Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.133
Filtrar
1.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352240

RESUMEN

Abdominal hemorrhage is an important clinical disease that can be life-threatening in severe cases. Therefore, timely detection and treatment of abdominal hemorrhage is crucial for the health and safety of patients. Magnetic induction tomography is a non-invasive, nonradioactive, and non-contact electromagnetic imaging technology with potential application value for disease screening and continuous monitoring. In this paper, a simulation model of electrical impedance distribution close to the real human abdominal tissue was constructed, and based on this model, the magnetic induction tomography simulation method of internal bleeding was studied by the finite element numerical method, and the comparison was verified by phantom experiments. The eddy current density distribution inside the abdominal tissue and the magnetic induction phase data at the tissue boundary are solved, and sensitivity analysis of phase differences caused by changes in the radius and position of bleeding volume was conducted, and three sensitivity indicators were proposed. Both the simulation and phantom experiment show that when there are six types of tissues with different conductivity in the abdomen, the radius of bleeding increases from 10 to 30 mm, and the radius phase difference sensitivity index Ar increases approximately linearly monotonically. Its radius transformation sensitivity Kr is 3.0961 × 10-5°/cm. When the position of the bleeding volume changes, the sensitivity index Ax of the x-axis displacement phase difference shows a quasilinear monotonic decrease, and the x-axis displacement sensitivity Kx is -6.3744 × 10-6°/cm. The y-axis displacement phase difference sensitivity Ay index shows a quasilinear relationship and monotonically increases, with a y-axis displacement sensitivity Ky of 5.2870 × 10-4°/cm. The results indicate that the phase difference sensitivity before and after the occurrence of bleeding can be used as a quantitative monitoring indicator to monitor the occurrence and trend of intra-abdominal hemorrhage, laying the foundation for the preliminary screening and continuous monitoring of abdominal hemorrhage diseases using magnetic induction imaging.


Asunto(s)
Abdomen , Hemorragia , Fantasmas de Imagen , Tomografía , Hemorragia/diagnóstico por imagen , Humanos , Tomografía/instrumentación , Tomografía/métodos , Abdomen/diagnóstico por imagen , Simulación por Computador , Análisis de Elementos Finitos
2.
Sci Adv ; 10(38): eadr1099, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303034

RESUMEN

In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.


Asunto(s)
Impedancia Eléctrica , Tomografía , Tacto , Dispositivos Electrónicos Vestibles , Humanos , Tomografía/métodos , Tomografía/instrumentación , Tacto/fisiología , Nanotubos de Carbono/química , Piel
3.
Sensors (Basel) ; 24(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39338640

RESUMEN

Bioimpedance imaging aims to generate a 3D map of the resistivity and permittivity of biological tissue from multiple impedance channels measured with electrodes applied to the skin. When the electrodes are distributed around the body (for example, by delineating a cross section of the chest or a limb), bioimpedance imaging is called electrical impedance tomography (EIT) and results in functional 2D images. Conventional EIT systems rely on individually cabling each electrode to master electronics in a star configuration. This approach works well for rack-mounted equipment; however, the bulkiness of the cabling is unsuitable for a wearable system. Previously presented cooperative sensors solve this cabling problem using active (dry) electrodes connected via a two-wire parallel bus. The bus can be implemented with two unshielded wires or even two conductive textile layers, thus replacing the cumbersome wiring of the conventional star arrangement. Prior research demonstrated cooperative sensors for measuring bioimpedances, successfully realizing a measurement reference signal, sensor synchronization, and data transfer though still relying on individual batteries to power the sensors. Subsequent research using cooperative sensors for biopotential measurements proposed a method to remove batteries from the sensors and have the central unit supply power over the two-wire bus. Building from our previous research, this paper presents the application of this method to the measurement of bioimpedances. Two different approaches are discussed, one using discrete, commercially available components, and the other with an application-specific integrated circuit (ASIC). The initial experimental results reveal that both approaches are feasible, but the ASIC approach offers advantages for medical safety, as well as lower power consumption and a smaller size.


Asunto(s)
Impedancia Eléctrica , Electrodos , Dispositivos Electrónicos Vestibles , Humanos , Suministros de Energía Eléctrica , Tomografía/instrumentación , Tomografía/métodos , Diseño de Equipo , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
4.
Sensors (Basel) ; 24(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39338732

RESUMEN

Flexible electronic skin (e-skin) can enable robots to have sensory forms similar to human skin, enhancing their ability to obtain more information from touch. The non-invasive nature of electrical impedance tomography (EIT) technology allows electrodes to be arranged only at the edges of the skin, ensuring the stretchability and elasticity of the skin's interior. However, the image quality reconstructed by EIT technology has deteriorated in multi-touch identification, where it is challenging to clearly reflect the number of touchpoints and accurately size the touch areas. This paper proposed an EIT-based flexible tactile sensor that employs self-made hydrogel material as the primary sensing medium. The sensor's structure, fabrication process, and tactile imaging principle were elaborated. To improve the quality of image reconstruction, the fast iterative shrinkage-thresholding algorithm (FISTA) was embedded into the EIDORS toolkit. The performances of the e-skin in aspects of assessing the touching area, quantitative force sensing and multi-touch identification were examined. Results showed that the mean intersection over union (MIoU) of the reconstructed images was improved up to 0.84, and the tactile position can be accurately imaged in the case of the number of the touchpoints up to seven (larger than two to four touchpoints in existing studies), proving that the combination of the proposed sensor and imaging algorithm has high sensitivity and accuracy in multi-touch tactile sensing. The presented e-skin shows potential promise for the application in complex human-robot interaction (HRI) environments, such as prosthetics and wearable devices.


Asunto(s)
Algoritmos , Impedancia Eléctrica , Hidrogeles , Tomografía , Tacto , Dispositivos Electrónicos Vestibles , Humanos , Tacto/fisiología , Tomografía/métodos , Tomografía/instrumentación , Hidrogeles/química , Procesamiento de Imagen Asistido por Computador/métodos , Piel/diagnóstico por imagen , Piel/química , Electrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
5.
Lab Chip ; 24(12): 3183-3190, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38828904

RESUMEN

hERG channel screening has been achieved based on electrical impedance tomography and extracellular voltage activation (EIT-EVA) to improve the non-invasive aspect of drug discovery. EIT-EVA screens hERG channels by considering the change in extracellular ion concentration which modifies the extracellular resistance in cell suspension. The rate of ion passing in cell suspension is calculated from the extracellular resistance Rex, which is obtained from the EIT measurement at a frequency of 500 kHz. In the experiment, non-invasive screening is applied by a novel integrated EIT-EVA printed circuit board (PCB) sensor to human embryonic kidney (HEK) 293 cells transfected with the human ether-a-go-go-related gene (hERG) ion channel, while the E-4031 antiarrhythmic drug is used for hERG channel inhibition. The extracellular resistance Rex of the HEK 293 cells suspension is measured by EIT as the hERG channels are activated by EVA over time. The Rex is reconstructed into extracellular conductivity distribution change Δσ to reflect the extracellular K+ ion concentration change Δc resulting from the activated hERG channel. Δc is increased rapidly during the hERG channel non-inhibition state while Δc is increased slower with increasing drug concentration cd. In order to evaluate the EIT-EVA system, the inhibitory ratio index (IR) was calculated based on the rate of Δc over time. Half-maximal inhibitory concentration (IC50) of 2.7 nM is obtained from the cd and IR dose-response relationship. The IR from EIT-EVA is compared with the results from the patch-clamp method, which gives R2 of 0.85. In conclusion, EIT-EVA is successfully applied to non-invasive hERG channel screening.


Asunto(s)
Impedancia Eléctrica , Canales de Potasio Éter-A-Go-Go , Humanos , Células HEK293 , Canales de Potasio Éter-A-Go-Go/metabolismo , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Tomografía/instrumentación , Canal de Potasio ERG1/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Piperidinas/farmacología , Piperidinas/química , Piridinas/farmacología , Piridinas/química
6.
ACS Nano ; 18(28): 18176-18190, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38941553

RESUMEN

Photoacoustic computed tomography (PACT), an emerging imaging modality in preclinical cancer research, can provide multiparametric 3D information about structures, physiological functions, and pharmacokinetics. Here, we demonstrate the use of high-definition 3D multiparametric PACT imaging of both primary and metastatic tumors in living mice to noninvasively monitor angiogenesis, carcinogenesis, hypoxia, and pharmacokinetics. The high-definition PACT system with a 1024-element hemispherical ultrasound transducer array provides an isotropic spatial resolution of 380 µm, an effective volumetric field-of-view of 12.8 mm × 12.8 mm × 12.8 mm without scanning, and an acquisition time of <30 s for a whole mouse body. Initially, we monitor the structural progression of the tumor microenvironment (e.g., angiogenesis and vessel tortuosity) after tumor cell inoculation. Then, we analyze the change in oxygen saturation of the tumor during carcinogenesis, verifying induced hypoxia in the tumor's core region. Finally, the whole-body pharmacokinetics are photoacoustically imaged after intravenous injection of micelle-loaded IR780 dye, and the in vivo PACT results are validated in vivo and ex vivo by fluorescence imaging. By employing the premium PACT system and applying multiparametric analyses to subcutaneous primary tumors and metastatic liver tumors, we demonstrate that this PACT system can provide multiparametric analyses for comprehensive cancer research.


Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Femenino , Animales , Técnicas Fotoacústicas/instrumentación , Técnicas Fotoacústicas/métodos , Tomografía/instrumentación , Tomografía/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Ratones Endogámicos BALB C , Línea Celular Tumoral , Medios de Contraste , Neoplasias Hepáticas/secundario , Piel/patología
7.
IEEE Trans Biomed Circuits Syst ; 18(4): 799-809, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885101

RESUMEN

Electrical capacitance tomography (ECT) can be used to predict information about the interior volume of an object based on measured capacitance at its boundaries. Here, we present a microscale capacitance tomography system with a spatial resolution of 10 microns using an active CMOS microelectrode array. We introduce a deep learning model for reconstructing 3-D volumes of cell cultures using the boundary capacitance measurements acquired from the sensor array, which is trained using a multi-objective loss function that combines a pixel-wise loss function, a distribution-based loss function, and a region-based loss function to improve model's reconstruction accuracy. The multi-objective loss function enhances the model's reconstruction accuracy by 3.2% compared to training only with a pixel-wise loss function. Compared to baseline computational methods, our model achieves an average of 4.6% improvement on the datasets evaluated. We demonstrate our approach on experimental datasets of bacterial biofilms, showcasing the system's ability to resolve microscopic spatial features of cell cultures in three dimensions. Microscale capacitance tomography can be a low-cost, low-power, label-free tool for 3-D imaging of biological samples.


Asunto(s)
Capacidad Eléctrica , Microelectrodos , Tomografía , Tomografía/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Aprendizaje Profundo
8.
Physiol Meas ; 45(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38599226

RESUMEN

Objective.Making up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited. However, literature demonstrating the impedance differences between benign and malignant skin cancers, as well as between different types of skin cancer, show that methods based on impedance differentiation may be promising.Approach.In this work, we propose a novel approach to rapid and non-invasive skin cancer diagnosis that leverages the technologies of difference-based electrical impedance tomography (EIT) and graphene electronic tattoos (GETs).Main results.We demonstrate the feasibility of this first-of-its-kind system using both computational numerical and experimental skin phantom models. We considered variations in skin cancer lesion impedance, size, shape, and position relative to the electrodes and evaluated the impact of using individual and multi-electrode GET (mGET) arrays. The results demonstrate that this approach has the potential to differentiate based on lesion impedance, size, and position, but additional techniques are needed to determine shape.Significance.In this way, the system proposed in this work, which combines both EIT and GET technology, exhibits potential as an entirely non-invasive and rapid approach to skin cancer diagnosis.


Asunto(s)
Impedancia Eléctrica , Grafito , Fantasmas de Imagen , Neoplasias Cutáneas , Tomografía , Grafito/química , Tomografía/instrumentación , Tomografía/métodos , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/diagnóstico por imagen , Humanos , Electrodos , Tatuaje
9.
Curr Med Sci ; 41(6): 1151-1157, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34907474

RESUMEN

OBJECTIVE: This paper proposes a new photoacoustic computed tomography (PACT) imaging system employing dual ultrasonic transducers with different frequencies. When imaging complex biological tissues, photoacoustic (PA) signals with multiple frequencies are produced simultaneously; however, due to the limited bandwidth of a single-frequency transducer, the received PA signals with specific frequencies may be missing, leading to a low imaging quality. METHODS: In contrast to our previous work, the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer, which can provide a comprehensive range for the detection of PA signals. In this study, a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system. RESULTS: The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast. CONCLUSION: The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.


Asunto(s)
Aumento de la Imagen/instrumentación , Técnicas Fotoacústicas/instrumentación , Tomografía/instrumentación , Transductores , Diseño de Equipo , Humanos , Fantasmas de Imagen
10.
Sci Rep ; 11(1): 19273, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588556

RESUMEN

Chest electrical impedance tomography (EIT) is a promising application which is used to monitor the ventilation and perfusion of the lung at the bedside dynamically. The aim of the study was to introduce the first Chinese made chest EIT device for ICU application (Pulmo EIT-100). The system design of the hardware and software was briefly introduced. The performance of the system was compared to PulmoVista 500 (Dräger Medical) in healthy volunteers. The EIT system Pulmo EIT-100 consists of impedance measurement module, power supply module, PC all-in-one machine, medical cart and accessories. The performance of the system current source and voltage measurement unit was tested. A total of 50 healthy lung volunteers were prospectively examined. Subjects were asked to perform repetitive slow vital capacity (SVC) maneuvers with a spirometer. EIT measurements were performed in the following sequence during each SVC with: (1) Pulmo EIT-100, (2) PulmonVista500, (3) Pulmo EIT-100 and (4) PulmonVista500. Linearity and regional ventilation distribution of the reconstructed images from two devices were compared. The output frequency stability of the current source was 2 ppm. The amplitude error within one hour was less than 0.32‰. The output impedance of the current source was about 50kΩ. The signal-to-noise ratio of each measurement channel was ≥ 60 dB. For fixed resistance measurements, the measured values drifted about 0.08% within one hour. For human subjects, the correlations between the spirometry volume and EIT impedance from two devices were both 0.99 ± 0.01. No statistical significances were found in the parameters investigated. The repeatability (variability) of measures from the same device was comparable. Our EIT device delivers reliable data and might be used for patient measurement in a clinical setting.


Asunto(s)
Unidades de Cuidados Intensivos , Monitoreo Fisiológico/instrumentación , Sistemas de Atención de Punto , Tomografía/instrumentación , Adulto , China , Impedancia Eléctrica , Estudios de Factibilidad , Femenino , Voluntarios Sanos , Humanos , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Estudios Prospectivos , Ventilación Pulmonar/fisiología , Reproducibilidad de los Resultados , Programas Informáticos , Tomografía/métodos
11.
J Microsc ; 284(1): 25-44, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110027

RESUMEN

We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labour. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualisation of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialised, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualisation and interaction tools for each processing step to guarantee real-time response, and an optimised workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists. LAY DESCRIPTION: Electron tomography of biological samples is used for a three-dimensional (3D) reconstruction of filamentous structures, such as microtubules (MTs) in mitotic and meiotic spindles. Large-scale electron tomography can be applied to increase the reconstructed volume for the visualisation of full spindles. For this, each spindle is cut into a series of semi-thick physical sections, from which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. Previously, we presented fully automatic approaches for this 3D reconstruction pipeline. However, large volumes often suffer from imperfections (ie physical distortions) caused by the image acquisition process, making it difficult to apply fully automatic approaches for matching and stitching of numerous tomograms. Therefore, we developed an interactive, semi-automatic solution that considers all requirements for large-scale stitching of microtubules in image stacks of consecutive sections. We achieved this by combining automatic methods, visual validation and interactive error correction, thus allowing the user to continuously improve the result by interactively correcting landmarks or matches of filaments. We present large-scale reconstructions of spindles in which the automatic workflow failed and where different steps of manual corrections were needed. Our approach is also applicable to other biological samples showing 3D distributions of MTs in a number of different cellular contexts.


Asunto(s)
Tomografía con Microscopio Electrónico , Huso Acromático , Tomografía/instrumentación , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador/instrumentación , Imagenología Tridimensional , Microtúbulos , Programas Informáticos
12.
Appl Opt ; 60(10): B81-B87, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798139

RESUMEN

Data acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy. Three different cases of sample rotation tomography were reconstructed for dense angle with a step rotation at every 2°, and for sparse angles with step rotation at every 5° and 10°. The three cases of tomographic reconstruction performance are analyzed with consideration for data processing using four noise-reduction techniques. The experimental results demonstrate potential capability in retaining the tomographic image quality, even at the sparse angle reconstructions, with the help of noise-reduction techniques.


Asunto(s)
Holografía/instrumentación , Holografía/métodos , Tomografía/instrumentación , Tomografía/métodos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Pinzas Ópticas , Rotación , Saccharomycetales , Relación Señal-Ruido
13.
Br J Ophthalmol ; 105(1): 22-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32217537

RESUMEN

PURPOSE: To assess the repeatability and reliability of the most important tomographic parameters for characterising keratoconus measured with a Pentacam HR (high resolution). METHODS: Overall, 230 eyes in 158 patients with keratoconus were analysed. We performed five consecutive corneal tomography examinations for each eye with a Pentacam HR in patients with keratoconus. Study eyes were classified into three groups depending on the maximum posterior elevation (max_BFS_post): grade 1 for cases of keratoconus with a max_BFS_post of 40 µm; grade 2 for those with a max_BFS_post of between 41 and 75 µm and grade 3 for those with a max_BFS_post of over 75 µm. We calculated the intraclass correlation coefficients (ICCs) and repeatability limits of parameters from tomography and aberrometry. RESULTS: All the parameters were found to have excellent ICCs (0.9). The repeatability limits for the key parameters were higher than 0.5D for the power parameters, 20° for the axis of corneal astigmatism and 10 µm for the thinnest corneal thickness. Further, we obtained repeatability limits of above 0.1 µm for the aberrometry values and overall greater than 15° for the coma axis. All the values increase with the severity of keratoconus, except for that of the coma axis which falls with keratoconus grade. CONCLUSIONS: The reliability indicated by ICCs supports the view that the Pentacam HR is useful for the diagnosis of keratoconus. The repeatability limits suggest that new criteria should be established for monitoring progression taking into account the real measurements that can be made using this system.


Asunto(s)
Diagnóstico por Imagen/métodos , Queratocono/diagnóstico por imagen , Aberrometría , Adulto , Paquimetría Corneal , Topografía de la Córnea , Femenino , Humanos , Masculino , Estudios Prospectivos , Reproducibilidad de los Resultados , Tomografía/instrumentación , Agudeza Visual , Adulto Joven
14.
PLoS One ; 15(12): e0243370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270786

RESUMEN

PURPOSE: To evaluate the correlation between corneal thickness (CT) measurements obtained with two Scheimpflug devices, Pentacam HR and Precisio, and to elaborate, if necessary, a regression formula which could make these results comparable. DESIGN: Retrospective, Comparative, Observational study. SETTING: Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Italy. METHODS: One hundred twenty four healthy eyes of 124 volunteers (65 males; range: 20-32 years; mean age of 24.8 ± 1.7) were included in this study. CT was measured using Pentacam HR and Precisio in three different points: the pupil center (PC), the corneal apex (CA) and the thinnest point (TP). RESULTS: CT obtained with both devices at the PC, at the CA and at the TP showed a good correlation (r = 0.97, r = 0.97, r = 0.97, respectively), but Pentacam HR measurements were significantly thicker than those provided by Precisio (p < 0.01). The differences between Pentacam HR and Precisio were 21.9 ± 8.8 µm at the PC, 21.9 ± 8.9 µm at the CA, 19.1 ± 9.0 µm at the TP. The calculated regression formulas were: y = 0.9558x + 2.3196 for the PC, y = 0.9519x + 4.5626 for the CA, y = 0.9364x + 15.436 for the TP, where x is the CT measured with Pentacam HR and y is the Precisio measurement. CONCLUSIONS: The findings provided by this study highlight that Precisio measures thinner corneas compared to Pentacam HR. The identified regression formulas could be utilized to make interchangeable the results obtained with these two devices.


Asunto(s)
Córnea/diagnóstico por imagen , Paquimetría Corneal/instrumentación , Tomografía/instrumentación , Adulto , Córnea/anatomía & histología , Femenino , Voluntarios Sanos , Humanos , Italia , Masculino , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
15.
Opt Express ; 28(23): 34255-34265, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182899

RESUMEN

A custom fibre laser designed as an excitation source for biomedical photoacoustic tomography has been developed. It is based on a custom-drawn large core diameter fibre (200 µm) that enables high pulse energies (∼10 mJ) to be achieved. The system can provide variable pulse durations (10 - 500 ns) and pulse repetition frequencies (100 Hz - 1 kHz), as well as arbitrary pulse bursts according to specific user defined sequences. The system is also compact and does not require external water cooling. This, along with the flexibility in the temporal characteristics of its output that it offers, will aid the translation of photoacoustic imaging to practical application in medicine and biology.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Dedos/irrigación sanguínea , Mano/irrigación sanguínea , Imagenología Tridimensional/métodos , Técnicas Fotoacústicas/instrumentación , Tomografía/instrumentación , Diseño de Equipo , Humanos
16.
Phys Med Biol ; 65(21): 215024, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33151907

RESUMEN

Magneto-acousto-electrical tomography (MAET) is an imaging method coupled with sound field and magnetic field. The aim of this study is to present some novel experimental results of the mouse liver for the magneto-acousto-electrical tomography measured by two electrodes. The magnetic field in the space of 60 mm3 is about 300 mT which generate by two permanent magnets. A plane transducer with 2.25 MHz center frequency is utilized to generate acoustic waves inside the object. The signal is detected by two similar 1 mm copper foil electrodes. An amplifier is designed to receive the MAET signal, and the gain of the amplifier is adjusted to be 54 dB. The phantom used in this paper is a mouse liver surrounded by a gel phantom with the conductivity of 0.7 S m-1. The gel phantom with the conductivity of 0.7 S m-1 is used to simulate the liver tumor, and the normal mouse liver is filled in the phantom. A series of the MAET signals are detected by the electrodes when the transducer is moved on a pre-set line route, then a B-scan image is realized. The experimental system can provide more information about the tumor and the results show that the MAET is sensitive enough for the potential clinical application of tumor in animal or human.


Asunto(s)
Acústica , Electricidad , Hígado/diagnóstico por imagen , Campos Magnéticos , Tomografía/métodos , Algoritmos , Animales , Conductividad Eléctrica , Electrodos , Ratones , Fantasmas de Imagen , Tomografía/instrumentación , Transductores
17.
Appl Opt ; 59(28): 8751-8758, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33104557

RESUMEN

Biometric authentication is the recognition of human identity via unique anatomical features. The development of novel methods parallels widespread application by consumer devices, law enforcement, and access control. In particular, methods based on finger veins, as compared to face and fingerprints, obviate privacy concerns and degradation due to wear, age, and obscuration. However, they are two-dimensional (2D) and are fundamentally limited by conventional imaging and tissue-light scattering. In this work, for the first time, to the best of our knowledge, we demonstrate a method of three-dimensional (3D) finger vein biometric authentication based on photoacoustic tomography. Using a compact photoacoustic tomography setup and a novel recognition algorithm, the advantages of 3D are demonstrated via biometric authentication of index finger vessels with false acceptance, false rejection, and equal error rates <1.23%, <9.27%, and <0.13%, respectively, when comparing one finger, a false acceptance rateimprovement>10× when comparing multiple fingers, and <0.7% when rotating fingers ±30.


Asunto(s)
Identificación Biométrica/métodos , Dedos/irrigación sanguínea , Imagenología Tridimensional/métodos , Técnicas Fotoacústicas/instrumentación , Tomografía/instrumentación , Venas/anatomía & histología , Humanos , Procesamiento de Imagen Asistido por Computador
18.
Rev Sci Instrum ; 91(9): 091501, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33003827

RESUMEN

Magnetic induction tomography (MIT) is a non-invasive and non-contact imaging technology, which can be used in medical diagnosis by reconstructing the electrical distribution of biological tissues. Unlike other large medical imaging equipment, the device of MIT is with small size and low cost. The theoretical basis of MIT is by measuring the phase difference of magnetic flux density generated around the imaging objects, analyzing the eddy current distribution, and then using the reconstruction algorithms to obtain the electrical characteristic distribution of the object. This review introduces the development of imaging systems and the reconstruction algorithms of MIT as a medical assisted diagnostic technology, including the optimal design of the sensors, the excitation methods of the system, the calculation methods of the eddy current, and the improved methods of different reconstruction algorithms.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Fenómenos Magnéticos , Tomografía/instrumentación , Humanos
19.
IEEE Trans Biomed Circuits Syst ; 14(4): 775-786, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32746355

RESUMEN

In this article, a novel method for measuring the volume of the urinary bladder non-invasively is presented that relies on the principles dictated by Electrical Impedance Tomography (EIT). The electronic prototype responsible for injecting innocuous electrical currents to the lower abdominal region and measuring the developed voltage levels is fully described, as well as the computational models for resolution of the so-called Forward and Inverse Problems in Imaging. The simultaneous multi-tone injection of current provided by a high performance Field Programmable Gate Array (FPGA), combined with impedance estimation by the Discrete Fourier Transform (DFT) constitutes a novelty in Urodynamics with potential to monitor continuously the intravesical volume of patients in a much faster and comfortable way than traditional transurethral catheterization methods. The resolution of the Inverse Problem is performed by the Gauss-Newton method with Laplacian regularization, allowing to obtain a sectional representation of the volume of urine encompassed by the bladder and surrounding body tissues. Experimentation has been carried out with synthetic phantoms and human subjects with results showing a good correlation between the levels of abdominal admittivity acquired by the EIT system and the volume of ingested water.


Asunto(s)
Impedancia Eléctrica , Análisis de Fourier , Tomografía/instrumentación , Vejiga Urinaria , Adulto , Electrodos , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador/instrumentación , Vejiga Urinaria/anatomía & histología , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/fisiología
20.
IEEE Trans Biomed Circuits Syst ; 14(4): 787-799, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32406844

RESUMEN

An ASIC for a high frequency electrical impedance tomography (EIT) imaging system for prostate cancer screening is presented. The ASIC enables a small form-factor architecture, which ensures high signal-to-noise ratio (SNR) at MHz frequencies. The 4-channel ASIC was designed and fabricated in a standard CMOS 0.18- µm technology and integrates a novel current driver for current stimulus, instrumentation amplifier to interface with the tissue, VGA to provide variable gain and ADC with SPI interface for digitization. A prototype miniaturized EIT system was built and it was evaluated using a model transrectal imaging probe immersed into a tank filled with saline and a metal inclusion that demonstrated the open-domain problem of imaging prostate cancer lesion. The system maintained an SNR between 66 and 76 dB over the frequency range of 500 Hz to 1 MHz. Also, it produced reconstructed EIT images that depicted the presence of the small metal inclusion that modeled a prostate cancer imaging application.


Asunto(s)
Impedancia Eléctrica , Miniaturización/instrumentación , Próstata/diagnóstico por imagen , Tomografía , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Relación Señal-Ruido , Tomografía/instrumentación , Tomografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...