Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932127

RESUMEN

Bovine torovirus (BToV) is an enteric pathogen that may cause diarrhea in calves and adult cattle, which could result in economic losses due to weight loss and decreased milk production. This study aimed to report the presence, the genetic characterization and the evolution of BToV in calves in Uruguay. BToV was detected in 7.9% (22/278) of fecal samples, being identified in dairy (9.2%, 22/239) but not beef (0.0%, 0/39) calves. BToV was detected in both diarrheic (14%, 6/43) and non-diarrheic (13.2%, 5/38) dairy calves. In addition, BToV was detected in the intestinal contents of 14.9% (7/47) of naturally deceased dairy calves. A complete genome (28,446 nucleotides) was obtained, which was the second outside Asia and the first in Latin America. In addition, partial S gene sequences were obtained to perform evolutionary analyses. Nucleotide and amino acid substitutions within and between outbreaks/farms were observed, alerting the continuous evolution of the virus. Through Bayesian analysis using BEAST, a recent origin (mid-60s) of BToV, possibly in Asia, was estimated, with two introductions into Uruguay from Asia and Europe in 2004 and 2013, respectively. The estimated evolutionary rate was 1.80 × 10-3 substitutions/site/year. Our findings emphasize the importance of continued surveillance and genetic characterization for the effective management and understanding of BToV's global epidemiology and evolution.


Asunto(s)
Enfermedades de los Bovinos , Heces , Genoma Viral , Filogenia , Infecciones por Torovirus , Torovirus , Animales , Uruguay/epidemiología , Bovinos , Torovirus/genética , Torovirus/aislamiento & purificación , Torovirus/clasificación , Heces/virología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Infecciones por Torovirus/veterinaria , Infecciones por Torovirus/virología , Infecciones por Torovirus/epidemiología , Diarrea/virología , Diarrea/veterinaria , Diarrea/epidemiología , Evolución Molecular
2.
Vet J ; 305: 106122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641200

RESUMEN

The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.


Asunto(s)
Coronavirus , Genética Inversa , Torovirus , Animales , Genética Inversa/métodos , Porcinos , Bovinos , Torovirus/genética , Coronavirus/genética , Infecciones por Torovirus/veterinaria , Infecciones por Torovirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Bovinos/virología , Animales Domésticos/virología
3.
J Vet Diagn Invest ; 35(6): 742-750, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37571922

RESUMEN

Calf diarrhea results in significant economic loss and is caused by a variety of pathogens, including enteric viruses. Many of these viruses, including bovine norovirus (BNoV), bovine torovirus (BToV), and bovine kobuvirus (BKoV), are recognized as the causative agents of diarrhea; however, they remain understudied as major pathogens. We developed a multiplex reverse-transcription quantitative real-time PCR (RT-qPCR) assay for rapid and simple detection of BNoV, BToV, and BKoV. Our method had high sensitivity and specificity, with detection limits of 1 × 102 copies/µL for BNoV, BToV, and BKoV, which is a lower detection limit than conventional RT-PCR for BNoV and BKoV and identical for BToV. We tested fecal samples from 167 diarrheic calves with our multiplex RT-qPCR method. Viral detection was superior to conventional RT-PCR methods in all samples. The diagnostic sensitivity of the multiplex RT-qPCR method (100%) is higher than that of the conventional RT-PCR methods (87%). Our assay can detect BNoV, BToV, and BKoV in calf feces rapidly and with high sensitivity and specificity.


Asunto(s)
Enfermedades de los Bovinos , Kobuvirus , Norovirus , Torovirus , Animales , Bovinos , Torovirus/genética , Norovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Kobuvirus/genética , Diarrea/diagnóstico , Diarrea/veterinaria , Heces , Enfermedades de los Bovinos/diagnóstico
4.
Viruses ; 15(8)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37632087

RESUMEN

Enterovirus G (EV-G) is prevalent in pig populations worldwide, and a total of 20 genotypes (G1 to G20) have been confirmed. Recently, recombinant EV-Gs carrying the papain-like cysteine protease (PLCP) gene of porcine torovirus have been isolated or detected, while their pathogenicity is poorly understood. In this study, an EV-G17-PLCP strain, 'EV-G/YN23/2022', was isolated from the feces of pigs with diarrhea, and the virus replicated robustly in numerous cell lines. The isolate showed the highest complete genome nucleotide (87.5%) and polyprotein amino acid (96.6%) identity in relation to the G17 strain 'IShi-Ya4' (LC549655), and a possible recombination event was detected at the 708 and 3383 positions in the EV-G/YN23/2022 genome. EV-G/YN23/2022 was nonlethal to piglets, but mild diarrhea, transient fever, typical skin lesions, and weight gain deceleration were observed. The virus replicated efficiently in multiple organs, and the pathological lesions were mainly located in the small intestine. All the challenged piglets showed seroconversion for EV-G/YN23/2022 at 6 to 9 days post-inoculation (dpi), and the neutralization antibody peaked at 15 dpi. The mRNA expression levels of IL-6, IL-18, IFN-α, IFN-ß, and ISG-15 in the peripheral blood mononuclear cells (PBMCs) were significantly up-regulated during viral infection. This is the first documentation of the isolation and pathogenicity evaluation of the EV-G17-PLCP strain in China. The results may advance our understanding of the evolution characteristics and pathogenesis of EV-G-PLCP.


Asunto(s)
Enterovirus Porcinos , Torovirus , Animales , Porcinos , Papaína/genética , Leucocitos Mononucleares , Virulencia , China , Calpaína , Diarrea
5.
Mol Microbiol ; 117(4): 837-850, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34967475

RESUMEN

Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes. We previously identified double membrane vesicles (DMVs) in the cytoplasm of cells infected with Berne virus (BEV), the prototype member of the Torovirus genus (Nidovirales Order). Our previous analysis by transmission electron microscopy suggested that the DMVs form a reticulovesicular network (RVN) analogous those described for the related severe acute respiratory syndrome coronavirus (SARS-CoV-1). Here, we used serial sectioning and electron tomography to characterize the architecture of torovirus replication organelles, and to learn about their biogenesis and dynamics during the infection. The formation of a RVN in BEV infected cells was confirmed, where the outer membranes of the DMVs are interconnected with each other and with the ER. Paired or zippered ER membranes connected with the DMVs were also observed, and likely represent early structures that evolve to give rise to DMVs. Also, paired membranes forming small spherule-like invaginations were observed at late time post-infection. Although resembling in size, the tomographic analysis show that these structures are clearly different from the true spherules described previously for coronaviruses. Hence, BEV shows important similarities, but also some differences, in the architecture of the replication organelles with other nidoviruses.


Asunto(s)
Torovirus , Tomografía con Microscopio Electrónico , Retículo Endoplásmico , Replicación Viral
6.
Transbound Emerg Dis ; 69(2): 598-608, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33555108

RESUMEN

Toroviruses (ToVs), closely related but genetically distinct from coronaviruses, are known to infect horses, cows, pigs, goats and humans, mainly causing enteritic disorders. However, due to the lack of an adaptive culture system, porcine ToV (PToV) has received less attention. In this study, we developed a novel serological detection method based on the PToV envelope spike subunit 1 (S1) protein for the first time, and compared it to an existing indirect enzyme-linked immunosorbent assay (ELISA) based on the nucleocapsid protein. By using the S1-based ELISA, we carried out the first seroepidemiological survey of PToV in China, assaying both specific IgG and IgA responses in 1,037 serum samples collected from diarrheic pigs in eastern China. There was a relatively high incidence of seropositivity in pigs of different ages, especially one-week-old piglets and sows (78% and 43%), the former probably reflecting maternal antibodies. Furthermore, 3/20 (15%) of faecal samples collected from one PToV-seropositive swine herd in Zhejiang province tested positive by RT-PCR. The complete PToV genome was sequenced from one of these samples, and its phylogenetic relationship with other full-length PToV sequences available in GenBank was determined. Our data provide the first serological evidence for PToV infection in pigs from China, which will help elucidate the potential pathogenicity of PToV in pigs.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de los Caballos , Enfermedades de los Porcinos , Infecciones por Torovirus , Torovirus , Animales , Anticuerpos Antivirales , Bovinos , China/epidemiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Caballos , Filogenia , Porcinos , Torovirus/genética , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/veterinaria
7.
J Virol ; 96(3): e0156121, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817201

RESUMEN

Historically part of the coronavirus (CoV) family, torovirus (ToV) was recently classified in the new family Tobaniviridae. While reverse genetics systems have been established for various CoVs, none exist for ToVs. Here, we developed a reverse genetics system using an infectious full-length cDNA clone of bovine ToV (BToV) in a bacterial artificial chromosome (BAC). Recombinant BToV harboring genetic markers had the same phenotype as wild-type (wt) BToV. To generate two types of recombinant virus, the hemagglutinin-esterase (HE) gene was edited, as cell-adapted wtBToV generally loses full-length HE (HEf), resulting in soluble HE (HEs). First, recombinant viruses with HEf and hemagglutinin (HA)-tagged HEf or HEs genes were rescued. These exhibited no significant differences in their effect on virus growth in HRT18 cells, suggesting that HE is not essential for viral replication in these cells. Thereafter, we generated a recombinant virus (rEGFP) wherein HE was replaced by the enhanced green fluorescent protein (EGFP) gene. rEGFP expressed EGFP in infected cells but showed significantly lower levels of viral growth than wtBToV. Moreover, rEGFP readily deleted the EGFP gene after one passage. Interestingly, rEGFP variants with two mutations (C1442F and I3562T) in nonstructural proteins (NSPs) that emerged during passage exhibited improved EGFP expression, EGFP gene retention, and viral replication. An rEGFP into which both mutations were introduced displayed a phenotype similar to that of these variants, suggesting that the mutations contributed to EGFP gene acceptance. The current findings provide new insights into BToV, and reverse genetics will help advance the current understanding of this neglected pathogen. IMPORTANCE ToVs are diarrhea-causing pathogens detected in various species, including humans. Through the development of a BAC-based BToV, we introduced the first reverse genetics system for Tobaniviridae. Utilizing this system, recombinant BToVs with a full-length HE gene were generated. Remarkably, although clinical BToVs generally lose the HE gene after a few passages, some recombinant viruses generated in the current study retained the HE gene for up to 20 passages while accumulating mutations in NSPs, which suggested that these mutations may be involved in HE gene retention. The EGFP gene of recombinant viruses was unstable, but rEGFP into which two NSP mutations were introduced exhibited improved EGFP expression, gene retention, and viral replication. These data suggested the existence of an NSP-based acceptance or retention mechanism for exogenous RNA or HE genes. Recombinant BToVs and reverse genetics are powerful tools for understanding fundamental viral processes, pathogenesis, and BToV vaccine development.


Asunto(s)
ADN Complementario , Genoma Viral , Genética Inversa , Torovirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Células Cultivadas , Cromosomas Artificiales Bacterianos , Clonación Molecular , Genes Reporteros , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Mutación , Plásmidos/genética , Torovirus/aislamiento & purificación , Infecciones por Torovirus , Transfección
8.
Viruses ; 13(3)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800523

RESUMEN

Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.


Asunto(s)
Infecciones por Torovirus/virología , Torovirus/fisiología , Animales , Coronavirus/genética , Coronavirus/fisiología , Infecciones por Coronavirus/virología , Humanos , Torovirus/genética
9.
Arch Virol ; 166(7): 2017-2025, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33881617

RESUMEN

Bovine torovirus (BToV) is an important diarrhea-causing pathogen affecting bovines. To facilitate BToV detection, a reverse transcription insulated isothermal PCR (RT-iiPCR) assay was developed that targets the BToV M gene with high specificity and reproducibility. The assay has a limit of detection of 23 copies/µL. Out of 69 diarrheic fecal samples from yaks collected on six farms in Tibet and Sichuan provinces in China, 11.59% (8/69) tested positive for BToV using this assay. The full-length spike (S) and hemagglutinin-esterase (HE) genes of three positive samples were subsequently sequenced. Notably, an identical recombination event was identified in the S1 subunit of the S protein of three isolates. All of the HE genes were found to belong to genotype III and shared the same unique aa variation (P44S) in the esterase domain. This study is the first confirmation of BToV in yaks and the first report of an S gene recombination event in BToV. Our findings will enhance the current understanding of the molecular characteristics and genetic evolution of BToV.


Asunto(s)
Enfermedades de los Bovinos/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transcripción Reversa/genética , Infecciones por Torovirus/virología , Torovirus/genética , Animales , Bovinos , China , Heces/virología , Genes Virales/genética , Genotipo , Filogenia , ARN Viral/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , Tibet , Infecciones por Torovirus/veterinaria , Proteínas Virales/genética
10.
ACS Chem Biol ; 16(10): 1951-1960, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33769035

RESUMEN

O-Acetylation is a common naturally occurring modification of carbohydrates and is especially widespread in sialic acids, a family of nine-carbon acidic monosaccharides. O-Acetyl migration within the exocyclic glycerol-like side chain of mono-O-acetylated sialic acid reported previously was from the C7- to C9-hydroxyl group with or without an 8-O-acetyl intermediate, which resulted in an equilibrium that favors the formation of the 9-O-acetyl sialic acid. Herein, we provide direct experimental evidence demonstrating that O-acetyl migration is bidirectional, and the rate of equilibration is influenced predominantly by the pH of the sample. While the O-acetyl group on sialic acids and sialoglycans is stable under mildly acidic conditions (pH < 5, the rate of O-acetyl migration is extremely low), reversible O-acetyl migration is observed readily at neutral pH and becomes more significant when the pH increases to slightly basic. Sialoglycan microarray studies showed that esterase-inactivated porcine torovirus hemagglutinin-esterase bound strongly to sialoglycans containing a more stable 9-N-acetylated sialic acid analog, but these compounds were less resistant to periodate oxidation treatment compared to their 9-O-acetyl counterparts. Together with prior studies, the results support the possible influence of sialic acid O-acetylation and O-acetyl migration to host-microbe interactions and potential application of the more stable synthetic N-acetyl mimics.


Asunto(s)
Hemaglutininas Virales/metabolismo , Polisacáridos/metabolismo , Ácidos Siálicos/metabolismo , Proteínas Virales de Fusión/metabolismo , Acetilación , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Hemaglutininas Virales/química , Estructura Molecular , Oxidación-Reducción , Ácido Peryódico/química , Fenilendiaminas/química , Polisacáridos/análisis , Polisacáridos/química , Unión Proteica , Ácidos Siálicos/análisis , Ácidos Siálicos/química , Torovirus/enzimología , Proteínas Virales de Fusión/química
11.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177195

RESUMEN

Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although historically, it belonged to the Coronavirus (CoV) family. The nucleocapsid (N) proteins of CoVs are predominantly localized in the cytoplasm, where the viruses replicate, but in some cases the proteins are partially located in the nucleolus. Many studies have investigated the subcellular localization and nucleocytoplasmic trafficking signals of the CoV N proteins, but little is known about ToV N proteins. Here, we studied the subcellular localization of the bovine ToV (BToV) N protein (BToN) and characterized its nucleocytoplasmic trafficking signals. Unlike other CoVs, BToN in infected cells was transported mainly to the nucleolus during early infection but was distributed predominantly in the nucleoplasm rather than in the nucleolus during late infection. Interestingly, a small quantity of BToN was detected in the cytoplasm during infection. Examination of a comprehensive set of substitution or deletion mutants of BToN fused with enhanced green fluorescent protein (EGFP) revealed that clusters of arginine (R) residues comprise nuclear/nucleolar localization signals (NLS/NoLS), and the C-terminal region served as a chromosomal maintenance 1 (CRM1)-independent nuclear export signal (NES). Moreover, recombinant viruses with mutations in the NLS/NoLS, but retaining nuclear accumulation, were successfully rescued and showed slightly reduced growth ability, while the virus that lost the NLS/NoLS-mediated nuclear accumulation of BToN was not rescued. These results indicate that BToN uniquely accumulates mainly in nuclear compartments during infection, regulated by an R-rich NLS/NoLS and a CRM1-independent NES, and that the BToN accumulation in the nuclear compartment driven by NLS/NoLS is important for virus growth.IMPORTANCE ToVs are diarrhea-causing pathogens detected in many species, including humans. BToV has spread worldwide, leading to economic loss, and there is currently no treatment or vaccine available. Positive-stranded RNA viruses, including ToVs, replicate in the cytoplasm, and their structural proteins generally accumulate in the cytoplasm. Interestingly, BToN accumulated predominantly in the nucleus/nucleolus during all infectious processes, with only a small fraction accumulating in the cytoplasm despite being a major structural protein. Furthermore, we identified unique nucleocytoplasmic trafficking signals and demonstrated the importance of NLS/NoLS for virus growth. This study is the first to undertake an in-depth investigation of the subcellular localization and intracellular trafficking signals of BToN. Our findings additionally suggest that the NLS/NoLS-mediated nuclear accumulation of BToN is important for virus replication. An understanding of the unique features of BToV may provide novel insights into the assembly mechanisms of not only ToVs but also other positive-stranded RNA viruses.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Torovirus/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Mutación , Señales de Exportación Nuclear , Señales de Localización Nuclear , Proteínas de la Nucleocápside/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Torovirus/crecimiento & desarrollo , Torovirus/metabolismo , Replicación Viral/genética
12.
BMC Vet Res ; 16(1): 272, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758221

RESUMEN

BACKGROUND: Coronaviruses are notorious pathogens that cause diarrheic and respiratory diseases in humans and animals. Although the epidemiology and pathogenicity of coronaviruses have gained substantial attention, little is known about bovine coronavirus in cattle, which possesses a close relationship with human coronavirus. Bovine torovirus (BToV) is a newly identified relevant pathogen associated with cattle diarrhoea and respiratory diseases, and its epidemiology in the Chinese cattle industry remains unknown. RESULTS: In this study, a total of 461 diarrhoeic faecal samples were collected from 38 different farms in three intensive cattle farming regions and analysed. Our results demonstrated that BToV is present in China, with a low prevalence rate of 1.74% (8/461). The full-length spike genes were further cloned from eight clinical samples (five farms in Henan Province). Phylogenetic analysis showed that two different subclades of BToV strains are circulating in China. Meanwhile, the three BToV strains identified from dairy calves, 18,307, 2YY and 5YY, all contained the amino acid variants R614Q, I801T, N841S and Q885E. CONCLUSIONS: This is the first report to confirm the presence of BToV in beef and dairy calves in China with diarrhea, which extend our understanding of the epidemiology of BToVs worldwide.


Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Torovirus/veterinaria , Torovirus/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , China/epidemiología , Diarrea/epidemiología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Filogenia , ARN Viral , Análisis de Secuencia de ADN , Torovirus/genética , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/virología , Proteínas Virales/genética
13.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727876

RESUMEN

The 3C-like protease (3CLpro) of nidovirus plays an important role in viral replication and manipulation of host antiviral innate immunity, which makes it an ideal antiviral target. Here, we characterized that porcine torovirus (PToV; family Tobaniviridae, order Nidovirales) 3CLpro autocatalytically releases itself from the viral precursor protein by self-cleavage. Site-directed mutagenesis suggested that PToV 3CLpro, as a serine protease, employed His53 and Ser160 as the active-site residues. Interestingly, unlike most nidovirus 3CLpro, the P1 residue plays a less essential role in N-terminal self-cleavage of PToV 3CLpro Substituting either P1 or P4 residue of substrate alone has little discernible effect on N-terminal cleavage. Notably, replacement of the two residues together completely blocks N-terminal cleavage, suggesting that N-terminal self-cleavage of PToV 3CLpro is synergistically affected by both P1 and P4 residues. Using a cyclized luciferase-based biosensor, we systematically scanned the polyproteins for cleavage sites and identified (FXXQ↓A/S) as the main consensus sequences. Subsequent homology modeling and biochemical experiments suggested that the protease formed putative pockets S1 and S4 between the substrate. Indeed, mutants of both predicted S1 (D159A, H174A) and S4 (P62G/L185G) pockets completely lost the ability of cleavage activity of PToV 3CLpro In conclusion, the characterization of self-processing activities and substrate specificities of PToV 3CLpro will offer helpful information for the mechanism of nidovirus 3C-like proteinase's substrate specificities and the rational development of the antinidovirus drugs.IMPORTANCE Currently, the active-site residues and substrate specificities of 3C-like protease (3CLpro) differ among nidoviruses, and the detailed catalytic mechanism remains largely unknown. Here, porcine torovirus (PToV) 3CLpro cleaves 12 sites in the polyproteins, including its N- and C-terminal self-processing sites. Unlike coronaviruses and arteriviruses, PToV 3CLpro employed His53 and Ser160 as the active-site residues that recognize a glutamine (Gln) at the P1 position. Surprisingly, mutations of P1-Gln impaired the C-terminal self-processing but did not affect N-terminal self-processing. The "noncanonical" substrate specificity for its N-terminal self-processing was attributed to the phenylalanine (Phe) residue at the P4 position in the N-terminal site. Furthermore, a double glycine (neutral) substitution at the putative P4-Phe-binding residues (P62G/L185G) abolished the cleavage activity of PToV 3CLpro suggested the potential hydrophobic force between the PToV 3CLpro and P4-Phe side chains.


Asunto(s)
Proteasas 3C de Coronavirus/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Infecciones por Torovirus/embriología , Torovirus/enzimología , Animales , Proteasas 3C de Coronavirus/genética , Células HEK293 , Humanos , Especificidad por Sustrato , Porcinos , Torovirus/genética , Infecciones por Torovirus/genética
14.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604730

RESUMEN

The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most ß-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein-carbohydrate interaction (PCI) or lectin-carbohydrate interaction (LCI). The HE gene was transmitted to a ß-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA-specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA-ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the ß-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein-glycan interaction and PCI stereochemistry potentiate the SA-ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/virología , Evolución Molecular , Interacciones Microbiota-Huesped/fisiología , Neumonía Viral/virología , Receptores Virales/metabolismo , Internalización del Virus , Acetilesterasa/metabolismo , Animales , Betacoronavirus/genética , Sitios de Unión , COVID-19 , Línea Celular , Coronavirus/genética , Esterasas , Transferencia de Gen Horizontal , Glicosaminoglicanos/metabolismo , Hemaglutininas Virales/genética , Humanos , Lectinas/metabolismo , Pandemias , Polisacáridos , Receptores Virales/química , SARS-CoV-2 , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Torovirus , Proteínas Virales de Fusión/genética
15.
Arch Virol ; 165(7): 1577-1583, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32388597

RESUMEN

Bovine torovirus (BToV) is a diarrhea-causing pathogen. In this study, 92 diarrheic fecal samples from five farms in four provinces in China were collected and tested for BToV using a RT-PCR assay, and 21.73% samples were found to be BToV positive. Moreover, two complete BToV genome sequences (MN073058 and MN073059) were obtained from the clinical samples, which were 28,297 and 28,301 nucleotides in length, respectively. Sequence analysis showed that the two isolates shared 10 identical amino acid mutations in the S protein compared to the complete S sequences of BToV available in the GenBank database. In addition, seven consecutive amino acid mutations were found from aa 1,486 to 1,492 in the S protein of isolate MN073058. Moreover, the two isolates shared one identical amino acid mutation in the receptor binding sites of the HE protein. To the best of our knowledge, this is the first report on the epidemic and genomic characterization of BToV in China, which is helpful for further understanding the genetic evolution of BToV.


Asunto(s)
Enfermedades de los Bovinos/virología , Diarrea/veterinaria , Infecciones por Torovirus/veterinaria , Torovirus/aislamiento & purificación , Animales , Bovinos , Diarrea/virología , Heces/virología , Genoma Viral , Genómica , Filogenia , Torovirus/clasificación , Torovirus/genética , Infecciones por Torovirus/virología , Proteínas Virales/genética
16.
J Vet Med Sci ; 82(3): 314-319, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-31941845

RESUMEN

It can be judged that if the detection frequency of prevalent pathogenic viruses decreases, biosecurity has been enhanced. To monitor bovine farm biosecurity levels, one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) for the simultaneous detection of group A rotavirus (RVA), bovine torovirus (BToV), bovine enterovirus (BEV), and bovine coronavirus (BCV) was designed, with the aim of configuring candidates for "viral pathogen indicators". A total of 322 bovine fecal samples were collected from calves aged less than three months at 48 bovine farms in Ibaraki and Chiba prefectures. At farm A, 20 calves were selected and sampled weekly for 12 weeks (184 samples); at farm B, 10 calves were selected and sampled for five weeks (50 samples); and at the rest of the 46 farms, 88 calves were sampled once. The screening on the 358 field samples proved positive for 27 RVA, 4 BToV, 55 BEV, and 52 BCV. In the successive sampling, RVA was detected once but not continuously, whereas BEV and BCV were detected in succession for up to five weeks. The results revealed that RVA was the primary agent among the positive samples obtained from calves aged three weeks or less, while BEV was the primary among those from the older than three weeks old. They can be employed as useful viral pathogen indicators for soundly evaluating biosecurity at bovine farms.


Asunto(s)
Enfermedades de los Bovinos/virología , Coronavirus Bovino/aislamiento & purificación , Enterovirus Bovino/aislamiento & purificación , Rotavirus/aislamiento & purificación , Torovirus/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/prevención & control , Heces/virología , Japón/epidemiología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/veterinaria
17.
Arch Virol ; 165(2): 471-477, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863265

RESUMEN

We sequenced the complete genome of a porcine torovirus (PToV) strain from Japan for the first time. Whole-genome analysis revealed that this strain (Iba/2018) has a mosaic sequence composed of at least three genome backgrounds, related to US, Chinese and German PToV strains. Clear recombination breakpoints were detected in the M and HE coding regions. A similarity plot and structural analysis demonstrated that the HE coding region exhibits the highest diversity, and the most sequence variation was found in the lectin domain. PToVs were divided into two lineages in the HE region, whereas clear lineages were not found in other regions.


Asunto(s)
Heces/virología , Genoma Viral , Infecciones por Torovirus/veterinaria , Torovirus/genética , Torovirus/aislamiento & purificación , Secuenciación Completa del Genoma , Animales , Biología Computacional , Evolución Molecular , Humanos , Japón , Recombinación Genética , Porcinos , Infecciones por Torovirus/virología
18.
PLoS One ; 14(7): e0219428, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31306441

RESUMEN

Autophagy is a conserved eukaryotic process that mediates lysosomal degradation of cytoplasmic macromolecules and damaged organelles, also exerting an important role in the elimination of intracellular pathogens. Despite the antiviral role of autophagy, many studies suggest that some positive-stranded RNA viruses exploit this pathway to facilitate their own replication. In this study, we demonstrate that the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae Family, Nidovirales Order), induces autophagy at late times post-infection. Conversion of microtubule associated protein 1B light chain 3 (LC3) from cytosolic (LC3 I) to the membrane associated form (LC3 II), a canonical marker of autophagosome formation, is enhanced in BEV infected cells. However, neither autophagy induction, via starvation, nor pharmacological blockade significantly affect BEV replication. Similarly, BEV infection is not altered in autophagy deficient cells lacking either Beclin 1 or LC3B protein expression. Unexpectedly, the cargo receptor p62, a selective autophagy receptor, aggregates within the region where the BEV main protease (Mpro) localizes. This finding, coupled with observation that BEV replication also induces ER stress at the time when selective autophagy is taking place, suggests that the autophagy pathway is activated in response to the hefty accumulation of virus-encoded polypeptides during the late phase of BEV infection.


Asunto(s)
Autofagia , Infecciones por Torovirus/virología , Torovirus/fisiología , Replicación Viral , Animales , Autofagosomas , Beclina-1/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Caballos , Humanos , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Transducción de Señal , Infecciones por Torovirus/fisiopatología
19.
Transbound Emerg Dis ; 66(2): 1023-1028, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30431236

RESUMEN

Enterovirus species G (EV-G) comprises a highly diversity of 20 genotypes that is prevalent in pig populations, with or without diarrhoea. In the present study, a novel EV-G strain (KOR/KNU-1811/2018) that resulted from cross-order recombination was discovered in diagnostic faecal samples from neonatal pigs with diarrhoea that were negative for swine enteric coronaviruses and rotavirus. The recombinant EV-G genome possessed an exogenous 594-nucleotide (198-amino acid) sequence, flanked by two viral 3Cpro cleavage sites at the 5' and 3' ends in its 2C/3A junction region. This insertion encoded a predicted protease similar to the porcine torovirus papain-like cysteine protease (PLCP), which was recently found in the EV-G1, -G2, and -G17 genomes. The complete KNU-1811 genome shared 73.7% nucleotide identity with a prototype EV-G1 strain, but had 83.9%-86.7% sequence homology with the global EV-G1-PLCP strains. Genetic and phylogenetic analyses demonstrated that the Korean recombinant EV-G's own VP1 and inserted foreign PLCP genes are most closely related independently to contemporary chimeric G1-PLCP and G17-PLCP strains respectively. These results implied that the torovirus-derived PLCP gene might have undergone continuous nucleotide mutations in the respective EV-G genome following its independent acquisition through naturally occurring recombination. Our results advance the understanding of the genetic evolution of EV-G driven by infrequent viral recombination events, by which EV-G populations laterally gain an exotic gene encoding a virulence factor from heterogeneous virus families, thereby causing clinical disease in swine.


Asunto(s)
Proteasas de Cisteína/genética , Diarrea/veterinaria , Infecciones por Enterovirus/veterinaria , Enterovirus Porcinos/genética , Virus Reordenados/genética , Recombinación Genética , Torovirus/genética , Secuencia de Aminoácidos , Animales , Diarrea/epidemiología , Diarrea/virología , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Enterovirus Porcinos/aislamiento & purificación , Evolución Molecular , Heces/virología , Genoma Viral , Genotipo , Filogenia , República de Corea/epidemiología , Homología de Secuencia , Porcinos , Enfermedades de los Porcinos
20.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950409

RESUMEN

The genus Torovirus (subfamily Torovirinae, family Coronaviridae, order Nidovirales) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.IMPORTANCE Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.


Asunto(s)
Perfilación de la Expresión Génica , Biosíntesis de Proteínas , Torovirus/crecimiento & desarrollo , Torovirus/genética , Transcripción Genética , Proteínas Virales/biosíntesis , Animales , Células Cultivadas , Caballos , Interacciones Huésped-Patógeno , Análisis de Secuencia de ARN , Proteínas Virales/genética , Cultivo de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...