Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Funct Plant Biol ; 512024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088691

RESUMEN

Under salt stress, plants are forced to take up and accumulate large amounts of sodium (Na+ ) and chloride (Cl- ). Although most studies have focused on the toxic effects of Na+ on plants, Cl- stress is also very important. This study aimed to clarify physiological mechanisms underpinning growth contrasts in canola varieties with different salt tolerance. In hydroponic experiments, 150mM Na+ , Cl- and NaCl were applied to salt-tolerant and sensitive canola varieties. Both NaCl and Na+ treatments inhibited seedling growth. NaCl caused the strongest damage to both canola varieties, and stress damage was more severe at high concentrations of Na+ than Cl- . High Cl- promoted the uptake of ions (potassium K+ , calcium Ca2+ ) and induced antioxidant defence. Salt-tolerant varieties were able to mitigate ion toxicity by maintaining lower Na+ content in the root system for a short period of time, and elevating magnesium Mg2+ content, Mg2+ /Na+ ratio, and antioxidant enzyme activity to improve photosynthetic capacity. They subsequently re-established new K+ /Na+ and Ca2+ /Na+ balances to improve their salt tolerance. High concentrations of Cl salts caused less damage to seedlings than NaCl and Na salts, and Cl- also had a positive role in inducing oxidative stress and responsive antioxidant defence in the short term.


Asunto(s)
Antioxidantes , Brassica napus , Homeostasis , Fotosíntesis , Tolerancia a la Sal , Plantones , Cloruro de Sodio , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Brassica napus/enzimología , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Cloruro de Sodio/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Sodio/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Fluorescencia , Potasio/metabolismo , Iones/metabolismo , Calcio/metabolismo
2.
Sci Rep ; 14(1): 12701, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831069

RESUMEN

The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.


Asunto(s)
Antioxidantes , Cobre , Hordeum , Nanopartículas del Metal , Tolerancia a la Sal , Hordeum/efectos de los fármacos , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Nanopartículas del Metal/química , Tolerancia a la Sal/efectos de los fármacos , Antioxidantes/metabolismo , Lamiaceae/efectos de los fármacos , Lamiaceae/metabolismo , Lamiaceae/crecimiento & desarrollo , Lamiaceae/fisiología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Malondialdehído/metabolismo , Estrés Salino
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928476

RESUMEN

Salt stress seriously affects crop growth, leading to a decline in crop quality and yield. Application of exogenous substances to improve the salt tolerance of crops and promote their growth under salt stress has become a widespread and effective means. Eugenol is a small molecule of plant origin with medicinal properties such as antibacterial, antiviral, and antioxidant properties. In this study, tobacco seedlings were placed in Hoagland's solution containing NaCl in the presence or absence of eugenol, and physiological indices related to stress tolerance were measured along with transcriptome sequencing. The results showed that eugenol improved the growth of tobacco seedlings under salt stress. It promoted carbon and nitrogen metabolism, increased the activities of nitrate reductase (NR), sucrose synthase (SS), and glutamine synthetase (GS) by 31.03, 5.80, and 51.06%. It also activated the enzymatic and non-enzymatic antioxidant systems, reduced the accumulation of reactive oxygen species in the tobacco seedlings, and increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) by 24.38%, 18.22%, 21.60%, and 28.8%, respectively. The content of glutathione (GSH) was increased by 29.49%, and the content of superoxide anion (O2-) and malondialdehyde (MDA) were reduced by 29.83 and 33.86%, respectively. Promoted osmoregulation, the content of Na+ decreased by 34.34, K+ increased by 41.25%, and starch and soluble sugar increased by 7.72% and 25.42%, respectively. It coordinated hormone signaling in seedlings; the content of abscisic acid (ABA) and gibberellic acid 3 (GA3) increased by 51.93% and 266.28%, respectively. The transcriptome data indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, the MAPK signaling pathway, and phytohormone signal transduction pathways. The results of this study revealed the novel role of eugenol in regulating plant resistance and provided a reference for the use of exogenous substances to alleviate salt stress.


Asunto(s)
Antioxidantes , Eugenol , Regulación de la Expresión Génica de las Plantas , Nicotiana , Reguladores del Crecimiento de las Plantas , Estrés Salino , Plantones , Transducción de Señal , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Nicotiana/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Transducción de Señal/efectos de los fármacos , Eugenol/farmacología , Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Tolerancia a la Sal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
4.
BMC Plant Biol ; 24(1): 605, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926865

RESUMEN

Plants spontaneously accumulate γ-aminobutyric acid (GABA), a nonprotein amino acid, in response to various stressors. Nevertheless, there is limited knowledge regarding the precise molecular mechanisms that plants employ to cope with salt stress. The objective of this study was to investigate the impact of GABA on the salt tolerance of eight distinct varieties of bread wheat (Triticum aestivum L.) by examining plant growth rates and physiological and molecular response characteristics. The application of salt stress had a detrimental impact on plant growth markers. Nevertheless, the impact was mitigated by the administration of GABA in comparison to the control treatment. When the cultivars Gemmiza 7, Gemmiza 9, and Gemmiza 12 were exposed to GABA at two distinct salt concentrations, there was a substantial increase in both the leaf chlorophyll content and photosynthetic rate. Both the control wheat cultivars and the plants exposed to salt treatment and GABA treatment showed alterations in stress-related biomarkers and antioxidants. This finding demonstrated that GABA plays a pivotal role in mitigating the impact of salt treatments on wheat cultivars. Among the eight examined kinds of wheat, CV. Gemmiza 7 and CV. Gemmiza 11 exhibited the most significant alterations in the expression of their TaSOS1 genes. CV. Misr 2, CV. Sakha 94, and CV. Sakha 95 exhibited the highest degree of variability in the expression of the NHX1, DHN3, and GR genes, respectively. The application of GABA to wheat plants enhances their ability to cope with salt stress by reducing the presence of reactive oxygen species (ROS) and other stress indicators, regulating stomatal aperture, enhancing photosynthesis, activating antioxidant enzymes, and upregulating genes involved in salt stress tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Salino , Plantones , Triticum , Ácido gamma-Aminobutírico , Triticum/genética , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biomarcadores/metabolismo , Fotosíntesis/efectos de los fármacos , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de los fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
5.
Bioresour Technol ; 406: 131016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906195

RESUMEN

The salt-tolerant microalgae are extremely few and salt-tolerance mechanism is unclear, requiring urgent exploration of salt-tolerance mechanism of known microalgae. This study was first to reveal the salt-tolerance mechanism of Golenkinia sp. SDEC-16 by investigating the growth and metabolism under different salinities and high salinity long-term cultivation. SDEC-16 can survive under high salinity and resume normal growth after NaCl removal. Under long-term stress, SDEC-16 had higher lipid content and productivity than BG11. However, the suppressed Fv/Fm (58.4%) and Fv/F0 (84.0%) along with the increased reactive oxygen species (×6.6), and superoxide dismutase (×1.7) during the treatment revealed NaCl-induced photosynthetic inhibition and oxidative stress. RNA sequencing results showed inhibition of the photosynthetic system, and the enhancement of pathways such as nitrogen metabolism, energy metabolism, and lipid synthesis contributed to the good function of chloroplast, energy supply, and metabolic activity of SDEC-16. This study provides theoretical support for large-scale microalgal cultivation in seawater.


Asunto(s)
Microalgas , Fotosíntesis , Cloruro de Sodio , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Cloruro de Sodio/farmacología , Fotosíntesis/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Salinidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706002

RESUMEN

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Asunto(s)
Ácido Ascórbico , Glutatión , Glycine max , Plantones , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/fisiología , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Clorofila/metabolismo , Salinidad
7.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750032

RESUMEN

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Asunto(s)
Antioxidantes , Regulación de la Expresión Génica de las Plantas , Extractos Vegetales , Tolerancia a la Sal , Plantones , Triticum , Triticum/efectos de los fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de los fármacos , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Extractos Vegetales/farmacología , Helechos/efectos de los fármacos , Helechos/genética , Helechos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Salinidad , Cloruro de Sodio/farmacología , Estrés Oxidativo/efectos de los fármacos
8.
BMC Plant Biol ; 24(1): 472, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811894

RESUMEN

Salinity stress, an ever-present challenge in agriculture and environmental sciences, poses a formidable hurdle for plant growth and productivity in saline-prone regions worldwide. Therefore, this study aimed to explore the effectiveness of trehalose and mannitol induce salt resistance in wheat seedlings. Wheat grains of the commercial variety Sakha 94 were divided into three groups : a group that was pre-soaked in 10 mM trehalose, another group was soaked in 10 mM mannitol, and the last was soaked in distilled water for 1 hour, then the pre soaked grains cultivated in sandy soil, each treatment was divided into two groups, one of which was irrigated with 150 mM NaCl and the other was irrigated with tap water. The results showed that phenols content in wheat seedlings increased and flavonoids reduced due to salt stress. Trehalose and mannitol cause slight increase in total phenols content while total flavonoids were elevated highy in salt-stressed seedlings. Furthermore, Trehalose or mannitol reduced salt-induced lipid peroxidation. Salt stress increases antioxidant enzyme activities of guaiacol peroxidase (G-POX), ascorbate peroxidase (APX), and catalase (CAT) in wheat seedlings, while polyphenol oxidase (PPO) unchanged. Trehalose and mannitol treatments caused an increase in APX, and CAT activities, whereas G-POX not altered but PPO activity were decreased under salt stress conditions. Molecular docking confirmed the interaction of Trehalose or mannitol with peroxidase and ascorbic peroxidase enzymes. Phenyl alanine ammonia layase (PAL) activity was increased in salt-stressed seedlings. We can conclude that pre-soaking of wheat grains in 10 mM trehalose or mannitol improves salinity stress tolerance by enhancing antioxidant defense enzyme and/or phenol biosynthesis, with docking identifying interactions with G-POX, CAT, APX, and PPO.


Asunto(s)
Manitol , Tolerancia a la Sal , Plantones , Trehalosa , Triticum , Triticum/efectos de los fármacos , Triticum/fisiología , Triticum/metabolismo , Trehalosa/metabolismo , Plantones/efectos de los fármacos , Plantones/fisiología , Manitol/farmacología , Tolerancia a la Sal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antioxidantes/metabolismo , Estrés Salino/efectos de los fármacos , Flavonoides/metabolismo , Fenoles/metabolismo
9.
Chemosphere ; 359: 142337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754490

RESUMEN

Soil salinity poses a substantial threat to agricultural productivity, resulting in far-reaching consequences. Green-synthesized lignin nanoparticles (LNPs) have emerged as significant biopolymers which effectively promote sustainable crop production and enhance abiotic stress tolerance. However, the defensive role and underlying mechanisms of LNPs against salt stress in Zea mays remain unexplored. The present study aims to elucidate two aspects: firstly, the synthesis of lignin nanoparticles from alkali lignin, which were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Infrared Spectroscopy (FT-IR) and Energy Dispersive X-Ray Spectroscopy (EDX). The results confirmed the purity and morphology of LNPs. Secondly, the utilization of LNPs (200 mg/L) in nano priming to alleviate the adverse effects of NaCl (150 mM) on Zea mays seedlings. LNPs significantly reduced the accumulation of Na+ (17/21%) and MDA levels (21/28%) in shoots/roots while increased lignin absorption (30/31%), resulting in improved photosynthetic performance and plant growth. Moreover, LNPs substantially improved plant biomass, antioxidant enzymatic activities and upregulated the expression of salt-tolerant genes (ZmNHX3 (1.52 & 2.81 FC), CBL (2.83 & 3.28 FC), ZmHKT1 (2.09 & 4.87 FC) and MAPK1 (3.50 & 2.39 FC) in both shoot and root tissues. Additionally, SEM and TEM observations of plant tissues confirmed the pivotal role of LNPs in mitigating NaCl-induced stress by reducing damages to guard cells, stomata and ultra-cellular structures. Overall, our findings highlight the efficacy of LNPs as a practical and cost-effective approach to alleviate NaCl-induced stress in Zea mays plants. These results offer a sustainable agri-environmental strategy for mitigating salt toxicity and enhancing crop production in saline environments.


Asunto(s)
Antioxidantes , Lignina , Nanopartículas , Estrés Salino , Zea mays , Zea mays/efectos de los fármacos , Lignina/química , Estrés Salino/efectos de los fármacos , Antioxidantes/metabolismo , Nanopartículas/toxicidad , Nanopartículas/química , Tecnología Química Verde , Tolerancia a la Sal/efectos de los fármacos , Plantones/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Salinidad
10.
Int J Biol Macromol ; 268(Pt 1): 131601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626833

RESUMEN

This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.


Asunto(s)
Aloe , Mananos , Pectinas , Aloe/química , Mananos/química , Pectinas/química , Agua/química , Pared Celular/química , Pared Celular/efectos de los fármacos , Salinidad , Polisacáridos/química , Polisacáridos/farmacología , Tolerancia a la Sal/efectos de los fármacos , Acetilación , Estrés Fisiológico/efectos de los fármacos
11.
Int J Biol Macromol ; 267(Pt 2): 131477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604430

RESUMEN

Salt stress severely limits the growth and yield of wheat in saline-alkali soil. While nanozymes have shown promise in mitigating abiotic stress by scavenging reactive oxygen species (ROS) in plants, their application in alleviating salt stress for wheat is still limited. This study synthesized a highly active nanozyme catalyst known as ZnPB (Zn-modified Prussian blue) to improve the yield and quality of wheat in saline soil. According to the Michaelis-Menten equation, ZnPB demonstrates exceptional peroxidase-like enzymatic activity, thereby mitigating oxidative damage caused by salt stress. Additionally, studies have shown that the ZnPB nanozyme is capable of regulating intracellular Na+ efflux and K+ retention in wheat, resulting in a decrease in proline and soluble protein levels while maintaining the integrity of macromolecules within the cell. Consequently, field experiments demonstrated that the ZnPB nanozyme increased winter wheat yield by 12.15 %, while also significantly enhancing its nutritional quality. This research offers a promising approach to improving the salinity tolerance of wheat, while also providing insights into its practical application.


Asunto(s)
Ferrocianuros , Tolerancia a la Sal , Semillas , Triticum , Zinc , Triticum/efectos de los fármacos , Ferrocianuros/química , Zinc/química , Zinc/farmacología , Tolerancia a la Sal/efectos de los fármacos , Semillas/efectos de los fármacos , Peroxidasa/metabolismo , Sodio/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...