Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Ophthalmic Genet ; 44(3): 246-252, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994723

RESUMEN

BACKGROUND: Primary open-angle glaucoma (POAG), the world's main cause of irreversible blindness, is an asymptomatic and neurodegenerative disease of multifactorial etiology with ethnic and geographic disparities. Multiethnic genome-wide association studies (GWAS) identified single nucleotide variants (SNVs) in ATXN2, FOXC1, and TXNRD2 loci as risk factors for POAG pathophysiology and/or endophenotypes. The aim of this case-control study was to investigate the association of the variants rs7137828 (ATXN2), rs2745572 (FOXC1), and rs35934224 (TXNRD2), as risk factors for POAG development, additionally to rs7137828 association with glaucoma clinical parameters in a Brazilian cohort from the Southeast and South regions. METHODS: This investigation comprised 506 cases and 501 controls. Variants rs2745572 and rs35934224 were genotyped through TaqMan® assays and validated by Sanger sequencing. Variant rs7137828 was genotyped exclusively by Sanger sequencing. RESULTS: The primary research outcome revealed that the variant rs7137828 (ATXN2) was associated with an increased risk for the development of POAG in the presence of the TT genotype compared to the CC genotype (p = 0.006; Odds Ratio [OR] = 1.717; Confidence Interval [CI] 95% = 1.169-2.535). There was no significant association of rs2745572 and rs35934224 genotypes with POAG. The CT genotype of the rs7137828 was associated with the vertical cup-to-disk ratio (VCDR) (p = .023) but not with the age at diagnosis or the mean deviation. CONCLUSION: Our data indicate the rs7137828 associated with increased risk for the development of POAG and VCDR in a Brazilian cohort. If validated in additional populations, these findings may enable the development of relevant strategies for early diagnosis of glaucoma in the future.


Asunto(s)
Glaucoma de Ángulo Abierto , Enfermedades Neurodegenerativas , Humanos , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/diagnóstico , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles , Brasil/epidemiología , Genotipo , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Transcripción Forkhead/genética , Ataxina-2/genética , Tiorredoxina Reductasa 2/genética
2.
Ophthalmology ; 130(7): 756-763, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36813040

RESUMEN

PURPOSE: Genetic variants in regions that include the mitochondrial genes thioredoxin reductase 2 (TXNRD2) and malic enzyme 3 (ME3) are associated with primary open-angle glaucoma (POAG) in genome-wide association studies (GWASs). To assess their clinical impact, we investigated whether TXNRD2 and ME3 genetic risk scores (GRSs) are associated with specific glaucoma phenotypes. DESIGN: Cross-sectional study. PARTICIPANTS: A total of 2617 patients with POAG and 2634 control participants from the National Eye Institute Glaucoma Human Genetics Collaboration Hereditable Overall Operational Database (NEIGHBORHOOD) consortium. METHODS: All POAG-associated single nucleotide polymorphisms (SNPs) in the TXNRD2 and ME3 loci were identified using GWAS data (P < 0.05). Of these, 20 TXNRD2 and 24 ME3 SNPs were selected after adjusting for linkage disequilibrium. The correlation between SNP effect size and gene expression levels was investigated using the Gene-Tissue Expression database. Genetic risk scores were constructed for each individual using the unweighted sum of TXNRD2, ME3, and TXNRD2 + ME3 combined risk alleles. Age- and sex-adjusted odds ratios (ORs) for POAG diagnosis were calculated per decile for each GRS. Additionally, the clinical features of patients with POAG in the top 1%, 5%, and 10% of each GRS were compared with those in the bottom 1%, 5%, and 10%, respectively. MAIN OUTCOME MEASURES: Primary open-angle glaucoma OR per GRS decile, maximum treated intraocular pressure (IOP), and prevalence of paracentral visual field loss among patients with POAG with high versus low GRSs. RESULTS: A larger SNP effect size strongly correlated with higher TXNRD2 and lower ME3 expression levels (r = 0.95 and r = -0.97, respectively; P < 0.05 for both). Individuals in decile 10 of the TXNRD2 + ME3 GRS had the highest odds of POAG diagnosis (OR, 1.79 compared with decile 1; 95% confidence interval, 1.39-2.30; P < 0.001). Patients with POAG in the top 1% of the TXNRD2 GRS showed higher mean maximum treated IOP compared with the bottom 1% (19.9 mmHg vs. 15.6 mmHg; adjusted P = 0.03). Patients with POAG in the top 1% of the ME3 and TXNRD2 + ME3 GRS showed a higher prevalence of paracentral field loss than the bottom 1% (72.7% vs. 14.3% for ME3 GRS and 88.9% vs. 33.3% for TXNRD2+ME3 GRS; adjusted P = 0.03 for both). CONCLUSIONS: Patients with POAG with higher TXNRD2 and ME3 GRSs showed higher treated IOP and a greater prevalence of paracentral field loss. Functional studies exploring how these variants impact mitochondrial function in patients with glaucoma are warranted. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto , Humanos , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/genética , Predisposición Genética a la Enfermedad , Estudios Transversales , Fenotipo , Presión Intraocular , Factores de Riesgo , Tiorredoxina Reductasa 2/genética
4.
Commun Biol ; 5(1): 467, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577894

RESUMEN

Mitochondrial dysfunction is a key driver of diabetes and other metabolic diseases. Mitochondrial redox state is highly impactful to metabolic function but the mechanism driving this is unclear. We generated a transgenic mouse which overexpressed the redox enzyme Thioredoxin Reductase 2 (TrxR2), the rate limiting enzyme in the mitochondrial thioredoxin system. We found augmentation of TrxR2 to enhance metabolism in mice under a normal diet and to increase resistance to high-fat diet induced metabolic dysfunction by both increasing glucose tolerance and decreasing fat deposition. We show this to be caused by increased mitochondrial function which is driven at least in part by enhancements to the tricarboxylic acid cycle and electron transport chain function. Our findings demonstrate a role for TrxR2 and mitochondrial thioredoxin as metabolic regulators and show a critical role for redox enzymes in controlling functionality of key mitochondrial metabolic systems.


Asunto(s)
Enfermedades Metabólicas , Tiorredoxina Reductasa 2 , Animales , Ratones , Ciclo del Ácido Cítrico/fisiología , Transporte de Electrón/fisiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Tiorredoxina Reductasa 2/genética , Tiorredoxina Reductasa 2/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
Eur J Ophthalmol ; 32(4): 2249-2258, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34461764

RESUMEN

OBJECTIVE: Previous genome-wide studies have demonstrated significant pathogenic association between variants rs35934224 within TXNRD2 and rs6478746 near LMX1B in primary open-angle glaucoma. We investigated the association between these variants in primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG) patients of Saudi origin. METHODS: In a case-control study, DNA samples from 249 controls (135 men and 114 women), 100 PACG cases (44 men and 56 women), and 95 PXG cases (61 men and 34 women) were genotyped by TaqMan® based real-time PCR. Statistical tests were performed to evaluate genetic association with glaucoma types and related clinical indices. RESULTS: The allele frequencies of rs35934224 and rs6478746 did not show significant variation in PACG and PXG than controls, except that the rs35934224[T] allele was found to be significantly low among PXG women (0.10) as compared to controls (0.21) (odds ratio = 0.38, 95% confidence interval = 0.16-0.94, p = 0.024). Rs35934224 genotypes showed a nominal-to-borderline protective association with PACG and PXG among women in different genetic models. However, except for the over-dominant model in PACG (p = 0.0095), none of the effects survived Bonferroni's correction (p < 0.01). Rs6478746 showed no significant genotype or allelic association with PACG and PXG. Regression analysis showed no influence on disease outcome, and neither showed any correlation with intraocular pressure and cup/disk ratio in both PACG and PXG. CONCLUSIONS: Variants rs35934224 in TXNRD2 and rs6478746 near LMX1B are not associated with PACG and PXG in the Saudi cohort, but rs35934224 may confer modest protection among women. Further population-based studies are needed to validate these results.


Asunto(s)
Síndrome de Exfoliación , Glaucoma de Ángulo Cerrado , Glaucoma de Ángulo Abierto , Proteínas con Homeodominio LIM , Tiorredoxina Reductasa 2 , Factores de Transcripción , Estudios de Casos y Controles , Síndrome de Exfoliación/genética , Femenino , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Cerrado/genética , Glaucoma de Ángulo Abierto/genética , Humanos , Presión Intraocular , Proteínas con Homeodominio LIM/genética , Masculino , Tiorredoxina Reductasa 2/genética , Factores de Transcripción/genética
7.
Arq Bras Oftalmol ; 85(2): 115-119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34431894

RESUMEN

PURPOSE: To investigate the association of the single-nucleotide polymorphism rs35934224 in the TXNRD2 gene with primary open-angle glaucoma in a Brazilian population. METHODS: This was a cross-sectional study conducted to verify the association between the rs35934224 TXNRD2 (thioredoxin reductase 2) and primary open-angle glaucoma in a population from the Northeast region of Brazil. A total of 184 individuals were enrolled, including 94 with primary open-angle glaucoma (45 men and 49 women) and 94 controls (40 men and 54 women) from the Recife Eye Institute. RESULTS: The mean age was 68.85 years for the patients with glaucoma and 68.55 years for the controls. Genomic DNA was isolated using commercially available kits, and single-nucleotide polymorphism was detected with real-time polymerase chain reaction using TaqMan probes. The studied population was in Hardy-Weinberg equilibrium. The CT genotype was associated with protection against primary open-angle glaucoma (p=0.022). CONCLUSION: Our data suggest an association between TXNRD2 gene polymorphism (rs35934224) with primary open-angle glaucoma in an admixed Brazilian po pulation. This is the first study to investigate this single-nucleo tide polymorphism in Latin American individuals with primary open-angle glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Anciano , Femenino , Humanos , Masculino , Brasil , Estudios Transversales , Predisposición Genética a la Enfermedad , Genotipo , Glaucoma de Ángulo Abierto/genética , Polimorfismo de Nucleótido Simple , Tiorredoxina Reductasa 2/genética , Tomografía Computarizada por Rayos X
8.
J Exp Med ; 218(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34269789

RESUMEN

Studying latent Mycobacterium tuberculosis (Mtb) infection has been limited by the lack of a suitable mouse model. We discovered that transient depletion of biotin protein ligase (BPL) and thioredoxin reductase (TrxB2) results in latent infections during which Mtb cannot be detected but that relapse in a subset of mice. The immune requirements for Mtb control during latency, and the frequency of relapse, were strikingly different depending on how latency was established. TrxB2 depletion resulted in a latent infection that required adaptive immunity for control and reactivated with high frequency, whereas latent infection after BPL depletion was independent of adaptive immunity and rarely reactivated. We identified immune signatures of T cells indicative of relapse and demonstrated that BCG vaccination failed to protect mice from TB relapse. These reproducible genetic latency models allow investigation of the host immunological determinants that control the latent state and offer opportunities to evaluate therapeutic strategies in settings that mimic aspects of latency and TB relapse in humans.


Asunto(s)
Inmunidad Adaptativa/fisiología , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/genética , Tuberculosis/inmunología , Animales , Antituberculosos/farmacología , Vacuna BCG/farmacología , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica , Tuberculosis Latente/etiología , Tuberculosis Latente/prevención & control , Pulmón/efectos de los fármacos , Pulmón/microbiología , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/patogenicidad , Reproducibilidad de los Resultados , Tiorredoxina Reductasa 2/genética , Tiorredoxina Reductasa 2/metabolismo , Tuberculosis/microbiología , Tuberculosis/patología
9.
PLoS Pathog ; 17(2): e1009293, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534803

RESUMEN

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.


Asunto(s)
Retículo Endoplásmico/parasitología , Proteínas del Choque Térmico HSP40/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Tiorredoxina Reductasa 2/metabolismo , Antimaláricos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Chaperonas Moleculares , Oxidación-Reducción , Estrés Oxidativo , Pliegue de Proteína , Proteínas Protozoarias/genética , Tiorredoxina Reductasa 2/genética
10.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579817

RESUMEN

The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.


Asunto(s)
Endotelio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Tiorredoxina Reductasa 2/metabolismo , Animales , Riñón/irrigación sanguínea , Riñón/metabolismo , Ratones , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Tiorredoxina Reductasa 2/genética , Remodelación Vascular
11.
Acta Biochim Biophys Sin (Shanghai) ; 53(2): 189-200, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33332541

RESUMEN

miR-195-5p has been widely explored in various cancers and is considered as a tumor-suppressive microRNA. However, its roles in human lung cancer pathogenesis are not fully elucidated. In this study, we aimed to explore how miR-195-5p is involved in malignant behaviors of lung adenocarcinoma (LUAD) cells. miR-195-5p expression was examined in the tumor tissues of patients with LUAD and human LUAD cell lines including A549 and PC-9. Thioredoxin reductase 2 (TrxR2) was predicted to be an mRNA target of miR-195-5p using online tools and validated by the Dual-Luciferase Reporter Assay. Lentivirus infection was used for gene overexpression, while gene knockdown was achieved by RNA interference. Cell proliferation was determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine methods, and cell migration and invasion were assayed with transwell experiments. Cell apoptosis was determined by annexin V staining-based flow cytometry. The antitumor effects of miR-195-5p were also evaluated in nude mice xenografted with A549 cells. We found that miR-195-5p was lowly expressed in human LUAD cells, and its overexpression markedly suppressed cell proliferation, migration, and invasion and increased the apoptosis of LUAD cells in vitro. TrxR2 knockdown phenocopied the tumor-suppressive effects of miR-195-5p overexpression, while simultaneous TrxR2 overexpression remarkably reversed the effects of miR-195-5p overexpression on malignant behaviors of A549 and PC-9 cells. Additionally, miR-195-5p overexpression inhibited the growth of xenografted A549 tumor in nude mice. Our work verified that miR-195-5p exerts tumor-suppressive functions in LUAD cells through targeting TrxR2 and suggested that the miR-195-5p/TrxR2 axis is a potential biomarker for LUAD therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Genes Supresores de Tumor , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Tiorredoxina Reductasa 2/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Tiorredoxina Reductasa 2/genética
12.
Aging (Albany NY) ; 12(21): 21854-21873, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154194

RESUMEN

BACKGROUND: Papillary renal cell carcinoma (PRCC) accounts for 15% of all renal cell carcinomas. The molecular mechanisms of renal papillary cell carcinoma remain unclear, and treatments for advanced disease are limited. RESULT: We built the computing model as follows: Risk score = 1.806 * TPX2 - 0.355 * TXNRD2 - 0.805 * SLC6A20. The 3-year AUC of overall survival was 0.917 in the training set (147 PRCC samples) and 0.760 in the test set (142 PRCC samples). Based on the robust model, M2 macrophages showed positive correlation with risk score, while M1 macrophages were the opposite. PRCC patients with low risk score showed higher tumor mutation burden. TPX2 is a risk factor, and co-expression factors were enriched in cell proliferation and cancer-related pathways. Finally, the proliferation and invasion of PRCC cell line were decreased in the TPX2 reduced group, and the differential expression was identified. TPX2 is a potential risk biomarker which involved in cell proliferation in PRCC. CONCLUSION: We conducted a study to develop a three gene model for predicting prognosis in patients with papillary renal cell carcinoma. Our findings may provide candidate biomarkers for prognosis that have important implications for understanding the therapeutic targets of papillary renal cell carcinoma. METHOD: Gene expression matrix and clinical data were obtained from TCGA (The Cancer Genome Atlas), GSE26574, GSE2048, and GSE7023. Prognostic factors were identified using "survival" and "rbsurv" packages, and a risk score was constructed using Multivariate Cox regression analysis. The co-expression networks of the factors in model were constructed using the "WGCNA" package. The co-expression genes of factors were enriched and displayed the biological process. Based on this robust risk model, immune cells infiltration proportions and tumor mutation burdens were compared between risk groups. Subsequently, using the PRCC cell line, the role of TPX2 was determined by Cell proliferation assay, 5-Ethynyl-20-deoxyuridine assay and Transwell assay.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Proteínas de Ciclo Celular/genética , Perfilación de la Expresión Génica , Neoplasias Renales/genética , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Transcriptoma , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/terapia , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/inmunología , Neoplasias Renales/mortalidad , Neoplasias Renales/terapia , Macrófagos/inmunología , Modelos Genéticos , Invasividad Neoplásica , Fenotipo , Valor Predictivo de las Pruebas , Mapas de Interacción de Proteínas , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Tiorredoxina Reductasa 2/genética , Microambiente Tumoral
13.
Arch Toxicol ; 94(10): 3433-3447, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671444

RESUMEN

Cellular senescence contributes to tumor regression through both cell autonomous and non-autonomous mechanisms. Drugs inducing cancer cell senescence and modulating senescence-associated secretory phenotype (SASP) render advantage to the cancer treatment. Breast cancer remains the second most cause of female cancer mortality, among which triple-negative breast cancer (TNBC) has a more aggressive clinical course. Our study showed that in TNBC cell lines including MDA-MB-231 and 4T1 cells, moderate concentrations of wogonin (5, 7-dihydroxy-8-methoxy-2-phenyl-4h-1-benzopyran-4-one) (50-100 µM) not only induced permanent proliferation inhibition, but also increased P16 expression, ß-galactosidase activity, senescence-associated heterochromatin foci and SASP, which are the typical characteristics of cellular senescence. Moreover, results showed that wogonin-induced senescence was partially attributed to the reactive oxygen species (ROS) accumulation upon wogonin treatment in MDA-MB-231 cells, since elimination of ROS by N-acetylcysteine (NAC) was able to repress wogonin-induced ß-galactosidase activity. Mechanistically, wogonin reduced the expression of TXNRD2, an important antioxidant enzyme in controlling the levels of cellular ROS, by altering the histone acetylation at its regulatory region. In addition, senescent MDA-MB-231 cells induced by wogonin exhibited activated NF-κB and suppressed STAT3, which were recognized as regulators of SASP. SASP from these senescent cells suppressed tumor cell growth, promoted macrophage M1 polarization in vitro and increased immune cell infiltration in xenografted tumors in vivo. These results reveal another mechanism for the anti-breast cancer activity of wogonin by inducing cellular senescence, which suppresses tumor progression both autonomously and non-autonomously.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Senescencia Celular/efectos de los fármacos , Flavanonas/farmacología , Tiorredoxina Reductasa 2/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/metabolismo , Trasplante de Neoplasias , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
14.
Mol Vis ; 26: 378-391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32476818

RESUMEN

Purpose: Family-based genetic linkage analysis and genome-wide association studies (GWASs) have identified many genomic loci associated with primary open-angle glaucoma (POAG). Several causative genes of POAG have been intensively analyzed by sequencing in different populations. However, few investigations have been conducted on the identification of variants of coding region in the genes identified in GWASs. Therefore, further research is needed to investigate whether they harbor pathogenically relevant rare coding variants and account for the observed association. Methods: To identify the potentially disease-relevant variants (PDVs) in POAG-associated genes in Chinese patients, we applied molecular inversion probe (MIP)-based panel sequencing to analyze 26 candidate genes in 235 patients with POAG and 241 control subjects. Results: The analysis identified 82 PDVs in 66 individuals across 235 patients with POAG. By comparison, only 18 PDVs in 19 control subjects were found, indicating an enrichment of PDVs in the POAG cohort (28.1% versus 7.9%, p = 8.629e-09). Among 26 candidate genes, the prevalence rate of PDVs in five genes showed a statistically significant difference between patients and controls (33 out of 235 versus 1 out of 241, p = 4.533e-10), including ATXN2 (p = 0.0033), TXNRD2 (p = 0.0190), MYOC (p = 0.0140), FOXC1 (p = 0.0140), and CDKN2B (p = 0.0287). Furthermore, two sisters harboring a stop-loss mutation EFEMP1 p.Ter494Glu were found in the POAG cohort, and further analysis of the family strongly suggested that EFEMP1 p.Ter494Glu was a potentially disease-causing mutation for POAG. A statistically significant difference in age at diagnosis between patients with PDVs and those without PDVs was found, implying that some of the identified PDVs may have a role in promoting the early onset of POAG disease. Conclusions: The results suggest that some of the associations identified in POAG risk loci can be ascribed to rare coding variants with likely functional effects that modify POAG risk.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Glaucoma de Ángulo Abierto/genética , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Anciano , Pueblo Asiatico , Ataxina-2/genética , Estudios de Cohortes , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Proteínas del Citoesqueleto/genética , Proteínas de la Matriz Extracelular/genética , Proteínas del Ojo/genética , Femenino , Factores de Transcripción Forkhead/genética , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto/patología , Glicoproteínas/genética , Humanos , Masculino , Persona de Mediana Edad , Sondas Moleculares/genética , Mutación , Dominios Proteicos , Factores de Riesgo , Tiorredoxina Reductasa 2/genética
15.
Life Sci ; 233: 116641, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31295469

RESUMEN

Cardiomyocyte injury caused by excessive oxidative stress underlies the pathogenesis of myocardial infarction (MI), a devastating disease leading to heart failure and death. The Krüppel-like factor 9 (KLF9) is a transcriptional factor that has recently been reported to regulate oxidative stress, however, whether it is associated with cardiomyocyte injury and MI is unknown. We found that KLF9 was upregulated in the heart from a rat MI model. In addition, KLF9 was also upregulated in cardiomyocytes exposed to ischemia in vitro, suggesting that KLF9 responds to MI-relevant stimuli. Moreover, KLF9 knockdown protected cardiomyocytes against ischemic injury. Mechanistically, KLF9 knockdown reduced reactive oxygen species (ROS) generation in ischemic cardiomyocytes through upregulating the antioxidant thioredoxin reductase 2 (Txnrd2), and more important, Txnrd2 silencing abrogated KLF9 knockdown-mediated cardioprotection in ischemic cardiomyocytes. Altogether, these results suggest that KLF9 aggravates ischemic injury in cardiomyocytes through undermining Txnrd2-mediated ROS clearance, which might offer KLF9 as a possible target in alleviating MI.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Daño por Reperfusión Miocárdica/etiología , Miocitos Cardíacos/patología , Estrés Oxidativo , Tiorredoxina Reductasa 2/metabolismo , Animales , Células Cultivadas , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 2/genética , Regulación hacia Arriba
16.
Neuron ; 102(6): 1127-1142.e3, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31079872

RESUMEN

Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Disfunción Cognitiva/genética , Síndrome de DiGeorge/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 2/genética , Animales , Axones/ultraestructura , Conducta Animal , Corteza Cerebral/citología , Dendritas/ultraestructura , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Lóbulo Frontal/metabolismo , Dosificación de Gen , Ratones , Mitocondrias/ultraestructura , Vías Nerviosas , Neuronas/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura
17.
Bone ; 120: 239-245, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29653292

RESUMEN

The aim of the study was to investigate the association between rs5859 in Sep15, rs1139793 in TrxR2 polymorphisms with the risks of KBD and to detect the expression of AP-1 pathway in KBD subjects and in vitro. 208 KBD and 206 control subjects were included. PCR-Restriction Fragment Length Polymorphism (RFLP), Amplification Refractory Mutation Specific-PCR (ARMS-PCR) and Western Blotting were conducted. The results showed the minor A-allele frequency of rs5859 in KBD was statistically significantly higher than that in the control group (P < 0.05). The cases carrying A-allele had a 2-fold (95%CI: 1.064-3.956) increased risk of developing KBD compared with the G-allele carriers. There was no significant difference in genotype and allele distribution of rs1139793 between KBD patients and controls (P > 0.05). The frequency of the minor A allele of rs5859 was significantly different in Chinese healthy population compared with European, African and American. The frequency of the minor A allele of rs1139793 showed significant difference when compared with African and American. The levels of JunB, JunD, P65 proteins in KBD group were higher than those in control group (P < 0.0001). The expression of JunB, JunD, P65 proteins all increased in tBHP-induced C28/I2 oxidative damage model compared with control group (P < 0.05) and decreased after Se supplementation. Our finding indicated Sep15 is a possible candidate susceptibility gene for KBD. Combined with the in vitro study, our studies reveal novel insights into the mechanism of Se supplementation as an antioxidant via inhibiting the AP-1 signaling pathway in patients with KBD.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad de Kashin-Beck/genética , Polimorfismo de Nucleótido Simple/genética , Selenoproteínas/genética , Transducción de Señal , Tiorredoxina Reductasa 2/genética , Factor de Transcripción AP-1/metabolismo , Apoptosis/efectos de los fármacos , Estudios de Casos y Controles , Línea Celular , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Etnicidad/genética , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Selenio/farmacología
18.
Hum Genet ; 137(10): 847-862, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30317457

RESUMEN

Primary open angle glaucoma (POAG) is a complex disease with a major genetic contribution. Its prevalence varies greatly among ethnic groups, and is up to five times more frequent in black African populations compared to Europeans. So far, worldwide efforts to elucidate the genetic complexity of POAG in African populations has been limited. We conducted a genome-wide association study in 1113 POAG cases and 1826 controls from Tanzanian, South African and African American study samples. Apart from confirming evidence of association at TXNRD2 (rs16984299; OR[T] 1.20; P = 0.003), we found that a genetic risk score combining the effects of the 15 previously reported POAG loci was significantly associated with POAG in our samples (OR 1.56; 95% CI 1.26-1.93; P = 4.79 × 10-5). By genome-wide association testing we identified a novel candidate locus, rs141186647, harboring EXOC4 (OR[A] 0.48; P = 3.75 × 10-8), a gene transcribing a component of the exocyst complex involved in vesicle transport. The low frequency and high degree of genetic heterogeneity at this region hampered validation of this finding in predominantly West-African replication sets. Our results suggest that established genetic risk factors play a role in African POAG, however, they do not explain the higher disease load. The high heterogeneity within Africans remains a challenge to identify the genetic commonalities for POAG in this ethnicity, and demands studies of extremely large size.


Asunto(s)
Población Negra/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Tiorredoxina Reductasa 2/genética , Proteínas de Transporte Vesicular/genética , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Redox Biol ; 19: 179-189, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30172102

RESUMEN

High myopia is recognized as a risk factor for earlier onset of nuclear cataracts. One possible explanation for this is that lenses in highly myopic eyes are exposed to higher levels of oxygen than normal eyes owing to earlier vitreous liquefaction and, hence, are subjected to oxidative insults. Here, we first compared the methylation levels of six essential antioxidant genes (GSTP1, NRF2, OGG1, TXN, TXNRD1 and TXNRD2) between highly myopic cataract (HMC) and age-related cataract (ARC) lens epithelial samples via Sequenom MassARRAY. We found that specific CpG units in the promoters of GSTP1 and TXNRD2 were hypermethylated and that the expression levels of these two genes were lower in the HMC group than in the ARC group. A luciferase reporter assay confirmed the significance of differentially methylated fragments in the activation of transcription. The importance of GSTP1 and TXNRD2 in antioxidant capacity was confirmed by overexpression or knockdown experiments on cultured lens epithelial cells (LECs). In addition, the expression of DNA methyl transferase 1 (DNMT1) was higher in the lens epithelium of HMC patients than that of ARC patients, and the expression of GSTP1 and TXNRD2 was upregulated by use of a DNMT inhibitor in cultured LECs. Finally, we mimicked the intraocular environment of highly myopic eyes by treating LECs with hydrogen peroxide (H2O2) and observed both alterations in the methylation status of the GSTP1 and TXNRD2 promoters and time-dependent altered expression levels. Therefore, we propose that in an environment with high oxygen, in which lenses in highly myopic eyes are immersed, there exists a vicious cycle composed of increased oxidative stress and decreased enzymatic antioxidants via the hypermethylation of antioxidant genes.


Asunto(s)
Catarata/etiología , Catarata/genética , Metilación de ADN , Miopía/complicaciones , Miopía/genética , Factores de Edad , Anciano , Animales , Catarata/metabolismo , Línea Celular , Femenino , Gutatión-S-Transferasa pi/genética , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miopía/metabolismo , Estrés Oxidativo , Regiones Promotoras Genéticas , Tiorredoxina Reductasa 2/genética
20.
Sci Rep ; 8(1): 5039, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29567975

RESUMEN

Isocitrate dehydrogenase (IDH) 2 participates in the TCA cycle and catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH. In the mitochondria, IDH2 also plays a key role in protecting mitochondrial components from oxidative stress by supplying NADPH to both glutathione reductase (GSR) and thioredoxin reductase 2 (TXNRD2). Here, we report that loss of Idh2 accelerates age-related hearing loss, the most common form of hearing impairment, in male mice. This was accompanied by increased oxidative DNA damage, increased apoptotic cell death, and profound loss of spiral ganglion neurons and hair cells in the cochlea of 24-month-old Idh2-/- mice. In young male mice, loss of Idh2 resulted in decreased NADPH redox state and decreased activity of TXNRD2 in the mitochondria of the inner ear. In HEI-OC1 mouse inner ear cell lines, knockdown of Idh2 resulted in a decline in cell viability and mitochondrial oxygen consumption. This was accompanied by decreased NADPH redox state and decreased activity of TXNRD2 in the mitochondria of the HEI-OC1 cells. Therefore, IDH2 functions as the principal source of NADPH for the mitochondrial thioredoxin antioxidant defense and plays an essential role in protecting hair cells and neurons against oxidative stress in the cochlea of male mice.


Asunto(s)
Envejecimiento/genética , Pérdida Auditiva/genética , Isocitrato Deshidrogenasa/genética , Tiorredoxina Reductasa 2/genética , Envejecimiento/patología , Animales , Apoptosis/genética , Supervivencia Celular/genética , Cóclea/metabolismo , Cóclea/patología , Modelos Animales de Enfermedad , Glutatión Reductasa/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Humanos , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , NADP/metabolismo , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/genética , Consumo de Oxígeno/genética , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...