Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.665
Filtrar
1.
Methods Cell Biol ; 187: 223-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705626

RESUMEN

Super-resolution cryo-correlative light and electron microscopy (SRcryoCLEM) is emerging as a powerful method to enable targeted in situ structural studies of biological samples. By combining the high specificity and localization accuracy of single-molecule localization microscopy (cryoSMLM) with the high resolution of cryo-electron tomography (cryoET), this method enables accurately targeted data acquisition and the observation and identification of biomolecules within their natural cellular context. Despite its potential, the adaptation of SRcryoCLEM has been hindered by the need for specialized equipment and expertise. In this chapter, we outline a workflow for cryoSMLM and cryoET-based SRcryoCLEM, and we demonstrate that, given the right tools, it is possible to incorporate cryoSMLM into an established cryoET workflow. Using Vimentin as an exemplary target of interest, we demonstrate all stages of an SRcryoCLEM experiment: performing cryoSMLM, targeting cryoET acquisition based on single-molecule localization maps, and correlation of cryoSMLM and cryoET datasets using scNodes, a software package dedicated to SRcryoCLEM. By showing how SRcryoCLEM enables the imaging of specific intracellular components in situ, we hope to facilitate adoption of the technique within the field of cryoEM.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Humanos , Imagen Individual de Molécula/métodos , Tomografía con Microscopio Electrónico/métodos , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Vimentina/metabolismo , Animales
2.
Methods Cell Biol ; 187: 175-203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705624

RESUMEN

Correlative cryo-microscopy pipelines combining light and electron microscopy and tomography in cryogenic conditions (cryoCLEM) on the same sample are powerful methods for investigating the structure of specific cellular targets identified by a fluorescent tag within their unperturbed cellular environment. CryoCLEM approaches circumvent one of the inherent limitations of cryo EM, and specifically cryo electron tomography (cryoET), of identifying the imaged structures in the crowded 3D environment of cells. Whereas several cryoCLEM approaches are based on thinning the sample by cryo FIB milling, here we present detailed protocols of two alternative cryoCLEM approaches for in situ studies of adherent cells at the single-cell level without the need for such cryo-thinning. The first approach is a complete cryogenic pipeline in which both fluorescence and electronic imaging are performed on frozen-hydrated samples, the second is a hybrid cryoCLEM approach in which fluorescence imaging is performed at room temperature, followed by rapid freezing and subsequent cryoEM imaging. We provide a detailed description of the two methods we have employed for imaging fluorescently labeled cellular structures with thickness below 350-500nm, such as cell protrusions and organelles located in the peripheral areas of the cells.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Humanos , Tomografía con Microscopio Electrónico/métodos , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos , Análisis de la Célula Individual/métodos , Animales
3.
Methods Cell Biol ; 187: 249-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705627

RESUMEN

Cryogenic ultrastructural imaging techniques such as cryo-electron tomography have produced a revolution in how the structure of biological systems is investigated by enabling the determination of structures of protein complexes immersed in a complex biological matrix within vitrified cell and model organisms. However, so far, the portfolio of successes has been mostly limited to highly abundant complexes or to structures that are relatively unambiguous and easy to identify through electron microscopy. In order to realize the full potential of this revolution, researchers would have to be able to pinpoint lower abundance species and obtain functional annotations on the state of objects of interest which would then be correlated to ultrastructural information to build a complete picture of the structure-function relationships underpinning biological processes. Fluorescence imaging at cryogenic conditions has the potential to be able to meet these demands. However, wide-field images acquired at low numeric aperture (NA) using air immersion objective have a low resolving power and cannot provide accurate enough three-dimensional (3D) localization to enable the assignment of functional annotations to individual objects of interest or target sample debulking to ensure the preservation of the structures of interest. It is therefore necessary to develop super-resolved cryo-fluorescence workflows capable of fulfilling this role and enabling new biological discoveries. In this chapter, we present the current state of development of two super-resolution cryogenic fluorescence techniques, superSIL-STORM and astigmatism-based 3D STORM, show their application to a variety of biological systems and discuss their advantages and limitations. We further discuss the future applicability to cryo-CLEM workflows though examples of practical application to the study of membrane protein complexes both in mammalian cells and in Escherichia coli.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Humanos , Animales , Imagenología Tridimensional/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos
4.
Nat Commun ; 15(1): 3992, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734767

RESUMEN

Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Complejo de la Endopetidasa Proteasomal , Proteómica , Ribosomas , Programas Informáticos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Ribosomas/ultraestructura , Ribosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Humanos , Proteómica/métodos , Poro Nuclear/ultraestructura , Poro Nuclear/metabolismo , Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Ácido Graso Sintasas/metabolismo , Aprendizaje Automático , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
5.
Nature ; 628(8006): 47-56, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570716

RESUMEN

Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.


Asunto(s)
Biología Celular , Células , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón/métodos , Microscopía por Crioelectrón/tendencias , Tomografía con Microscopio Electrónico/métodos , Tomografía con Microscopio Electrónico/tendencias , Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/ultraestructura , Biología Celular/instrumentación , Células/química , Células/citología , Células/metabolismo , Células/ultraestructura , Humanos
6.
Sci Adv ; 10(17): eadk6285, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669330

RESUMEN

Cryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyze biomolecules in situ by subtomogram averaging, yet data quality critically depends on specimen thickness. Cells that are too thick for transmission imaging can be thinned into lamellae by cryo-focused ion beam (cryo-FIB) milling. Despite being a crucial parameter directly affecting attainable resolution, optimal lamella thickness has not been systematically investigated nor the extent of structural damage caused by gallium ions used for FIB milling. We thus systematically determined how resolution is affected by these parameters. We find that ion-induced damage does not affect regions more than 30 nanometers from either lamella surface and that up to ~180-nanometer lamella thickness does not negatively affect resolution. This shows that there is no need to generate very thin lamellae and lamella thickness can be chosen such that it captures cellular features of interest, thereby opening cryo-ET also for studies of large complexes.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Galio/química
7.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38614100

RESUMEN

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Asunto(s)
Virus de la Lengua Azul , Proteínas de la Cápside , Cápside , Microscopía por Crioelectrón , ARN Viral , Empaquetamiento del Genoma Viral , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Virus de la Lengua Azul/metabolismo , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Animales , ARN Viral/metabolismo , ARN Viral/genética , Genoma Viral/genética , Ensamble de Virus , Tomografía con Microscopio Electrónico , Virión/metabolismo , Virión/genética , Virión/ultraestructura , Modelos Moleculares , Línea Celular , Cricetinae
8.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 336-349, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38606666

RESUMEN

Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging of complex biological specimens such as viral particles, cellular sections and, in some cases, whole cells. This enables the structural characterization of molecules in their near-native environments, without the need for purification or separation, thereby preserving biological information such as conformational states and spatial relationships between different molecular species. Subtomogram averaging is an image-processing workflow that allows users to leverage cryo-ET data to identify and localize target molecules, determine high-resolution structures of repeating molecular species and classify different conformational states. Here, STOPGAP, an open-source package for subtomogram averaging that is designed to provide users with fine control over each of these steps, is described. In providing detailed descriptions of the image-processing algorithms that STOPGAP uses, this manuscript is also intended to serve as a technical resource to users as well as for further community-driven software development.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Programas Informáticos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
9.
Nat Commun ; 15(1): 2660, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531877

RESUMEN

Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following fixation, staining, and sectioning, which limit resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) allows higher resolution imaging of unfixed cellular samples while preserving architecture, but it requires samples to be vitreous and thin enough for transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue via plunge-freezing and use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid at variable depth inside the tissue. Lamellae generated in Alzheimer's disease brain tissue reveal intact subcellular structures including components of autophagy and potential pathologic tau fibrils. Furthermore, we reveal intact compact myelin and functional cytoplasmic expansions. These images indicate that plasma FIB milling with cryo-ET may be used to elucidate nanoscale structures within the human brain.


Asunto(s)
Encéfalo , Tomografía con Microscopio Electrónico , Humanos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Transmisión , Autopsia
10.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506714

RESUMEN

The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.


Asunto(s)
Tomografía con Microscopio Electrónico , Matriz Extracelular , Transporte Biológico , Movimiento Celular , Citosol , Tomografía con Microscopio Electrónico/métodos , Matriz Extracelular/ultraestructura
11.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 247-258, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38512070

RESUMEN

Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.


Asunto(s)
Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Exactitud de los Datos , Flujo de Trabajo
12.
Nat Commun ; 15(1): 2090, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453943

RESUMEN

To solve three-dimensional structures of biological macromolecules in situ, large numbers of particles often need to be picked from cryo-electron tomograms. However, adoption of automated particle-picking methods remains limited because of their technical limitations. To overcome the limitations, we develop DeepETPicker, a deep learning model for fast and accurate picking of particles from cryo-electron tomograms. Training of DeepETPicker requires only weak supervision with low numbers of simplified labels, reducing the burden of manual annotation. The simplified labels combined with the customized and lightweight model architecture of DeepETPicker and accelerated pooling enable substantial performance improvement. When tested on simulated and real tomograms, DeepETPicker outperforms the competing state-of-the-art methods by achieving the highest overall accuracy and speed, which translate into higher authenticity and coordinates accuracy of picked particles and higher resolutions of final reconstruction maps. DeepETPicker is provided in open source with a user-friendly interface to support cryo-electron tomography in situ.


Asunto(s)
Aprendizaje Profundo , Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos
13.
mBio ; 15(4): e0286423, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38456679

RESUMEN

Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE: Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.


Asunto(s)
Malaria , Parásitos , Plasmodium , Toxoplasma , Animales , Plasmodium falciparum/metabolismo , Tomografía con Microscopio Electrónico , Proteínas Protozoarias/metabolismo , Parásitos/metabolismo , Interacciones Huésped-Parásitos , Toxoplasma/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(9): e2311160121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377189

RESUMEN

Glioblastomas (GBMs) are the most lethal primary brain tumors with limited survival, even under aggressive treatments. The current therapeutics for GBMs are flawed due to the failure to accurately discriminate between normal proliferating cells and distinctive tumor cells. Mitochondria are essential to GBMs and serve as potential therapeutical targets. Here, we utilize cryo-electron tomography to quantitatively investigate nanoscale details of randomly sampled mitochondria in their native cellular context of GBM cells. Our results show that compared with cancer-free brain cells, GBM cells own more inter-mitochondrial junctions of several types for communications. Furthermore, our tomograms unveil microtubule-dependent mitochondrial nanotunnel-like bridges in the GBM cells as another inter-mitochondrial structure. These quantified inter-mitochondrial features, together with other mitochondria-organelle and intra-mitochondrial ones, are sufficient to distinguish GBM cells from cancer-free brain cells under scrutiny with predictive modeling. Our findings decipher high-resolution inter-mitochondrial structural signatures and provide clues for diagnosis and therapeutic interventions for GBM and other mitochondria-related diseases.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Tomografía con Microscopio Electrónico , Encéfalo/patología , Mitocondrias/patología
15.
Nat Commun ; 15(1): 1311, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346988

RESUMEN

Actin mediates insulin secretion in pancreatic ß-cells through remodeling. Hampered by limited resolution, previous studies have offered an ambiguous depiction as depolymerization and repolymerization. We report the in situ structure of actin remodeling in INS-1E ß-cells during glucose-stimulated insulin secretion at nanoscale resolution. After remodeling, the actin filament network at the cell periphery exhibits three marked differences: 12% of actin filaments reorient quasi-orthogonally to the ventral membrane; the filament network mainly remains as cell-stabilizing bundles but partially reconfigures into a less compact arrangement; actin filaments anchored to the ventral membrane reorganize from a "netlike" to a "blooming" architecture. Furthermore, the density of actin filaments and microtubules around insulin secretory granules decreases, while actin filaments and microtubules become more densely packed. The actin filament network after remodeling potentially precedes the transport and release of insulin secretory granules. These findings advance our understanding of actin remodeling and its role in glucose-stimulated insulin secretion.


Asunto(s)
Actinas , Células Secretoras de Insulina , Secreción de Insulina , Actinas/metabolismo , Glucosa/metabolismo , Tomografía con Microscopio Electrónico , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Citoesqueleto de Actina/metabolismo
16.
Science ; 383(6686): eabm9903, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422126

RESUMEN

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Asunto(s)
Bacterias , Infecciones Bacterianas , Membrana Celular , Proteínas de Unión al GTP , Reconocimiento de Inmunidad Innata , Humanos , Citocinas/química , Tomografía con Microscopio Electrónico , Proteínas de Unión al GTP/química , Guanosina Trifosfato/química , Hidrólisis , Inmunidad Celular , Microscopía por Crioelectrón , Gasderminas/química , Proteínas de Unión a Fosfato/química , Conformación Proteica , Membrana Celular/química , Membrana Celular/inmunología , Caspasas Iniciadoras/química , Infecciones Bacterianas/inmunología , Bacterias/inmunología
17.
PLoS Biol ; 22(2): e3002533, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422169

RESUMEN

During host cell invasion, microsporidian spores translocate their entire cytoplasmic content through a thin, hollow superstructure known as the polar tube. To achieve this, the polar tube transitions from a compact spring-like state inside the environmental spore to a long needle-like tube capable of long-range sporoplasm delivery. The unique mechanical properties of the building blocks of the polar tube allow for an explosive transition from compact to extended state and support the rapid cargo translocation process. The molecular and structural factors enabling this ultrafast process and the structural changes during cargo delivery are unknown. Here, we employ light microscopy and in situ cryo-electron tomography to visualize multiple ultrastructural states of the Vairimorpha necatrix polar tube, allowing us to evaluate the kinetics of its germination and characterize the underlying morphological transitions. We describe a cargo-filled state with a unique ordered arrangement of microsporidian ribosomes, which cluster along the thin tube wall, and an empty post-translocation state with a reduced diameter but a thicker wall. Together with a proteomic analysis of endogenously affinity-purified polar tubes, our work provides comprehensive data on the infection apparatus of microsporidia and uncovers new aspects of ribosome regulation and transport.


Asunto(s)
Microsporidios , Proteómica , Esporas Fúngicas , Microsporidios/ultraestructura , Ribosomas , Tomografía con Microscopio Electrónico
18.
Cell ; 187(3): 563-584, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306982

RESUMEN

Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.


Asunto(s)
Biología , Microscopía Electrónica , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Microscopía Fluorescente , Tiempo , Simulación por Computador
19.
Nat Commun ; 15(1): 1376, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355696

RESUMEN

Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins.


Asunto(s)
Tomografía con Microscopio Electrónico , Esporas Bacterianas , Esporas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía Electrónica de Transmisión , Bacillus subtilis/metabolismo
20.
Curr Opin Struct Biol ; 84: 102765, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181688

RESUMEN

Cryo-electron microscopy single particle analysis (cryo-EM SPA) and cryo-electron tomography (cryo-ET) have historically been employed as distinct approaches for investigating molecular structures of disparate sample types, focusing on highly purified biological macromolecules and in situ cellular contexts, respectively. However, these techniques offer inherently complementary structural insights that, when combined, provide a more comprehensive understanding of complex biological systems. For example, if both techniques are applied to the same purified biological macromolecules, cryo-ET has the ability to resolve highly flexible yet strong signal features on an individual target molecule which will not be preserved in the high-resolution cryo-EM SPA results. In this review, we highlight recent achievements utilizing such applications to unveil new insights into the chromatin assembly and activities of DNA-protein assemblies. This convergence of cryo-EM SPA and cryo-ET holds great promise for elucidating new structural aspects of these essential molecular processes.


Asunto(s)
Tomografía con Microscopio Electrónico , Imagen Individual de Molécula , Microscopía por Crioelectrón/métodos , Proteínas/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA