Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Mol Biol Rep ; 51(1): 789, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990383

RESUMEN

BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide. METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR. RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1ß secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/ß, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment. CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.


Asunto(s)
Glucósidos , Lipopolisacáridos , Macrófagos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Fenilpropionatos , Transducción de Señal , Tinospora , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Tinospora/química , Glucósidos/farmacología , Fenilpropionatos/farmacología , FN-kappa B/metabolismo , Células U937 , Dinoprostona/metabolismo , Interleucina-1beta/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Mediadores de Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/metabolismo
2.
J Ethnopharmacol ; 333: 118446, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38857679

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook. f. & Thomson (TC) boasts a rich traditional heritage, widespread use in Ayurveda, traditional Chinese medicine (TCM), and diverse indigenous healing practices throughout Southeast Asia for treating arthritis, rheumatism, fever, and inflammation. AIM OF THE STUDY: This study investigates the anti-inflammatory and chondroprotective potential of TC stem extracts, including ethanolic TC extract (ETCE) and aqueous TC extract (ATCE), in modulating OA pathogenesis through in vitro and in vivo approaches. MATERIALS AND METHODS: The study utilized LC-MS/MS to identify key compounds in TC stem extracts. In vitro experiments assessed the antioxidative and anti-inflammatory properties of ETCE and ATCE in activated macrophages, while an in vivo monoiodoacetate (MIA)-induced OA rat model evaluated the efficacy of ETCE treatment. Key markers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), were assessed alongside pro-inflammatory cytokines TNF-α and IL-1ß, and matrix-degrading enzymes, matrix metalloproteinase (MMP 13 and MMP 3), to evaluate the therapeutic effects of TC stem extracts on OA. RESULTS: Chemical profiling of the extracts was conducted using LC-MS/MS in positive ionization, identifying seven compounds, including pseudolaric acid B, stylopine, and reticuline, which were reported for the first time in this species. The study utilized varying concentrations of TC stem extracts, specifically 6.25-25 µg/mL for in vitro assays and 500 mg/kg for in vivo studies. Our findings also revealed that both ETCE and ATCE exhibit dose-dependent reduction in reactive oxygen species (41%-52%) and nitric oxide (NO) levels (50% and 72%), with ETCE displaying superior antioxidative efficacy and marked anti-inflammatory properties, significantly reducing TNF-α and IL-6 at concentrations above 12.5 µg/mL. In the MIA-induced OA rat model, ETCE treatment notably outperformed ATCE, markedly lowering TNF-α (1.91 ± 0.37 pg/mL) and IL-1ß (26.30 ± 3.68 pg/mL) levels and effectively inhibiting MMP 13 and MMP 3 enzymes. Furthermore, macroscopic and histopathological assessments, including ICRS scoring and OARSI grading, indicate that TC stem extracts reduce articular damage and proteoglycan loss in rat knee cartilage. These results suggest that TC stem extracts may play a role in preventing cartilage degradation and potentially alleviating inflammation and pain associated with OA, though further studies are needed to confirm these effects. CONCLUSION: This study highlights the potential of TC stem extracts as a novel, chondroprotective therapeutic avenue for OA management. By targeting oxidative stress, pro-inflammatory cytokines, and cartilage-degrading enzymes, TC stem extracts promise to prevent cartilage degradation and alleviate inflammation and pain associated with OA.


Asunto(s)
Antiinflamatorios , Antioxidantes , Osteoartritis , Estrés Oxidativo , Extractos Vegetales , Tinospora , Animales , Tinospora/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Osteoartritis/tratamiento farmacológico , Osteoartritis/inducido químicamente , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ratones , Ratas Sprague-Dawley , Ratas , Células RAW 264.7 , Condrocitos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Tallos de la Planta/química , Citocinas/metabolismo , Ácido Yodoacético , Artritis Experimental/tratamiento farmacológico
3.
Chem Pharm Bull (Tokyo) ; 72(6): 540-546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38866475

RESUMEN

Three neo-clerodane diterpenoids, including two new tinocordifoliols A (1) and B (2) and one known tinopanoid R (3), were isolated from the ethyl acetate-soluble fraction of the 70% ethanol extract of Tinospora cordifolia stems. The structures were elucidated by various spectroscopic methods, including one dimensional (1D) and 2D-NMR, high resolution-electrospray ionization (HR-ESI)-MS, and electronic circular dichroism (ECD) data. The T. cordifolia extract and all isolated compounds 1-3 possessed arginase I inhibitory activities. Among them, 3 exhibited moderate competitive inhibition of human arginase I (IC50 = 61.9 µM). Furthermore, docking studies revealed that the presence of a ß-substituted furan in 3 may play a key role in the arginase I inhibitory activities.


Asunto(s)
Arginasa , Diterpenos de Tipo Clerodano , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Tallos de la Planta , Tinospora , Tinospora/química , Arginasa/antagonistas & inhibidores , Arginasa/metabolismo , Diterpenos de Tipo Clerodano/farmacología , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/aislamiento & purificación , Humanos , Tallos de la Planta/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Relación Estructura-Actividad , Estructura Molecular , Conformación Molecular , Relación Dosis-Respuesta a Droga
4.
Sci Data ; 11(1): 610, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866889

RESUMEN

Tinospora sagittata (Oliv.) Gagnep. is an important medicinal tetraploid plant in the Menispermaceae family. Its tuber, Radix Tinosporae, used in traditional Chinese medicine, is rich in diterpenoids and benzylisoquinoline alkaloids (BIAs). To enhance our understanding of medicinal compounds' biosynthesis and Menispermaceae's evolution, we herein report assembling a high-quality chromosome-scale genome with both PacBio HiFi and Illumina sequencing technologies. PacBio Sequel II generated 2.5 million circular consensus sequencing (CCS) reads, and a hybrid assembly strategy with Illumina sequencing resulted in 4483 contigs. The assembled genome size was 2.33 Gb, consisting of 4070 scaffolds (N50 = 42.06 Mb), of which 92.05% were assigned to 26 pseudochromosomes. T. sagittata's chromosomal-scale genome assembly, the first species in Menispermaceae, aids Menispermaceae evolution and T. sagittata's secondary metabolites biosynthesis understanding.


Asunto(s)
Genoma de Planta , Plantas Medicinales , Tinospora , Tinospora/genética , Plantas Medicinales/genética , Cromosomas de las Plantas/genética , Menispermaceae/genética
5.
J Toxicol Environ Health A ; 87(16): 647-661, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804873

RESUMEN

The present study aimed to determine the genoprotective activity and safety of Moringa oleifera leave and Tinospora cordifolia stem extracts against cyclophosphamide (CP)-induced genotoxicity utilizing Swiss albino mice. Animals were divided into 14 groups for subacute treatment with either M. oleifera or T. cordifolia extracts daily for 28 days. The extract doses selected were 100, 200 or 400 mg/kg b.w administered orally alone or combined with CP (50 mg/kg b.w. intraperitoneally daily for 5 days). Analyses performed included the comet assay, micronucleus test (MN) in bone marrow cells and sperm head abnormality assay (SHA). M. oleifera and T. cordifolia extracts induced no significant genotoxic effects on somatic and germ cells. In contrast, for all cells examined M. oleifera and T. cordifolia extracts inhibited DNA damage initiated by CP. Taken together data demonstrated that both plant extracts did not exhibit marked genotoxic effects but displayed potential chemoprotective properties against CP-induced genotoxicity in Swiss mice.


Asunto(s)
Ciclofosfamida , Daño del ADN , Pruebas de Micronúcleos , Moringa oleifera , Extractos Vegetales , Hojas de la Planta , Tinospora , Animales , Tinospora/química , Ratones , Ciclofosfamida/toxicidad , Moringa oleifera/química , Extractos Vegetales/farmacología , Masculino , Hojas de la Planta/química , Daño del ADN/efectos de los fármacos , Ensayo Cometa , Tallos de la Planta/química , Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Mutágenos/toxicidad , Antimutagênicos/farmacología
6.
Fitoterapia ; 176: 105988, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703915

RESUMEN

Traditional medicinal plants have been used for centuries for their immunomodulatory properties and therapeutic potentials. The present study aims to investigate the immunomodulatory constituents from traditional medicinal plant, Tinospora cordifolia (willd.). Our study resulted in the isolation of new compound, 27-hydroxy octacosyl ferulate (1) along with eleven known compounds (2-12). The structures of the isolated compounds were characterized by combination of NMR (1D and 2D) and Mass spectroscopic methods. The hemisynthesis of compound 12 (ferulic acid) yielded (12a-12d and 12e-12 m) derivatives. Further, the isolated compounds and synthesized derivatives were assessed for their immunomodulatory potentials by evaluating their cytotoxicity and pro-inflammatory effects against macrophage cells (IL-6) and DC activation markers (CD 11c and 86). The biological results indicated that crude extract displayed potent immunomodulatory activity while isolated compounds and synthetic analogues showed moderate activity. Among the tested compounds, new compound (1), quercetin (10) and derivatives 12b, 12c found to be non-cytotoxic and displayed immunomodulatory potentials. Therefore, these compounds can be studied for autoimmunity and other immune suppressing conditions.


Asunto(s)
Agentes Inmunomoduladores , Fitoquímicos , Tinospora , Tinospora/química , Estructura Molecular , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Animales , Ratones , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/aislamiento & purificación , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/aislamiento & purificación , Factores Inmunológicos/farmacología , Factores Inmunológicos/aislamiento & purificación , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Interleucina-6
7.
J Ethnopharmacol ; 330: 118242, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38679398

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dengue is one of the most prevalent mosquito-borne viral infections. Moreover, due to the absence of appropriate curative and preventive measures against it, the mortality rate is increasing alarmingly. However, remarkable docking and clinical advances have been achieved with plant-based natural and conventional therapeutics. Tinospora cordifolia is one of the highly explored panaceas at the local level for its effective anti-dengue formulations. AIM OF THE STUDY: The present article aims for critical assessment of the data available on the anti-dengue therapeutic use of T. cordifolia. Efforts have also been made on the clinical and in-silico anti-dengue efficacy of this plant. The phytochemistry and the antiviral machinery of the plant are also emphasized. MATERIALS AND METHODS: The present article is the outcome of the literature survey on the anti-dengue effect of T. cordifolia. A literature survey was conducted from 2011 to 2024 using different databases with appropriate keywords. RESULTS: The present study confirms the anti-dengue potential of T. cordifolia. The plant can suppress the initiation of 'cytokine storm', vascular leakage and inhibition of various structural and NS proteins to exert its anti-dengue potential. Berberine and magnoflorine phytocompounds were highly explored for their anti-dengue potential. CONCLUSIONS: The present study concluded that T. cordifolia serves as an effective therapeutic agent for treating dengue. Further in-silico and clinical studies are needed so that stable, safe and efficacious anti-dengue drug can be developed. Besides, a precise antiviral mechanism of T. cordifolia against DENV infection is still needed.


Asunto(s)
Antivirales , Dengue , Fitoquímicos , Extractos Vegetales , Tinospora , Tinospora/química , Dengue/tratamiento farmacológico , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Animales , Virus del Dengue/efectos de los fármacos
8.
Nanotheranostics ; 8(3): 312-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577319

RESUMEN

Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682µg/ml and 36.675 ± 0.916µg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Tinospora , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tinospora/metabolismo , Células CACO-2 , Metanol/farmacología , Apoptosis , Estrés Oxidativo , Neoplasias Colorrectales/tratamiento farmacológico
9.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675617

RESUMEN

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Asunto(s)
Emulsiones , Tamaño de la Partícula , Extractos Vegetales , Tinospora , Agua , Emulsiones/química , Extractos Vegetales/química , Tinospora/química , Agua/química , Sonicación , Nanopartículas/química , Aceites/química , Tensoactivos/química
10.
Chem Biodivers ; 21(6): e202302037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546704

RESUMEN

Tinospora sinensis (T. sinensis), whose Tibetan name is "Lezhe", as a traditional medicine, is widely distributed in China, India and Sri Lanka. It is used for the treatment of rheumatic arthralgia, sciatica, lumbar muscle strain and bruises. Research over the previous decades indicated that T. sinensis mainly contains terpenes, lignans, alkaloids, phenol glycosides and other chemical components. A wide range of pharmacologic activities such as anti-inflammatory, analgesic, immunosuppressive, anti-aging, anti-radiation, anti-leishmania and liver protection have been reported. However, the scholar's research on the pharmacodynamic material basis of T. sinensis is relatively weak. Data regarding many aspects such as links between the traditional uses and bioactivities, pharmacokinetics, and quality control standard of active compositions is still limited and need more attention. This review reports a total of 241 compounds, the ethnopharmacology and clinical application of T. sinensis, covering the literature which were searched by multiple databases including Web of Science, PubMed, Google Scholar, Science Direct, CNKI and other literature sources from 1996 to date, with a view to provide a systematic and insightful reference and lays a foundation and inspiration for the application and further in-depth research of T. sinensis resources.


Asunto(s)
Fitoquímicos , Tinospora , Tinospora/química , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Medicina Tradicional , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación
11.
Sci Rep ; 14(1): 2799, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307917

RESUMEN

Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.


Asunto(s)
Alcaloides , Plantas Medicinales , Tinospora , Humanos , Plantas Medicinales/genética , Tinospora/genética , Tinospora/metabolismo , Filogenia , Extractos Vegetales/metabolismo , Alcaloides/metabolismo
12.
J Nat Prod ; 87(4): 774-782, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38358957

RESUMEN

Clerodane diterpenes are a class of secondary metabolites that can be classified into four types according to the configuration of the H3-19/H-10-H3-17/H3-20 fragment, i.e., trans-cis (TC), trans-trans (TT), cis-cis (CC), and cis-trans (CT). Tinotufolins A-C and E (1a-3a and 5a), isolated from the leaves of Tinospora crispa, were previously elucidated as CT-type clerodanes; however, our established 13C NMR-based empirical rules and density functional theory calculations suggested that these clerodanes belong to the CC type. Therefore, tinotufolins A-F (1-6) were reisolated from the leaves of T. crispa, along with an undescribed compound 7 and known compounds 8-11, and their structures were established by extensive spectroscopic analyses. The structures of tinotufolins A-C and E were revised to CC-type 1-3 and 5, and undescribed compound 7 was established as a CC-type clerodane. The present study demonstrates that empirical rules and calculations can efficiently identify and revise erroneous structures in clerodane diterpenes.


Asunto(s)
Diterpenos de Tipo Clerodano , Hojas de la Planta , Tinospora , Hojas de la Planta/química , Tinospora/química , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/aislamiento & purificación , Estructura Molecular , Teoría Funcional de la Densidad
13.
Vector Borne Zoonotic Dis ; 24(6): 382-389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38364187

RESUMEN

Background: The potential molluscicidal extracts, obtained from indigenous plants Cannabis sativa, Acacia nilotica, and Tinospora cordifolia, were tested for toxicity against freshwater pulmonate snail Lymnaea acuminata, an intermediate host of Fasciola hepatica. The organic extracts had a significant effect on young snails. Materials and Methods: All organic extracts and column-purified fractions gave median lethal concentrations (19-100.05 mg/L; 24 h) that fell well within the threshold level of 100 mg/L, set for a potential molluscicide by the World Health Organization. Results: The toxicity of T. cordifolia stem acetone extract (96 h LC50: 16.08 mg/L) was more pronounced compared with C. sativa leaf ethanol extract (96 h LC50: 16.32 mg/L) and A. nilotica leaf ethanol extract (96 h LC50: 24.78 mg/L). ß-caryophyllene, gallic acid, and berberine were characterized and identified as active molluscicidal components. Co-migration of ß-caryophyllene (retardation factor [Rf] 0.95), gallic acid (Rf 0.30), and berberine (Rf 0.23) with column-purified parts of Cannabis sativa, Acacia nilotica, and Tinospora cordifolia on thin-layer chromatography demonstrates same Rf value, that is, 0.95, 0.30, and 0.23, respectively. Conclusion: This study indicates that these extracts thus represent potential plant-derived molluscicides that are worthy of further investigations.


Asunto(s)
Acacia , Cannabis , Moluscocidas , Extractos Vegetales , Tinospora , Animales , Tinospora/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Acacia/química , Moluscocidas/farmacología , Cannabis/química , Hojas de la Planta/química , Lymnaea/efectos de los fármacos , Fasciola/efectos de los fármacos , Caracoles/parasitología , Caracoles/efectos de los fármacos
14.
J Pharm Pharmacol ; 76(3): 183-200, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38280221

RESUMEN

OBJECTIVES: Despite significant advancements in modern medicine, effective hepatoprotective medication with minimal side effects is still lacking. In this context. Tinospora cordifolia, an Indian Ayurvedic liana, has attracted much attention. KEY FINDINGS: Traditionally, T. cordifolia has been found to be effective in the treatment of jaundice; according to the literature, T. cordifolia is a hepatoprotective agent, and the CCl4 model is the most frequently used to evaluate its potential. Its hepatoprotective effects might be attributed to alkaloids (berberine, palmatine, and jatrorrhizine) and sinapic acid. Berberine decreases inflammation by inhibiting the proinflammatory cascade triggered by TNF-α and reduces nitrosative stress by inhibiting iNOS. T. cordifolia also exhibits anticancer, anti-inflammatory, antimicrobial, antioxidant, and other activities; it is safe at concentrations up to 2000 mg/kg. Its biological action can be attributed to polyphenols, alkaloids, steroids, terpenoids, and glycosides. T. cordifolia has also been found to be an active ingredient in several polyherbal formulations used to treat chemical-mediated hepatotoxicity. CONCLUSION: T. cordifolia's hepatoprotective effects are mediated by the inhibition of lipid peroxidation, the management of oxidative stress, and other factors. T. cordifolia can be used to manage liver disorders and as a hepatoprotective supplement in the food industry. The bioprospecting of its alkaloids can lead to the development of novel formulations against hepatic ailments.


Asunto(s)
Berberina , Tinospora , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Suplementos Dietéticos
15.
J Ethnopharmacol ; 323: 117700, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38176666

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (TC) a potential medicinal herb, has been ethnobotanically used as an eco-friendly supplement to manage various diseases, including cerebral fever. Earlier studies have shown that TC exhibits diverse beneficial effects, including hepatoprotective and neuroprotective effects. However, the effects of TC remain unexplored in animal models of encephalopathy including hepatic encephalopathy (HE). AIM OF THE STUDY: To evaluate the effects of TC stem extract against thioacetamide (TAA)-induced behavioural and molecular alterations in HE rats. METHODS AND MATERIALS: The extract was preliminarily screened through phytochemical and HR-LC/MS analysis. Animals were pre-treated with TC extract at doses 30 and 100 mg/kg, orally. Following 7 days of TC pre-treatment, HE was induced by administering TAA (300 mg/kg, i. p. thrice). Behavioural assessments were performed after 56 h of TAA first dose. The animals were then sacrificed to assess biochemical parameters in serum, liver and brain. Liver tissue was used for immunoblotting and histological studies to evaluate inflammatory and fibrotic signalling. Moreover, brain tissue was used to evaluate brain edema, activation of glial cells (GFAP, IBA-1) and NF-κB/NLRP3 downstream signalling via immunoblotting and immunohistochemical analysis in cortex and hippocampus. RESULTS: The pre-treatment with TC extract effective mitigated TAA-induced behavioural alterations, lowered serum LFT (AST, ALT, ALP, bilirubin) and oxidative stress markers in liver and brain. TC treatment significantly modulated hyperammonemia, cerebral edema and preserved the integrity of BBB proteins in HE animals. TC treatment attenuated TAA-induced histological changes, tissue inflammation (pNF-κB (p65), TNF-α, NLRP3) and fibrosis (collagen, α-SMA) in liver. In addition, immunoblotting analysis revealed TC pre-treatment inhibited fibrotic proteins such as vimentin, TGF-ß1 and pSmad2/3 in the liver. Our study further showed that TC treatment downregulated the expression of MAPK/NF-κB inflammatory signalling, as well as GFAP and IBA-1 (glial cell markers) in cortex and hippocampus of TAA-intoxicated rats. Additionally, TC-treated animals exhibited reduced expression of caspase3/9 and BAX induced by TAA. CONCLUSION: This study revealed promising insights on the protective effects of TC against HE. The findings clearly demonstrated that the significant inhibition of MAPK/NF-κB signalling and glial cell activation could be responsible for the observed beneficial effects of TC in TAA-induced HE rats.


Asunto(s)
Encefalopatía Hepática , Hiperamonemia , Tinospora , Ratas , Animales , Encefalopatía Hepática/inducido químicamente , Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/prevención & control , Tioacetamida/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/patología , Hígado , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
16.
J Biomol Struct Dyn ; 42(2): 598-614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36995189

RESUMEN

The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Hepatitis A , Tinospora , Simulación del Acoplamiento Molecular , Temperatura , Simulación de Dinámica Molecular , Fitoquímicos/farmacología
17.
J Ethnopharmacol ; 321: 117559, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072294

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (T. cordifolia) (Willd.) Miers, a member of the Menispermaceae, family documented in the ancient textbooks of the Ayurveda System of Medicine, has been used in the management of sciatica pain and diabetic neuropathy. AIM: The study has been designed to evaluate the antinociceptive potential of various extracts of T. cordifolia stem in Paclitaxel (PT)-generated neuropathic pain model in albino rats and explore its possible mechanism employing molecular docking studies. METHODS: Stems of T. cordifolia were shade dried, grinded in fine powder, and extracted separately with different solvents viz. ethanol, water & hydro-alcoholic and characterized using LCMS/MS. The antinociceptive property of T. cordifolia stem (200 and 400 mg/kg) was examined in albino rats using a PT-induced neuropathic pain model. Further, the effect of these extracts was also observed using different behavioral assays viz. cold allodynia, mechanical hyperalgesia (pin-prick test), locomotor activity test, walking track test, and Sciatic Functional Index (SFI) in rats. Tissue lysate of the sciatic nerve was used to determine various biochemical markers such as GSH, SOD, TBARS, tissue protein, and nitrite. Further to explore the possible mechanism of action, the most abundant and therapeutically active compounds available in aqueous extract were analyzed for binding affinity towards soluble epoxide hydrolase (sEH) enzyme (PDB ID: 3wk4) employing molecular docking studies. RESULTS: The results of the LCMS/MS study of different extracts of T. cordifolia indicated presence of alkaloids, glycosides, terpenoids, sterols and sugars such as amritoside A, tinocordin, magnoflorine, N-methylcoclaurine, coridine, 20ß-hydroxyecdysone and menaquinone-7 palmatin, cordifolioside A and tinosporine etc. Among all the three extracts, the hydroalcoholic extract (400 mg/kg) showed the highest response followed by aqueous and ethanolic extracts as evident in in vivo behavioral and biochemical evaluations. Furthermore, docking studies also exposed that these compounds viz. N-methylcoclaurine tinosporin, palmatine, tinocordin, 20ß-hydroxyecdysone, and coridine exhibited well to excellent affinity towards target sEH protein. CONCLUSION: T. cordifolia stem could alleviate neuropathic pain via soluble epoxide hydrolase inhibitory activity.


Asunto(s)
Neuralgia , Tinospora , Ratas , Animales , Paclitaxel , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Tinospora/química , Epóxido Hidrolasas , Simulación del Acoplamiento Molecular , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico
18.
Phytochemistry ; 218: 113932, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056516

RESUMEN

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Asunto(s)
Diterpenos de Tipo Clerodano , Menispermaceae , Tinospora , Diterpenos de Tipo Clerodano/farmacología , Diterpenos de Tipo Clerodano/química , Tinospora/química , Lipopolisacáridos/farmacología , Raíces de Plantas/química , Estructura Molecular
19.
J AOAC Int ; 107(1): 129-139, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37738282

RESUMEN

BACKGROUND: The sympatric occurrence of the species that often resulted in different gatherings of plant material, ambiguous history on traditional use, and taxonomic flux due to similarities within the Tinospora (Menispermaceae) taxa are some of the reasons that triggered the necessity to develop robust analytical methods for efficient QC, especially to recognize dry and powder forms. OBJECTIVE: To develop novel HPTLC-based fingerprinting of two closely resembling Tinospora species followed by HPTLC-MS analysis and identification of compounds differentiating Tinospora crispa (TCP) and Tinospora cordifolia (TCR) and a rapid and quantitative assessment by HPLC with a photodiode array detector (HPLC-PDA) with MS/MS characterization of specific TCP and TCR analytical markers. METHODS: An HPTLC-based method was developed using chloroform-toluene-methanol-formic acid (7 + 4 + 2 + 0.2, by volume). The TCP compounds could be distinguished and isolated using successive column chromatography with complete characterization. Further these used in the reverse phase (RP)-HPLC-PDA coupled with LC-ESI (electrospray ionization)-MS/MS to quantify and confirmation in TCP and TCR. RESULTS: The fingerprinting showed distinct bands in TCP stems, confirmed as clerodane- furanoditerpenoids with indirect profiling by the HPTLC-MS technique. Systematic isolation confirmed these compounds as borapetosides B and E. Thus, the RP-HPLC-PDA method was developed for these borapetosides B and E, with tinosporide to differentiate these two species. The quantitation method was well validated with good linearity (r2 >0.99) with sensitive LOD (0.49-3.71 mcg/mL) and LOQ (1.48-11.23 mcg/mL) with recoveries of 92.34-96.19%. CONCLUSION: A novel, validated HPLC-PDA method showed good resolution and reliability (up to 1% adulteration) in quantification for targeted major analytical markers from TCP to differentiate TCR. Thus, HPTLC and HPLC-PDA-based techniques are helpful with MS/MS-based characterization to identify and quantify these analytical markers from TCP (borapetoside B and E) and TCR (tinosporide) in dry and powder form. HIGHLIGHTS: This article reports on the systemic use of HPTLC-MS for separating and identifying analytical markers in Tinospora species, distinguishing TCR and TCP with quantitative HPLC-PDA and MS/MS assessment.


Asunto(s)
Espectrometría de Masas en Tándem , Tinospora , Tinospora/química , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Polvos , Extractos Vegetales/química , Receptores de Antígenos de Linfocitos T
20.
J Ethnopharmacol ; 319(Pt 3): 117296, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820996

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure. AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation. MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools. RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds. CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Tinospora , Humanos , Insulina/metabolismo , Simulación del Acoplamiento Molecular , Tinospora/química , Músculo Esquelético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...