Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Neoplasia ; 53: 101004, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38733769

RESUMEN

Thioredoxin reductases are frequently overexpressed in various solid tumors as a protective mechanism against heightened oxidative stress. Inhibitors of this system, such as Auranofin, are effective in eradicating cancer cells. However, the clinical significance of thioredoxin reductase 1 (TrxR1) in lung cancer, as well as the potential for its antagonist as a treatment option, necessitated further experimental validation. In this study, we observed significant upregulation of TrxR1 specifically in non-small cell lung cancer (NSCLC), rather than small cell lung cancer. Moreover, TrxR1 expression exhibited associations with survival rate, tumor volume, and histological classification. We developed a novel TrxR1 inhibitor named LW-216 and assessed its antitumor efficacy in NSCLC. Our results revealed that LW-216 is effectively bound with intracellular TrxR1 at sites R371 and G442, facilitating TrxR1 ubiquitination and suppressing TrxR1 expression, while not affecting TrxR2 expression. Treatment of LW-216-induced DNA damage and cell apoptosis in NSCLC cells through the generation of reactive oxygen species (ROS). Importantly, supplementation with N-acetylcysteine (NAC) or ectopic TrxR1 expression reversed LW-216-induced apoptosis. Furthermore, LW-216 displayed potent tumor growth inhibition in NSCLC cell-implanted mice, reducing TrxR1 expression in xenografts. Remarkably, LW-216 exhibited superior antitumor activity compared to Auranofin in vivo. Collectively, our research provides compelling evidence supporting the potential of targeting TrxR1 by LW-216 as a promising therapeutic strategy for NSCLC.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Especies Reactivas de Oxígeno , Tiorredoxina Reductasa 1 , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxina Reductasa 1/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Animales , Ratones , Línea Celular Tumoral , Proteolisis , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Antineoplásicos/farmacología
2.
Biomed Pharmacother ; 174: 116507, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565059

RESUMEN

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Auranofina , Neoplasias del Colon , Sinergismo Farmacológico , Compuestos Heterocíclicos con 3 Anillos , Proteínas Proto-Oncogénicas c-akt , Pironas , Especies Reactivas de Oxígeno , Transducción de Señal , Tiorredoxina Reductasa 1 , Humanos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Auranofina/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Línea Celular Tumoral , Fosforilación/efectos de los fármacos , Morfolinas/farmacología , Células HCT116
3.
Chem Biol Interact ; 395: 111004, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38636790

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) faces low response rates to anti-PD-1 immunotherapies, highlighting the need for enhanced treatment strategies. Auranofin, which inhibits thioredoxin reductase (TrxR) through its gold-based composition, has shown potential in cancer treatment. It targets the TrxR system, essential for safeguarding cells from oxidative stress. The overproduction of TrxR in cancerous cells supports their proliferation. However, auranofin's interference with this system can upset the cellular redox equilibrium, boost levels of reactive oxygen species, and trigger the death of cancer cells. This study is the first to highlight TXNRD1 as a crucial factor contributing to resistance to anti-PD-1 treatment in HNSCC. In this study, we identified targetable regulators of resistance to immunotherapy-induced ferroptosis in HNSCC. We observed a link of thioredoxin reductase 1 (TXNRD1) with tumoral PD-L1 expression and ferroptosis suppression in HNSCC. Moreover, HNSCC tumors with aberrant TXNRD1 expression exhibited a lack of PD-1 response, NRF2 overexpression, and PD-L1 upregulation. TXNRD1 inhibition promoted ferroptosis in HNSCC cells with NRF2 activation and in organoid tumors derived from patients lacking a PD-1 response. Mechanistically, TXNRD1 regulated PD-L1 transcription and maintained the redox balance by binding to ribonucleotide reductase regulatory subunit M2 (RRM2). TXNRD1 expression disruption sensitized HNSCC cells to anti-PD-1-mediated Jurkat T-cell activation, promoting tumor killing through ferroptosis. Moreover, TXNRD1 inhibition through auranofin cotreatment synergized with anti-PD-1 therapy to potentiate immunotherapy-mediated ferroptosis by mediating CD8+ T-cell infiltration and downregulating PD-L1 expression. Our findings indicate that targeting TXNRD1 is a promising therapeutic strategy for improving immunotherapy outcomes in patients with HNSCC.


Asunto(s)
Auranofina , Antígeno B7-H1 , Ferroptosis , Neoplasias de Cabeza y Cuello , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Ferroptosis/efectos de los fármacos , Auranofina/farmacología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Phytomedicine ; 128: 155317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537439

RESUMEN

BACKGROUND: Sorafenib (Sora), a multi-target tyrosine kinase inhibitor, is widely recognized as a standard chemotherapy treatment for advanced hepatocellular carcinoma (HCC). However, drug resistance mechanisms hinder its anticancer efficacy. Derived from Withania somnifera, Withaferin A (WA) exhibits remarkable anti-tumor properties as a natural bioactive compound. This study aimed to examine the mechanisms that underlie the impacts of Sora and WA co-treatment on HCC. METHODS: Cell proliferation was evaluated through colony formation and MTT assays. Flow cytometry was employed to determine cellular apoptosis and reactive oxygen species (ROS) levels. The evaluation of apoptosis-related protein levels, DNA damage, and endoplasmic reticulum stress was conducte utilizing IHC staining and western blotting. Moreover, the caspase inhibitor Z-VAD-FMK, ATF4 siRNA, ROS scavenger N-acetyl cysteine (NAC), and TrxR1 shRNA were used to elucidate the underlying signaling pathways. To validate the antitumor effects of Sora/WA co-treatment, in vivo experiments were ultimately executed using Huh7 xenografts. RESULTS: Sora/WA co-treatment demonstrated significant synergistic antitumor impacts both in vivo and in vitro. Mechanistically, the enhanced antitumor impact of Sora by WA was achieved through the inhibition of TrxR1 activity, resulting in ROS accumulation. Moreover, ROS generation induced the activation of DNA damage and endoplasmic reticulum (ER) stress pathways, eventually triggering cellular apoptosis. Pre-treatment with the antioxidant NAC significantly inhibited ROS generation, ER stress, DNA damage, and apoptosis induced by Sora/WA co-treatment. Additionally, the inhibition of ATF4 by small interfering RNA (siRNA) attenuated Sora/WA co-treatment-induced apoptosis. In vivo, Sora/WA co-treatment significantly suppressed tumor growth in HCC xenograft models and decreased TrxR1 activity in tumor tissues. CONCLUSION: Our study suggests that WA synergistically enhances the antitumor effect of Sora, offering promising implications for evolving treatment approaches for HCC.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Daño del ADN , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas , Ratones Desnudos , Especies Reactivas de Oxígeno , Sorafenib , Witanólidos , Witanólidos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Daño del ADN/efectos de los fármacos , Sorafenib/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Tiorredoxina Reductasa 1/metabolismo , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Transcripción Activador 4/metabolismo
5.
Ann Anat ; 254: 152260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521364

RESUMEN

BACKGROUND: Oxidative stress plays a crucial role in the pathogenesis of many skeletal diseases by inducing osteocyte death. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of various antioxidant gene expressions through antioxidant response element (ARE) against cellular oxidative stress and can be induced by various stimulants, including the phytochemicals methysticin (MET) and L-sulforaphane (SFN). This study aimed to establish an osteocyte in vitro model to investigate the pharmacological effects of MET and SFN on the Nrf2/ARE pathway. METHODS: MLO-Y4 murine osteocytes and the stably transduced MLO-Y4-SIN-lenti-ARE reporter gene cell line were used. MET and SFN were used as Nrf2 inducers. The cytotoxicity of MET, SFN, and hydrogen peroxide (H2O2) was evaluated using the CytoTox-Glo™ Assay. Time- and dose-dependent ARE induction was examined by Monoluciferase Assay. The mRNA and protein expressions of Nrf2 target markers, such as heme-oxygenase 1 (Ho-1), NADPH quinone dehydrogenase 1 (Nqo1), and thioredoxin reductase 1 (Txnrd1), were detected by RT-qPCR, Western Blot, and immunofluorescence staining, respectively. Osteogenesis markers, osteopontin, and osteocalcin were compared with and without treatment by immunofluorescence staining. RESULTS: The experimental data showed that MET and SFN induced ARE activity in a time- and dose-dependent manner and increased the mRNA and protein expression of antioxidant markers compared to vehicle-treated controls. The protein expression of osteopontin and osteocalcin in the samples treated with SFN were significantly higher than without treatment, and the number of cell death treated with SFN was significantly lower than without treatment under H2O2-induced stress conditions. CONCLUSIONS: Nrf2 inducers MET and SFN increased the mRNA expression of antioxidant genes through the Nrf2/ARE pathway in osteocytes. Notably, SFN increased the protein expression of osteocyte-associated osteogenic markers and suppressed cell death under H2O2-induced stress condition. Thus, Nrf2 stimulators can exert stress-relieving and osteogenic effects on osteocytes.


Asunto(s)
Elementos de Respuesta Antioxidante , Isotiocianatos , Factor 2 Relacionado con NF-E2 , Osteocitos , Transducción de Señal , Sulfóxidos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Isotiocianatos/farmacología , Sulfóxidos/farmacología , Elementos de Respuesta Antioxidante/efectos de los fármacos , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Antioxidantes/farmacología , Osteopontina/metabolismo , Osteopontina/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Tiorredoxina Reductasa 1/metabolismo
6.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164168

RESUMEN

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Asunto(s)
Neoplasias Pulmonares , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Apoptosis , Línea Celular Tumoral , Muerte Celular
7.
Nat Aging ; 4(2): 185-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267705

RESUMEN

Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.


Asunto(s)
Transducción de Señal , Tiorredoxina Reductasa 1 , Animales , Ratones , Senescencia Celular/genética , Inmunidad Innata/genética , Inflamación/genética , Nucleotidiltransferasas/genética , Tiorredoxina Reductasa 1/metabolismo
8.
Redox Biol ; 70: 103050, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277963

RESUMEN

Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.


Asunto(s)
Tiorredoxina Reductasa 1 , Antioxidantes/metabolismo , Cinética , Oxidación-Reducción , Selenocisteína/metabolismo , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Humanos
9.
Mol Neurobiol ; 61(2): 1044-1060, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37676391

RESUMEN

Ferroptosis is a distinct peroxidation-driven form of cell death tightly involved in subarachnoid hemorrhage (SAH). This study delved into the mechanism of deferoxamine (DFO, an iron chelator) in SAH-induced ferroptosis and inflammation. SAH mouse models were established by endovascular perforation method and injected intraperitoneally with DFO, or intraventricularly injected with the Nrf2 pathway inhibitor ML385 before SAH, followed by detection of neurological function, blood-brain barrier (BBB) permeability, and brain water content. Apoptotic level of hippocampal neurons, symbolic changes of ferroptosis, and levels of pro-inflammatory cytokines were assessed using TUNEL staining, Western blotting, colorimetry, and ELISA. The localization and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) were detected. HT22 cells were exposed to Hemin as in vitro SAH models and treated with FIN56 to induce ferroptosis, followed by evaluation of the effects of DFO on FIN56-treated HT22 cells. The regulation of Nrf2 in thioredoxin reductase 1 (TXNRD1) was analyzed by co-immunoprecipitation and Western blotting. Moreover, HT22 cells were treated with DFO and ML385 to identify the role of DFO in the Nrf2/TXNRD1 axis. DFO extenuated brain injury, and ferroptosis and inflammation in hippocampal neurons of SAH mice. Nrf2 localized at the CA1 region of hippocampal neurons, and DFO stimulated nuclear translocation of Nrf2 protein in hippocampal neurons of SAH mice. Additionally, DFO inhibited ferroptosis and inflammatory responses in FIN56-induced HT22 cells. Nrf2 positively regulated TXNRD1 protein expression. Indeed, DFO alleviated FIN56-induced ferroptosis and inflammation via activation of the Nrf2/TXNRD1 axis. DFO alleviated neurological deficits, BBB disruption, brain edema, and brain injury in mice after SAH by inhibiting hippocampal neuron ferroptosis via the Nrf2/TXNRD1 axis. DFO ameliorates SAH-induced ferroptosis and inflammatory responses in hippocampal neurons by activating the Nrf2/TXNRD1 axis.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Deferoxamina , Tiorredoxina Reductasa 1/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Inflamación/tratamiento farmacológico
10.
Neoplasma ; 70(5): 633-644, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38053374

RESUMEN

Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Tiorredoxina Reductasa 1 , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2 , Neoplasias Nasofaríngeas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tolerancia a Radiación , Línea Celular Tumoral
11.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003379

RESUMEN

Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.


Asunto(s)
Apoptosis , Proteómica , Humanos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Queratinocitos/metabolismo , Luz , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 1/metabolismo
12.
Org Biomol Chem ; 21(48): 9630-9639, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38018884

RESUMEN

Coumarin and its derivatives have emerged as promising candidates in drug discovery. While the activity of coumarins as anticancer agents with different biological targets has been thoroughly investigated, reports on the potential of coumarins in the inhibition of thioredoxin reductase (TrxR) are still scarce. We focus on the design and synthesis of 3,4-unsubstituted coumarin analogues with systematic incorporation of substituents at the fifth to eighth positions of coumarin, which allowed definitive structure-activity relationship analysis to be conducted. In the obtained library, the substitution at the sixth position of the coumarin core with an aromatic or a cyclopropyl group turned out to be more activity enhancing. A bulky aromatic substituent with a large CF3 group encourages ligand alignment in a manner that enables covalent bond formation with the catalytic TrxR1 residue, according to the docking results. Our observations indicate that the activity of a series of coumarin analogues towards thioredoxin reductase 1 (TrxR1) is dependent on the nature (size and electronic effect) and the position of the substituent and more importantly - the accessibility of the Michael acceptor functionality. Several compounds (with at least 90% inhibition of the rat TrxR1 enzyme at 200 µM concentration) were further examined in in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines. The analogue 6-(4-(trifluoromethyl)phenyl)-2H-chromen-2-one was selected as the lead compound for further optimization. The results presented herein pave the way for the development of the next generation of coumarin-based TrxR1 inhibitors, where modification of the Michael acceptor moiety and incorporation of different aryl substituents at the sixth position of the coumarin core are planned.


Asunto(s)
Antineoplásicos , Neoplasias , Ratas , Animales , Tiorredoxina Reductasa 1/metabolismo , Antineoplásicos/química , Línea Celular , Neoplasias/tratamiento farmacológico , Cumarinas/farmacología , Cumarinas/química , Relación Estructura-Actividad
13.
Redox Biol ; 63: 102711, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148740

RESUMEN

Excess osteoclast activity is found in many bone metabolic diseases, and inhibiting osteoclast differentiation has proven to be an effective strategy. Here, we revealed that osteoclast precursors (pre-OCs) were more susceptible to thioredoxin reductase 1 (TXNRD1) inhibitors than bone marrow-derived monocytes (BMDMs) during receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis. Mechanistically, we found that nuclear factor of activated T-cells 1 (NFATc1) upregulated solute carrier family 7 member 11 (SLC7A11) expression through transcriptional regulation during RANKL-induced osteoclastogenesis. During TXNRD1 inhibition, the rate of intracellular disulfide reduction is significantly reduced. Increased cystine transport leads to increased cystine accumulation, which leads to increased cellular disulfide stress and disulfidptosis. We further demonstrated that SLC7A11 inhibitors and treatments that prevent disulphide accumulation could rescue this type of cell death, but not the ferroptosis inhibitors (DFO, Ferro-1), the ROS scavengers (Trolox, Tempol), the apoptosis inhibitor (Z-VAD), the necroptosis inhibitor (Nec-1), or the autophagy inhibitor (CQ). An in vivo study indicated that TXNRD1 inhibitors increased bone cystine content, reduced the number of osteoclasts, and alleviated bone loss in an ovariectomized (OVX) mouse model. Together, our findings demonstrate that NFATc1-mediated upregulation of SLC7A11 induces targetable metabolic sensitivity to TXNRD1 inhibitors during osteoclast differentiation. Moreover, we innovatively suggest that TXNRD1 inhibitors, a classic drug for osteoclast-related diseases, selectively kill pre-OCs by inducing intracellular cystine accumulation and subsequent disulfidptosis.


Asunto(s)
Osteoclastos , Tiorredoxina Reductasa 1 , Ratones , Animales , Osteoclastos/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Cistina , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Regulación de la Expresión Génica , Diferenciación Celular/genética
14.
Biochem Biophys Res Commun ; 650: 117-122, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780763

RESUMEN

Thioredoxin reductase 1 (TrxR1) is considered as an important anti-cancer drug target, inhibition of which can induce reactive oxygen species (ROS)-mediated apoptosis of human cancer cells. Here, we developed and optimized a high-throughput screening (HTS) assay based on enzyme kinetics for the discovery of TrxR1 inhibitors. By utilizing this assay, we performed a HTS for 2500 compounds from an in-house library against TrxR1. We found that a vaccine preservative, thimerosal, strongly inhibited TrxR1 in a competitive and reversible manner with an IC50 of 24.08 ± 0.86 nM. In addition, we determined that thiomersal has an inhibitory effect on the proliferation of A549 lung cancer cell line, with a GI50 of 6.81 ± 0.09 µM, slightly more potent than auranofin (GI50 = 11.85 ± 0.56 µM). Furthermore, we showed by flow cytometer that thimerosal effectively increased the content of ROS in A549 cells. Therefore, our work provided a high-throughput screening assay to quickly and effectively discover TrxR1 inhibitors, identifying thiomersal as a novel TrxR1 inhibitor and chemical probe.


Asunto(s)
Neoplasias Pulmonares , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/metabolismo , Timerosal , Ensayos Analíticos de Alto Rendimiento , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Línea Celular Tumoral
15.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119436, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754152

RESUMEN

Atherosclerosis is the main cause of cardiovascular disease, and fluid shear stress is a key factor regulating its occurrence and development. Oscillatory shear stress (Oss) is an important pro-atherosclerosis factor. Oss mainly occurs in areas that are susceptible to atherosclerosis, but the exact mechanism of atherosclerosis induction remains unclear. Therefore, starting from the atheroprone phenotype that Oss stimulates abnormal vascular endothelial cell proliferation, this study aimed to reveal the underlying mechanism of Oss-induced atherosclerosis formation and to identify new targets for the prevention and treatment of atherosclerosis. In this study, the gene encoding thioredoxin reductase 1 (TXNRD1), which is closely related to atherosclerosis development and cell proliferation, was screened by analyzing the transcriptome sequencing data of static and Oss-treated human aortic endothelial cells (HAECs). Moreover, this study successfully verified that TXNRD1 mRNA and protein were significantly upregulated in Oss-treated HAECs. Oss significantly promoted the proliferation, migration, and tube formation of HAECs, whereas TXNRD1 knockdown impaired the proliferation, migration, and tube formation of Oss-treated HAECs, and this process was mainly achieved via activation of the apoptosis pathway. To further clarify whether Oss-sensitive TXNRD1 affects the apoptosis rate and proliferative ability of HAECs by regulating the endothelial nitric oxide synthase (eNOS) pathway, we used NG-nitro-L-arginine methyl ester (L-NAME) to inhibit eNOS activity and nitric oxide (NO) production. L-NAME significantly reversed the promoting effect of TXNRD1 knockdown on Oss-treated HAEC apoptosis, and it also abolished the inhibitory effect of TXNRD1 knockdown on the proliferation and S + G2 phase cell mass of Oss-treated HAECs. In conclusion, this study showed that TXNRD1 knockdown inhibited the proliferation of HAECs exposed to Oss by activating the eNOS/apoptosis pathway, revealing that TXNRD1 is involved in the dysregulation of Oss-induced endothelial cell proliferation. These findings provide new directions and insights into the prevention and treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Óxido Nítrico Sintasa de Tipo III , Humanos , Apoptosis/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proliferación Celular/genética , Células Endoteliales/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tiorredoxina Reductasa 1/metabolismo
16.
Biol Trace Elem Res ; 201(1): 139-148, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35066751

RESUMEN

Cadmium (Cd) as a ubiquitous toxic heavy metal in the environment, causes severe hazards to human health, such as cellular stress and organ injury. Selenium (Se) was reported to reduce Cd toxicity and the mechanisms have been intensively studied so far. However, it is not yet crystal clear whether the protective effect of Se against Cd-induced cytotoxicity is related to selenoproteins in nerve cells or not. In this study, we found that Cd inhibited selenoprotein thioredoxin reductase 1 (TrxR1; TXNRD1) and decreased the expression level of TrxR1, resulting in cellular oxidative stress, and Se supplements ameliorated Cd-induced cytotoxicity in SH-SY5Y cells. Mechanistically, the detoxification of Se against Cd is attributed to the increase of the cellular TrxR activity and upregulated TrxR1 protein level, culminating in strengthened antioxidant capacity. Results showed that Se supplements attenuated the ROS production and apoptosis in SH-SY5Y cells, and significantly mitigated Cd-induced SH-SY5Y cell death. This study may be a valuable reference for shedding light on the mechanism of Cd-induced cytotoxicity and the role of TrxR1 in Se-mitigated cytotoxicity of Cd in neuroblast cells, which may be helpful for understanding the therapeutic potential of Cd and Se in treating or preventing neurodegenerative diseases, like Alzheimer's disease (AD) and Parkinson's disease (PD).


Asunto(s)
Neuroblastoma , Selenio , Humanos , Cadmio/toxicidad , Cadmio/metabolismo , Regulación hacia Abajo , Especies Reactivas de Oxígeno/metabolismo , Ácido Selenioso/metabolismo , Selenio/farmacología , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Regulación hacia Arriba
17.
Drug Chem Toxicol ; 46(6): 1108-1115, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36314079

RESUMEN

Oxidative stress plays an important role in the pathology of thyroid disorders. This study examined the effect of gallic acid (GA) on the oxidative status and expression of liver antioxidant genes including thioredoxin (TXN1 & TXN2) and thioredoxin reductase1 (TXNRd1) in hypo- and hyperthyroid rat models. Forty-nine male Wistar rats were randomly assigned into seven groups as follows: control group, hypothyroid and hyperthyroid groups respectively induced by propylthiouracil and levothyroxine, hypo- and hyper thyroid-treated groups (where the groups were separately treated with 50 and 100 mg/kg of GA daily, orally). The levels of thyroid hormones and serum oxidative stress markers were evaluated after 5 weeks. The relative expression of TXN1,2 and TXNRd1 genes was measured via real-time qRT-PCR. The mean level of total antioxidant capacity (TAC), malondialdehyde, and uric acid index diminished in the hypothyroid group. Increased TAC reached almost the level of control in hypothyroid groups treated with GA. Elevation of thiol index in the hypothyroid group was observed (p < 0.01), which diminished to the control level after GA treatment. The relative expression of TXN1, TXNRd1, and TXN2 genes in the hypothyroid and hyperthyroid groups significantly increased compared to the control group (p ≥ 0.05), but in the groups treated with GA, the expression of these genes declined significantly (p ≥ 0.05). Our results indicated GA can affect the expression of TXN system genes in the rat liver. Also, the results suggest GA has a more positive effect on modulating serum oxidative parameters in hypothyroid rat models than in hyperthyroid.


Asunto(s)
Hipertiroidismo , Hipotiroidismo , Ratas , Masculino , Animales , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo , Antioxidantes/metabolismo , Ácido Gálico/farmacología , Ratas Wistar , Hipertiroidismo/inducido químicamente , Hipertiroidismo/tratamiento farmacológico , Hipertiroidismo/genética , Hipotiroidismo/inducido químicamente , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/genética , Estrés Oxidativo , Factores Inmunológicos , Tiorredoxinas/genética , Tiorredoxinas/toxicidad , Tiorredoxinas/metabolismo
18.
Oxid Med Cell Longev ; 2022: 7067623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578523

RESUMEN

Chronic obstructive pulmonary disease (COPD), a small airway disease, is regarded as a metabolic disorder. To further uncover the metabolic profile of COPD patients, it is necessary to identify metabolism-related differential genes in small airway epithelium (SAE) of COPD. Metabolism-related differential genes in SAE between COPD patients and nonsmokers were screened from GSE128708 and GSE20257 datasets. KEGG, GO, and PPI analyses were performed to evaluate the pathway enrichment, term enrichment, and protein interaction of candidate metabolism-related differential genes, respectively. RT-PCR was used to verify the mRNA expression of the top ten differential genes. Western blotting was used to evaluate the protein expression of TXNRD1. TXNRD1 inhibitor auranofin (AUR) was used to assess the impact of TXNRD1 on oxidative stress and inflammation induced by cigarette smoke extraction (CSE). Twenty-four metabolism-related differential genes were selected. ALDH3A1, AKR1C3, CYP1A1, AKC1C1, CPY1B1, and TXNRD1 in the top ten genes were significantly upregulated after CSE simulation for 24 h in human bronchial epithelial (16HBE) cells. Among them, CYP1A1 and TXNRD1 also have a significant upregulation in primary SAE after simulation of CSE for 24 h. The overexpression of protein TXNRD1 has also been detected in 16HBE cells, primary SAE stimulated with CSE, and mouse lung exposed to cigarette smoke (CS). Additionally, inhibition of TXNRD1 with 0.1 µM AUR alleviated the expression of IL-6 and reactive oxygen species (ROS) induced by CSE by activating the Nrf2/HO-1 pathway in 16HBE cells. This study identified twenty-four metabolism-related differential genes associated with COPD. TXNRD1 might participate in the oxidative stress and inflammation induced by CS by regulating the activation of the Nrf2/HO-1 pathway.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Animales , Ratones , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fumar Cigarrillos/efectos adversos , Citocromo P-450 CYP1A1/metabolismo , Línea Celular , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Inflamación/genética , Inflamación/metabolismo , Estrés Oxidativo/genética , Nicotiana , Epitelio/metabolismo , Células Epiteliales/metabolismo , Tiorredoxina Reductasa 1/metabolismo
19.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555352

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor. Recently, agents increasing the level of oxidative stress have been proposed as anticancer drugs. However, their efficacy may be lowered by the cytoprotective activity of antioxidant enzymes, often upregulated in neoplastic cells. Here, we assessed the mRNA and protein expression of thioredoxin reductase 1 (TrxR1), a master regulator of cellular redox homeostasis, in GBM and non-tumor brain tissues. Next, we examined the influence of an inhibitor of TrxR1, auranofin (AF), alone or in combination with a prooxidant menadione (MEN), on growth of GBM cell lines, patient-derived GBM cells and normal human astrocytes. We detected considerable amount of TrxR1 in the majority of GBM tissues. Treatment with AF decreased viability of GBM cells and their potential to form colonies and neurospheres. Moreover, it increased the intracellular level of reactive oxygen species (ROS). Pre-treatment with ROS scavenger prevented the AF-induced cell death, pointing to the important role of ROS in the reduction of cell viability. The cytotoxic effect of AF was potentiated by treatment with MEN. In conclusion, our results identify TrxR1 as an attractive drug target and highlights AF as an off-patent drug candidate in GBM therapy.


Asunto(s)
Glioblastoma , Vitamina K 3 , Humanos , Vitamina K 3/farmacología , Especies Reactivas de Oxígeno/metabolismo , Auranofina/farmacología , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Muerte Celular , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo , Supervivencia Celular
20.
Redox Biol ; 56: 102446, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057161

RESUMEN

AIMS: Metabolic switching during heart development contributes to postnatal cardiomyocyte (CM) cell cycle exit and loss of regenerative capacity in the mammalian heart. Metabolic control has potential for developing effective CM proliferation strategies. We sought to determine whether lactate dehydrogenase A (LDHA) regulated CM proliferation by inducing metabolic reprogramming. METHODS AND RESULTS: LDHA expression was high in P1 hearts and significantly decreased during postnatal heart development. CM-specific LDHA knockout mice were generated using CRISPR/Cas9 technology. CM-specific LDHA knockout inhibited CM proliferation, leading to worse cardiac function and a lower survival rate in the neonatal apical resection model. In contrast, CM-specific overexpression of LDHA promoted CM proliferation and cardiac repair post-MI. The α-MHC-H2B-mCh/CAG-eGFP-anillin system was used to confirm the proliferative effect triggered by LDHA on P7 CMs and adult hearts. Metabolomics, proteomics and Co-IP experiments indicated that LDHA-mediated succinyl coenzyme A reduction inhibited succinylation-dependent ubiquitination of thioredoxin reductase 1 (Txnrd1), which alleviated ROS and thereby promoted CM proliferation. In addition, flow cytometry and western blotting showed that LDHA-driven lactate production created a beneficial cardiac regenerative microenvironment by inducing M2 macrophage polarization. CONCLUSIONS: LDHA-mediated metabolic reprogramming promoted CM proliferation by alleviating ROS and inducing M2 macrophage polarization, indicating that LDHA might be an effective target for promoting cardiac repair post-MI.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Proliferación Celular , Coenzima A/farmacología , Lactato Deshidrogenasa 5 , Lactatos/metabolismo , Lactatos/farmacología , Macrófagos/metabolismo , Mamíferos , Ratones , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...