Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Mol Biol Cell ; 35(10): ar124, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39110527

RESUMEN

Subversion of cellular membranes and membrane proliferation are used by positive-strand RNA viruses to build viral replication organelles (VROs) that support virus replication. The biogenesis of the membranous VROs requires major changes in lipid metabolism and lipid transfer in infected cells. In this work, we show that tomato bushy stunt virus (TBSV) hijacks Atg2 autophagy related protein with bulk lipid transfer activity into VROs via interaction with TBSV p33 replication protein. Deletion of Atg2 in yeast and knockdown of Atg2 in Nicotiana benthamiana resulted in decreased TBSV replication. We found that subversion of Atg2 by TBSV was important to enrich VRO membranes with phosphatidylethanolamine (PE), phosphatidylserine (PS) and PI(3)P phosphoinositide. Interestingly, inhibition of autophagy did not affect the efficient recruitment of Atg2 into VROs, and overexpression of Atg2 enhanced TBSV replication, indicating autophagy-independent subversion of Atg2 by TBSV. These findings suggest that the proviral function of Atg2 lipid transfer protein is in VRO membrane proliferation. In addition, we find that Atg2 interacting partner Atg9 with membrane lipid-scramblase activity is also coopted for tombusvirus replication. Altogether, the subversion of Atg2 bridge-type lipid transfer protein provides a new mechanism for tombusviruses to greatly expand VRO membranes to support robust viral replication.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Nicotiana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Tombusvirus , Replicación Viral , Tombusvirus/fisiología , Tombusvirus/metabolismo , Replicación Viral/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Nicotiana/virología , Nicotiana/metabolismo , Autofagia/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolípidos/metabolismo , Compartimentos de Replicación Viral/metabolismo , Proteínas de Plantas/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas Virales/metabolismo , Proteínas Portadoras/metabolismo , Enfermedades de las Plantas/virología , Membrana Celular/metabolismo
2.
Virology ; 599: 110190, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39146928

RESUMEN

Positive-strand RNA viruses build viral replication organelles (VROs) with the help of co-opted host factors. The biogenesis of the membranous VROs requires major metabolic changes in infected cells. Previous studies showed that tomato bushy stunt virus (TBSV) hijacks several glycolytic enzymes to produce ATP locally within VROs. In this work, we demonstrate that the yeast Pfk2p phosphofructokinase, which performs a rate-limiting and highly regulated step in glycolysis, interacts with the TBSV p33 replication protein. Deletion of PFK2 reduced TBSV replication in yeast, suggesting proviral role for Pfk2p. TBSV also co-opted two plant phosphofructokinases, which supported viral replication and ATP production within VROs, thus acting as proviral factors. Three other phosphofructokinases inhibited TBSV replication and they reduced ATP production within VROs, thus functioning as antiviral factors. Altogether, different phosphofructokinases have proviral or antiviral roles. This suggests on-going arms race between tombusviruses and their hosts to control glycolysis pathway in infected cells.


Asunto(s)
Glucólisis , Fosfofructoquinasas , Tombusvirus , Replicación Viral , Tombusvirus/genética , Tombusvirus/fisiología , Fosfofructoquinasas/metabolismo , Fosfofructoquinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , Provirus/genética , Provirus/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Adenosina Trifosfato/metabolismo , Interacciones Huésped-Patógeno
3.
Virus Genes ; 60(5): 572-575, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39023842

RESUMEN

Echinacea is an herbaceous plant originating from North America that is cultivated for gardening and landscaping because of its showy flowers. Using high-throughput sequencing, we identified two viral contigs from echinacea seeds that were related to the family Tombusviridae. These two viruses were similar to oat chlorotic stunt virus (OCSV) and other unassigned tombusviruses; therefore, we tentatively named them Echinacea-associated tombusviruses 1 and 2 (EaTV1 and EaTV2, respectively). The EaTVs represent putative readthrough sites and have no poly(A) tails, aligning with the common features of family Tombusviridae. The EaTVs are included in a monophyletic group of OCSV and several unassigned tombusviruses. Because OCSV is the only member of Avenavirus to date, EaTVs are tentative members of Avenavirus, or they are close sister species to OCSV with several unassigned tombusviruses. RNA-dependent RNA polymerases and coat proteins were well conserved among EaTVs and unassigned tombusviruses; however, their similarities were not correlated, implying divergent and complex evolution.


Asunto(s)
Echinacea , Genoma Viral , Filogenia , Semillas , Tombusvirus , Genoma Viral/genética , Semillas/virología , Echinacea/virología , Echinacea/genética , Tombusvirus/genética , Tombusvirus/aislamiento & purificación , Secuenciación Completa del Genoma , Enfermedades de las Plantas/virología , Tombusviridae/genética , Tombusviridae/aislamiento & purificación , Tombusviridae/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral/genética
4.
New Phytol ; 243(5): 1917-1935, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38515267

RESUMEN

Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.


Asunto(s)
Condensados Biomoleculares , Citosol , Nepovirus , Orgánulos , Tombusvirus , Proteínas Virales , Replicación Viral , Nepovirus/química , Nepovirus/fisiología , Citosol/metabolismo , Tombusvirus/química , Tombusvirus/fisiología , Proteínas Virales/química , Nicotiana/virología , Orgánulos/virología , Condensados Biomoleculares/virología
5.
PLoS Pathog ; 20(3): e1012085, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484009

RESUMEN

Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.


Asunto(s)
Tombusvirus , Tombusvirus/fisiología , Saccharomyces cerevisiae/genética , Membranas Intracelulares/metabolismo , Replicación Viral/fisiología , Fosfolípidos/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Autofagia , Orgánulos/metabolismo , ARN Viral/genética
6.
J Biol Chem ; 300(5): 107218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522515

RESUMEN

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Asunto(s)
Tombusvirus , Evolución Molecular , Sistemas de Lectura Abierta , Pliegue de Proteína , Estructura Secundaria de Proteína , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Homología de Secuencia de Aminoácido , Modelos Psicológicos , Estructura Terciaria de Proteína
7.
Arch Virol ; 168(12): 287, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947857

RESUMEN

This study focuses on the phylogenetic analysis of previously unclassified tombus-like viruses, which are characterized by the presence of homologs of the suppressor protein p19. The primary objectives of this research were to investigate the evolutionary relationships among these viruses and to explore the impact of suppressor proteins and recombination events on their evolution. A dataset comprising 94 viral sequences was analyzed to achieve these goals. The phylogenetic analysis revealed the presence of two distinct clusters within the tombus-like virus group. One cluster consisted of viruses that encoded p19-like RNA suppressors, while the other cluster comprised viruses encoding p14-like suppressors. Based on these findings, we propose the classification of PGT-pt108 as an isolate of carnation Italian ringspot virus (CIRV), and both Tombusviridae sp. s48-k141_139792 and Tombusviridae sp. s51-k141_185213 as isolates of tomato bushy stunt virus (TBSV). Furthermore, this study suggests the establishment of two new genera within the family Tombusviridae, based on the observed divergence and distinct characteristics of these tombus-like viruses. Through the analysis of recombination events, we provide insights into the interspecies movement of CIRV, which is reflected in its phylogenetic positioning. This research contributes to our understanding of the evolutionary dynamics and classification of tombus-like viruses, shedding light on the role of suppressor proteins and recombination events in their evolution and interspecies transmission.


Asunto(s)
Tombusviridae , Tombusvirus , Filogenia , Tombusvirus/genética , Tombusviridae/genética , Recombinación Genética , ARN Viral/genética , ARN Viral/metabolismo
8.
Arch Virol ; 168(12): 296, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985520

RESUMEN

Neckar River virus (NRV), first isolated from a water sample of the Neckar River (Germany) in the 1980s, was serologically characterized as a novel tombusvirus. In this study, the complete genome sequence was determined, and an infectious full-length cDNA clone was constructed. The genome organization of NRV (DSMZ PV-0270) resembles that of tombusviruses. The genome consists of 4739 nucleotides and contains five open reading frames (ORFs) and one additional putative ORF (pX) in the 3'-terminal region. Phylogenetic analysis and sequence comparisons confirmed NRV to be a member of the species Tombusvirus neckarfluminis in the genus Tombusvirus. The infectious full-length cDNA clone was constructed using Gibson assembly and subsequent infection of Nicotiana benthamiana plants by Rhizobium radiobacter inoculation. The virus derived from the full-length cDNA clone caused symptoms resembling those caused by the wild-type virus, but slightly milder.


Asunto(s)
Tombusviridae , Tombusvirus , Tombusvirus/genética , Tombusviridae/genética , ADN Complementario , Filogenia , Genoma Viral , Sistemas de Lectura Abierta , ARN Viral/genética
9.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240259

RESUMEN

Sonic hedgehog medulloblastoma (SHH-MB) accounts for 25-30% of all MBs, and conventional therapy results in severe long-term side effects. New targeted therapeutic approaches are urgently needed, drawing also on the fields of nanoparticles (NPs). Among these, plant viruses are very promising, and we previously demonstrated that tomato bushy stunt virus (TBSV), functionalized on the surface with CooP peptide, specifically targets MB cells. Here, we tested the hypothesis that TBSV-CooP can specifically deliver a conventional chemotherapeutic drug (i.e., doxorubicin, DOX) to MB in vivo. To this aim, a preclinical study was designed to verify, by histological and molecular methods, if multiple doses of DOX-TBSV-CooP were able to inhibit tumor progression of MB pre-neoplastic lesions, and if a single dose was able to modulate pro-apoptotic/anti-proliferative molecular signaling in full-blown MBs. Our results demonstrate that when DOX is encapsulated in TBSV-CooP, its effects on cell proliferation and cell death are similar to those obtained with a five-fold higher dose of non-encapsulated DOX, both in early and late MB stages. In conclusion, these results confirm that CooP-functionalized TBSV NPs are efficient carriers for the targeted delivery of therapeutics to brain tumors.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Nanopartículas , Tombusvirus , Ratones , Animales , Meduloblastoma/metabolismo , Preparaciones Farmacéuticas , Proteínas Hedgehog/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Cerebelosas/metabolismo , Nanopartículas/química
10.
Plant Dis ; 106(11): 2773-2783, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191166

RESUMEN

Between 2010 and 2018, sunflower plants exhibiting virus-like symptoms, including stunting, mottling, and chlorotic ringspots on leaves, were observed from commercial fields and research plots from four sites within three distinct counties of western Nebraska (Box Butte, Kimball, and Scotts Bluff). Near identical symptoms from field samples were reproduced on seedlings mechanically in the greenhouse on multiple occasions, confirming the presence of a sap-transmissible virus from each site. Symptomatic greenhouse-inoculated plants from the 2010 and 2011 Box Butte samples tested negative for sunflower mosaic virus (SuMV), sunflower chlorotic mottle virus (SuCMoV), and all potyviruses in general by ELISA and RT-PCR. Similar viral-like symptoms were later observed on plants in a commercial sunflower field in Kimball County in 2014, and again from volunteers in research plots in Scotts Bluff County in 2018. Samples from both of these years were again successfully reproduced on seedlings in the greenhouse as before following mechanical transmissions. Symptom expression for all years began 12 to 14 days after inoculation as mild yellow spots followed by the formation of chlorotic ringspots from the mottled pattern. The culture from 2014 tested negatively for three groups of nepoviruses via RT-PCR, ruling this group out. However, transmission electron microscopy assays of greenhouse-infected plants from both 2014 and 2018 revealed the presence of distinct, polyhedral virus particles. With the use of high throughput sequencing and RT-PCR, it was confirmed that the infections from both years were caused by a new virus in the tombusvirus genus and was proposed to be called Sunflower ring spot mottle virus (SuRSMV). Although the major objective of this project was to identify the causal agent of the disease, it became evident that the diagnostic journey itself, with all the barriers encountered on the 10-year trek, was actually more important and impactful than identification.


Asunto(s)
Helianthus , Tombusvirus , Helianthus/virología , Nebraska , Enfermedades de las Plantas/virología , Plantones/virología , Tombusvirus/clasificación , Tombusvirus/genética , Tombusvirus/aislamiento & purificación , ARN Viral/genética , Especificidad de la Especie
11.
Virology ; 576: 1-17, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36126429

RESUMEN

Replication of positive-strand RNA viruses depends on usurped cellular membranes and co-opted host proteins. Based on pharmacological inhibition and genetic and biochemical approaches, the authors identified critical roles of the cellular Cdc48 unfoldase/segregase protein in facilitating the replication of tomato bushy stunt virus (TBSV). We show that TBSV infection induces the expression of Cdc48 in Nicotiana benthamiana plants. Cdc48 binds to the TBSV replication proteins through its N-terminal region. In vitro TBSV replicase reconstitution experiments demonstrated that Cdc48 is needed for efficient replicase assembly and activity. Surprisingly, the in vitro replication experiments also showed that excess amount of Cdc48 facilitates the disassembly of the membrane-bound viral replicase-RNA template complex. Cdc48 is also needed for the recruitment of additional host proteins. Because several human viruses, including flaviviruses, utilize Cdc48, also called VCP/p97, for replication, we suggest that Cdc48 might be a common panviral host factor for plant and animal RNA viruses.


Asunto(s)
Tombusvirus , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana , Tombusvirus/genética , Proteinas del Complejo de Replicasa Viral , Replicación Viral/genética , Proteína que Contiene Valosina/metabolismo
12.
PLoS Pathog ; 18(6): e1010653, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767596

RESUMEN

Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.


Asunto(s)
Tombusvirus , Adenosina Trifosfato/metabolismo , Histonas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Orgánulos , ARN Viral/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana , Tombusvirus/genética , Tombusvirus/metabolismo , Replicación Viral/genética
14.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563369

RESUMEN

Many plant viruses express suppressor proteins (VSRs) that can inhibit RNA silencing, a central component of antiviral plant immunity. The most common activity of VSRs is the high-affinity binding of virus-derived siRNAs and thus their sequestration from the silencing process. Since siRNAs share large homologies with miRNAs, VSRs like the Tombusvirus p19 may also bind miRNAs and in this way modulate cellular gene expression at the post-transcriptional level. Interestingly, the binding affinity of p19 varies considerably between different miRNAs, and the molecular determinants affecting this property have not yet been adequately characterized. Addressing this, we analyzed the binding of p19 to the miRNAs 162 and 168, which regulate the expression of the important RNA silencing constituents Dicer-like 1 (DCL1) and Argonaute 1 (AGO1), respectively. p19 binds miRNA162 with similar high affinity as siRNA, whereas the affinity for miRNA168 is significantly lower. We show that specific molecular features, such as mismatches and 'G-U wobbles' on the RNA side and defined amino acid residues on the VSR side, mediate this property. Our observations highlight the remarkable adaptation of VSR binding affinities to achieve differential effects on host miRNA activities. Moreover, they show that even minimal changes, i.e., a single base pair in a miRNA duplex, can have significant effects on the efficiency of the plant antiviral immune response.


Asunto(s)
MicroARNs , Tombusvirus , Antivirales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inmunidad de la Planta/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tombusvirus/genética
15.
J Virol ; 96(12): e0016821, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35638821

RESUMEN

Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actin network and ultimately to gain the upper hand during infection. We propose that, in the highly susceptible plants, tombusviruses efficiently subvert the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors via winning the recruitment race and overwhelming cellular defenses. IMPORTANCE Replication of positive-strand RNA viruses is affected by the recruitment of host components, which provide either proviral or antiviral functions during virus invasion of infected cells. The delivery of these host factors into the viral replication organelles (VROs), which represent the sites of viral RNA replication, depends on the cellular actin network. Using TBSV, we uncover a race between the virus and its host with the actin network as the central player. We find that in susceptible plants, tombusviruses exploit the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors. In summary, this work demonstrates that the actin network plays a major role in determining the outcome of viral infections in plants.


Asunto(s)
Actinas , Factores de Restricción Antivirales , Biogénesis de Organelos , Tombusvirus , Replicación Viral , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Proteínas Portadoras/metabolismo , Ciclofilinas/metabolismo , Virus ADN/genética , ARN Viral/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , Proteínas de Saccharomyces cerevisiae , Tombusvirus/genética , Tombusvirus/fisiología , Proteínas Virales/metabolismo
16.
Virology ; 572: 1-16, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533414

RESUMEN

Positive-strand RNA viruses induce the biogenesis of viral replication organelles (VROs), which support viral replication in infected cells. VRO formation requires viral replication proteins, co-opted host factors and intracellular membranes. Here, we show that the conserved Atg11 autophagy scaffold protein is co-opted by Tomato bushy stunt virus (TBSV) via direct interactions with the viral replication proteins. Deletion of ATG11 in yeast or knockdown of the homologous Atg11 in plants led to reduced tombusvirus replication, thus indicating pro-viral function for Atg11. Based on co-purification, BiFC and proximity-labeling experiments, we find that Atg11 is co-opted to stabilize virus-induced membrane contact sites (vMCS) within VROs. We propose that the tethering and scaffold function of Atg11 is critical in vMCSs for lipid enrichment. Absence of Atg11 interferes with sterols enrichment in VROs, rendering VROs RNAi-sensitive. Altogether, the expanding roles of co-opted host proteins with tethering functions suggest that the tombusvirus VROs are elaborate structures.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Tombusvirus , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Interacciones Huésped-Patógeno/genética , ARN Viral/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
17.
Plant Cell Environ ; 45(1): 220-235, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564869

RESUMEN

Plant viruses are important pathogens able to overcome plant defense mechanisms using their viral suppressors of RNA silencing (VSR). Small RNA pathways of bryophytes and vascular plants have significant similarities, but little is known about how viruses interact with mosses. This study elucidated the responses of Physcomitrella patens to two different VSRs. We transformed P. patens plants to express VSR P19 from tomato bushy stunt virus and VSR 2b from cucumber mosaic virus, respectively. RNA sequencing and quantitative PCR were used to detect the effects of VSRs on gene expression. Small RNA (sRNA) sequencing was used to estimate the influences of VSRs on the sRNA pool of P. patens. Expression of either VSR-encoding gene caused developmental disorders in P. patens. The transcripts of four different transcription factors (AP2/erf, EREB-11 and two MYBs) accumulated in the P19 lines. sRNA sequencing revealed that VSR P19 significantly changed the microRNA pool in P. patens. Our results suggest that VSR P19 is functional in P. patens and affects the abundance of specific microRNAs interfering with gene expression. The results open new opportunities for using Physcomitrella as an alternative system to study plant-virus interactions.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/virología , Interacciones Huésped-Patógeno/genética , Cucumovirus/genética , Cucumovirus/patogenicidad , Regulación de la Expresión Génica de las Plantas , Regulación Viral de la Expresión Génica , MicroARNs , Proteínas de Plantas/genética , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Plantas Modificadas Genéticamente , Interferencia de ARN , Tombusvirus/genética , Tombusvirus/patogenicidad , Factores de Transcripción/genética
18.
Virology ; 566: 1-8, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808564

RESUMEN

Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.


Asunto(s)
Genoma Viral , Luteoviridae/genética , Nicotiana/virología , ARN no Traducido/genética , ARN Viral/genética , Tombusvirus/genética , Regiones no Traducidas 3' , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/virología , Secuencia de Bases , Exorribonucleasas/química , Interacciones Huésped-Patógeno/genética , Luteoviridae/metabolismo , Mutación , Plantas Modificadas Genéticamente , División del ARN , ARN no Traducido/metabolismo , ARN Viral/metabolismo , Tombusvirus/metabolismo , Transformación Genética
19.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638864

RESUMEN

Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.


Asunto(s)
Neoplasias Cerebelosas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Proteínas Hedgehog/metabolismo , Meduloblastoma , Nanopartículas , Proteínas de Neoplasias/metabolismo , Tombusvirus/química , Animales , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Doxorrubicina/química , Doxorrubicina/farmacología , Proteínas Hedgehog/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Mutantes , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/genética , Nicotiana/virología
20.
J Virol ; 95(21): e0107621, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34406861

RESUMEN

Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.


Asunto(s)
Nicotiana/virología , Orgánulos/virología , Saccharomyces cerevisiae/virología , Tombusvirus/fisiología , Proteínas Virales/metabolismo , Replicación Viral , Proteínas de Unión al GTP rab/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/fisiología , Interacciones Microbiota-Huesped , Orgánulos/metabolismo , Enfermedades de las Plantas/virología , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Nexinas de Clasificación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...