from the theoretical ratio of one male to one female. This suggests that males were not significantly more than females (p>0.05). <b>Conclusion:</b> The study found that <i>T. sparrmanii</i> in Molepo Dam exhibited allometric growth, as evidenced by a strong correlation between length and weight represented by a high "r" value. This fish is in good condition because it has no competition for food due to ecological factors.


Asunto(s)
Tilapia , Animales , Sudáfrica , Tilapia/crecimiento & desarrollo , Femenino , Masculino , Peso Corporal
11.
Food Chem ; 449: 139239, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604034

RESUMEN

Single starter can hardly improve the volatile flavor of fermented fish surimi. In this study, the changes of volatile compounds (VCs) and microbial composition during cooperative fermentation of Latilactobacillus sakei and Pediococcus acidilactici were studied by headspace solid-phase microextraction gas chromatography-mass spectrometry and 16S rRNA gene high-throughput sequencing. During cooperative fermentation, most VCs and the abundance of Latilactobacillus and Lactococcus significantly increased, while Pediococcus, Acinetobacter, and Macrococcus obviously decreased. After evaluation of correlation and abundance of each genus, Latilactobacillus and Lactococcus possessed the highest influence on the formation of volatile flavor during cooperative fermentation. Compared with the natural fermentation, cooperative fermentation with starters significantly enhanced most of pleasant core VCs (odor activity value≥1), but inhibited the production of trimethylamine and methanethiol, mainly resulting from the absolutely highest influence of Latilactobacillus. Cooperative fermentation of starters is an effective method to improve the volatile flavor in the fermented tilapia surimi.


Asunto(s)
Fermentación , Productos Pesqueros , Latilactobacillus sakei , Pediococcus acidilactici , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Pediococcus acidilactici/metabolismo , Productos Pesqueros/análisis , Productos Pesqueros/microbiología , Latilactobacillus sakei/metabolismo , Tilapia/microbiología , Tilapia/metabolismo , Tilapia/crecimiento & desarrollo , Gusto , Aromatizantes/metabolismo , Aromatizantes/química , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Cromatografía de Gases y Espectrometría de Masas
12.
Artículo en Inglés | MEDLINE | ID: mdl-38688047

RESUMEN

Heterosis has been utilized in aquaculture for many years, yet its molecular basis remains elusive. Therefore, a comprehensive analysis of heterosis was conducted by comparing growth, digestion and biochemistry indices, as well as the intestinal gene expression profiles of Nile tilapia, blue tilapia and their hybrids. The results revealed that hybrid tilapia demonstrated an enhanced growth traits and elevated digestive enzyme activity compared to Nile and blue tilapia. Additionally, the hybrid tilapia displayed superior antioxidants and non-specific immune levels, with increased levels of catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), glutathione (GSH), superoxide dismutase (SOD), total antioxidant capacity (TAOC), lysozyme, and immunoglobulin M (IgM) relative to Nile and blue tilapia. Moreover, 3392, 2470 and 1261 differentially expressed genes (DEGs) were identified in the intestinal tissues when comparing Nile tilapia to blue tilapia, hybrid tilapia to blue tilapia, and hybrid tilapia to Nile tilapia. Upon classifying the differentially expressed genes (DEGs), non-additively expressed DEGs accounted for 68.1 % of the total DEGs, with dominant and over-dominant expressed DEGs comprising 63.7 % and 4.4 % in the intestines, respectively. These non-additively expressed DEGs were primarily associated with metabolic, digestive, growth, and developmental pathways. This enrichment enhances our comprehension of the molecular underpinnings of growth heterosis in aquatic species.


Asunto(s)
Vigor Híbrido , Tilapia , Animales , Vigor Híbrido/genética , Tilapia/genética , Tilapia/crecimiento & desarrollo , Intestinos , Hibridación Genética , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Transcriptoma , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Antioxidantes/metabolismo
13.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 752-763, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305567

RESUMEN

The current study aimed to evaluate growth performance, digestive enzyme activities, antioxidant status, nonspecific immune response and intestinal histological status of red tilapia fed Daphnia meal (DM) as a substitute for fishmeal (FM). Hybrid red tilapia (Oreochromis mossambicus × Oreochromis aureus) fry (0.54 ± 0.05 g fish-1) was allocated in nylon haba cages (100 fry m-3) for 2 weeks as an acclimation period. The fish were divided into five groups (three replicates each). The experimental diets were prepared by replacing FM with DM at concentrations of 25%, 50%, 75% and 100% respectively. The results indicated that fish fed increasing levels of DM (50%-75%) experienced high growth performance, feed utilisation and protein content. The activities of digestive enzymes were significantly increased in all groups fed DM diets compared to the control. The antioxidant balance was improved by decreasing the level of malondialdehyde and increased the total antioxidant capacity, catalase, superoxide dismutase and glutathione reductase activities in the liver of fish fed DM. The nonspecific immune response, including lysozyme, alkaline phosphatase activities and total protein level improved significantly with increasing FM substitution levels by DM in a dose-dependent manner. Histometric analysis of the intestinal wall revealed an increase in the villus length, crypts depth and goblet cells number in groups fed DM meal up to 50% substitution level compared to other treatments. It may be concluded from results of this feeding trial that in the aquaculture of hybrid tilapia, FM may be substituted with up to 50% DM without compromising intestinal health, growth performance and immune status of the fish.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Antioxidantes , Dieta , Intestinos , Tilapia , Animales , Alimentación Animal/análisis , Antioxidantes/metabolismo , Dieta/veterinaria , Digestión/efectos de los fármacos , Intestinos/efectos de los fármacos , Tilapia/crecimiento & desarrollo
14.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 611-634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193575

RESUMEN

This study explored the combined influence of tank color, stocking density, and gender on Tilapia zillii's performance and well-being. In this 120-day trial, 320 T. zillii, each initially weighing 10.0 ± 0.1 g/fish, were distributed among 24 tanks. The experiment included eight distinct treatment combinations, varying tank color (blue and green), stocking density (10 and 30 fish/m3) and sex (monosexual and mixed). The results showed that blue tanks improved specific growth rate and condition factor, while green tanks were better for feed utilization. Density at 30 fish/m3 showed the highest mean values of final body weight and total length, weight gain (WG), and gain length. Mono-sex outperformed mixed-sex ones in WG and daily growth. Interactions between color, density and sex were significant, affecting growth and feed utilization. Green tanks were best for protein profiles, while blue tanks excelled in glucose. A density of 10 fish/m3 yielded the highest protein profiles, and mono-sex fish had higher protein profiles. For lipid profiles, green tanks were superior, and density affected lipid profiles. Mixed-sex populations were best for certain lipid profile parameters. Interactions between these factors also played a significant role, making the biochemical profiles of T. zillii a complex interplay of various factors. The results explored that tank color, fish density and sex influence the activity of nonspecific immune enzymes in the liver of T. zillii. Blue tanks and lower fish density led to higher nonspecific immune enzymes, while mono-sex fish exhibited more significant nonspecific immune enzymes. Complex interactions between these factors also influenced nonspecific immune enzyme activities. Blue tanks increased malondialdehyde (MDA) levels, while green tanks raised glutathione S-transferases (GST) and catalase (CAT) levels. Lower fish density led to higher MDA, while higher density increased GST and CAT. Mono-sex fish had more MDA and GST, while mixed-sex fish showed greater CAT levels. Complex interactions among these factors affected the antioxidant levels in T. zillii. In summary, our study suggests that rearing T. zillii in green tanks at higher densities (30 fish/m3) and in mono-sex conditions yields the best results in terms of growth and overall performance.


Asunto(s)
Alimentación Animal , Tilapia , Animales , Tilapia/crecimiento & desarrollo , Tilapia/fisiología , Femenino , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Factores Sexuales , Acuicultura
15.
Braz J Biol ; 84: e261574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35703630

RESUMEN

In current study, different feeding levels of Moringa oleifera formulated diet was compared to analyze the growth performance, feed conversion ratio, feed conversion efficiency and gut microbiology of Oreochromis niloticus. The study was comprised of four treatment groups including 4%, 8% and 12% Moringa oleifera and one control group which was devoid of Moringa leaves. The experimental trial was conducted at the Zoology laboratory of Pakistan Institute of Applied and Social Sciences, (PIASS) Kasur. The physicochemical parameters of water such as temperature, dissolve oxygen, pH, total dissolved solids and salinity in all aquaria were found non-significantly different from each other. In control condition T1, the average weight gain was 14.89±16.90a grams, while average length gain was 11.52±7.444a cm. However, the total viable count on Eosin methylene blue was 7.4×107, 5.8×107 on Tryptic soy agar and 5.8×107on Nutrient agar. In T2, the average weight gain was 16.22±16.09b grams and average length gain was 12.97±7.79b cm. The total viable count on Eosin methylene blue was 7×107, 5.5×107 on Tryptic soy agar and 5.8×107on Nutrient agar. In T3, the average weight gain was 37.88±27.43c grams, while the average length gain was recorded as 16.48±12.56c cm. However, the total viable count for treatment 3 was 6.4×10 on Eosin methylene blue, 4.8×107 on Tryptic soy agar and 5.2×107on Nutrient agar. In T4, the average weight gain was 44.22±31.67d grams, while the average length gain was 15.25±10.49d cm. The total viable count was 4.3×107on Eosin methylene blue, 3.1×107 on Tryptic soy agar and 3.8×107 on Nutrient agar. The effect of Moringa oleifera on the growth of Oreochromis niloticus was found to be significant and 12% Moringa extract showed maximum length and weight gain and minimum feed conversion ratio with the least microbial count in fish intestine.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Moringa oleifera , Tilapia , Agar/análisis , Animales , Dieta/veterinaria , Eosina Amarillenta-(YS)/análisis , Azul de Metileno/análisis , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Aumento de Peso
16.
Fish Shellfish Immunol ; 121: 395-403, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35065275

RESUMEN

An 8-week feeding trial was performed to evaluate the effects of dietary leucine (Leu) and valine (Val) levels on growth performance, glycolipid metabolism and immune response in Oreochromis niloticus. Fish (15.23 ± 0.05 g) were randomly fed four diets containing two Leu levels (1.2% and 2.3%) and two Val levels (0.7% and 1.4%) as a 2 × 2 experimental design (LL-LV, LL-HV, HL-LV and HL-HV). Compared with LL-LV group, the growth parameters (final weight, daily growth coefficient (DGC) and growth rate per metabolic body weight (GRMBW)), feed conversion rate (FCR), the activities of intestinal amylase, lipase, creatine kinase (CK) and Na+, K+-ATPase, liver NAD+/NADH ratio, as well as the expression of SIRT1, GK, PK, FBPase, PPARα, CPT IA, ACO and IL10 all increased significantly in the HL-LV group; however, in the high Val group, final weight, DGC, GRMBW, intestinal enzyme activities, as well as the expression of PEPCK, SREBP1, FAS, IL8 and IL10 of the HL-HV group were significantly lower than those of the LL-HV group, while the opposite was true for the remaining indicators. Significant interactions between dietary Leu and Val were observed in final weight, DGC, GRMBW, plasma IL1ß and IL6 levels, intestinal amylase and CK activities, liver NAD+/NADH ratio, as well as the expression of SIRT1, PK, PEPCK, FBPase, SREBP1, FAS, PPARα, CPT IA, ACO, NF-κB1, IL1ß, IL6 and IL10. The highest values of growth parameters, intestinal enzyme activities and expression of SIRT1, FBPase, PPARα, CPT IA and ACO were observed in the HL-LV group, while the opposite was true for the expression of SREBP1, FAS, PPARα, NF-κB1, IL1ß and IL6. Overall, our findings indicated that dietary Leu and Val can effect interactively, and fish fed with diets containing 2.3% Leu with 0.7% Val had the best growth performance and hepatic health status of O. niloticus.


Asunto(s)
Alimentación Animal , Glucolípidos/metabolismo , Leucina/administración & dosificación , Tilapia , Valina/administración & dosificación , Amilasas , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Inmunidad , Interleucina-10 , Interleucina-6 , NAD , PPAR alfa/genética , Sirtuina 1 , Tilapia/crecimiento & desarrollo , Tilapia/inmunología
17.
Sci Rep ; 11(1): 24130, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916588

RESUMEN

The main aim of this research is to develop a mathematical model to predict the dissolved oxygen in recirculating aquaculture system. The oxygen consumption of the model through the fish respiration and nitrification and the oxygen addition of the model through oxygen generator and water pumping. The effect of different water temperatures (24, 26, 28, 30 and 32 °C) on the dissolved oxygen consumption through fish respiration, biofilter and nitrification and fish growth were studied. An experiment to measure oxygen consumed by fish respiration and biofilteration and fish growth with the growth period and to validate the model results was carried out. The oxygen consumption predicted by the model was in a good agreement with those measured by the system. The oxygen consumption by fish respiration ranged 12.04 to 47.53 g O2 m-3 h-1 experimentally, while it was from 12.01 to 46.06 g O2 m-3 h-1 theoretically. The predicted and measured oxygen consumption through biofilteration values ranged from 0.43 to 21.91 and 0.45 to 23.09 g O2 m-3 h-1, respectively. The individual fish weight from the system ranged from 3.00 to 209.52 g experimentally while it was from 3.00 to 226.25 g theoretically during the whole period.


Asunto(s)
Explotaciones Pesqueras , Modelos Teóricos , Consumo de Oxígeno , Oxígeno/análisis , Tilapia/metabolismo , Agua/química , Animales , Proteínas Asociadas a Microtúbulos , Nitrificación , Proteínas de Unión al ARN , Respiración , Tilapia/crecimiento & desarrollo
18.
Toxins (Basel) ; 13(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34679028

RESUMEN

The utility of cyanobacterial bloom is often hindered by concerns about the toxin content. Over three years of investigation, we found that the toxin content of cyanobacterial bloom in Lake Taihu was always low in June and higher in late summer and autumn. The findings enabled us to compare the effects of diets containing low and high toxic cyanobacterial blooms on the growth and consumption safety of tilapia. There were no negative effects on the growth of tilapia, and the muscle seemed to be safe for human consumption in the treatment of 18.5% low toxic cyanobacterial bloom. Therefore, limitations of the utilization of cyanobacterial biomass can be overcome by selecting low toxic cyanobacterial bloom that can be found and collected in large lakes.


Asunto(s)
Alimentación Animal/análisis , Cianobacterias/química , Tilapia/crecimiento & desarrollo , Alimentación Animal/efectos adversos , Animales , Acuicultura/métodos , China , Dieta/veterinaria , Eutrofización , Contaminación de Alimentos/análisis , Lagos , Microcistinas/análisis , Microcistinas/toxicidad , Estaciones del Año
19.
Artículo en Inglés | MEDLINE | ID: mdl-34375731

RESUMEN

Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 µg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.


Asunto(s)
Ácidos/toxicidad , Selenio/toxicidad , Tilapia/crecimiento & desarrollo , Animales , Antioxidantes/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/patología , Agua Dulce , Branquias/efectos de los fármacos , Branquias/metabolismo , Branquias/patología , Concentración de Iones de Hidrógeno , Peroxidación de Lípido , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/veterinaria , Estrés Oxidativo/efectos de los fármacos , Tilapia/metabolismo , Contaminantes Químicos del Agua/toxicidad
20.
Artículo en Inglés | MEDLINE | ID: mdl-34147671

RESUMEN

microRNAs (miRNAs) are important components of non-coding RNAs that participate in diverse life activities by regulating gene expression at the post transcriptional level through base complementary pairing with 3'UTRs of target mRNAs. miR-133b is a member of the miR-133 family, which play important roles in muscle differentiation and tumorigenesis. Recently, miR-133b was reported to affect estrogen synthesis by targeting foxl2 in mouse, while its role in fish reproduction remains to be elucidated. In the present study, we isolated the complete sequence of miR-133b, which was highly expressed in tilapia ovary at 30 and 90 dah (days after hatching) and subsequently decreased at 120 to 150 dah by qPCR. Interestingly, only a few oogonia were remained in the antagomir-133b treated tilapia ovary, while phase I and II oocytes were observed in the ovaries of the control group. Unexpectedly, the expression of foxl2 and cyp19a1a, as well as estradiol levels in serum were increased in the treated group. Furthermore, tagln2, an important factor for oogenesis, was predicted as the target gene of miR-133b, which was confirmed by dual luciferase reporter vector experiments. miR-133b and tagln2 were co-expressed in tilapia ovaries. Taken together, miR-133b may be involved in the early oogenesis of tilapia by regulating tagln2 expression. This study enriches the understanding of miR-133b function during oogenesis and lays a foundation for further study of the regulatory network during oogenesis.


Asunto(s)
Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Proteínas de Microfilamentos/metabolismo , Oogénesis , Ovario/metabolismo , Tilapia/metabolismo , Animales , Femenino , Proteínas de Peces/genética , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Perfilación de la Expresión Génica , Proteínas de Microfilamentos/genética , Ovario/citología , Tilapia/genética , Tilapia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...