Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.065
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604061

RESUMEN

Ochratoxin A (OTA) is a common fungal toxin frequently detected in food and human plasma samples. Currently, the physiologically based toxicokinetic (PBTK) model plays an active role in dose translation and can improve and enhance the risk assessment of toxins. In this study, the PBTK model of OTA in rats and humans was established based on knowledge of OTA-specific absorption, distribution, metabolism, and excretion (ADME) in order to better explain the disposition of OTA in humans and the discrepancies with other species. The models were calibrated and optimized using the available kinetic and toxicokinetic (TK) data, and independent test datasets were used for model evaluation. Subsequently, sensitivity analyses and population simulations were performed to characterize the extent to which variations in physiological and specific chemical parameters affected the model output. Finally, the constructed models were used for dose extrapolation of OTA, including the rat-to-human dose adjustment factor (DAF) and the human exposure conversion factor (ECF). The results showed that the unbound fraction (Fup) of OTA in plasma of rat and human was 0.02-0.04% and 0.13-4.21%, respectively. In vitro experiments, the maximum enzyme velocity (Vmax) and Michaelis-Menten constant (Km) of OTA in rat and human liver microsomes were 3.86 and 78.17 µg/g min-1, 0.46 and 4.108 µg/mL, respectively. The predicted results of the model were in good agreement with the observed data, and the models in rats and humans were verified. The PBTK model derived a DAF of 0.1081 between rats and humans, whereas the ECF was 2.03. The established PBTK model can be used to estimate short- or long-term OTA exposure levels in rats and humans, with the capacity for dose translation of OTA to provide the underlying data for risk assessment of OTA.


Asunto(s)
Modelos Biológicos , Ocratoxinas , Toxicocinética , Ocratoxinas/toxicidad , Ocratoxinas/farmacocinética , Animales , Ratas , Humanos , Medición de Riesgo , Masculino
2.
Environ Int ; 186: 108617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599027

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.


Asunto(s)
Microplásticos , Nanopartículas , Toxicocinética , Humanos , Microplásticos/toxicidad , Medición de Riesgo , Nanopartículas/química , Nanopartículas/toxicidad , Exposición a Riesgos Ambientales , Modelos Biológicos , Distribución Tisular , Tamaño de la Partícula
3.
Ecotoxicol Environ Saf ; 277: 116351, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653027

RESUMEN

The increasing concentration of Antimony (Sb) in ecological environments has raised serious concerns about its potential biotoxicological impact. This study investigated the toxicokinetics, Global DNA Methylation (GDM), biomarker expression, and Integrated Biological Response (IBR) of Sb at different concentrations in zebrafish. The toxic mechanism of Sb exposure was simulated using molecular dynamics (MD). The results showed that significant differences effect existed (BCFk: liver > ovary > gut > brain) and uptake saturation phenomenon of Sb among zebrafish tissues. Over a 54-day exposure period, the liver emerged as the main target site for Sb-induced GDM, and the restoration was slower than in other tissues during the 54-day recovery period. Moreover, the concentration of Sb had a significant impact on the normally expression of biomarkers, with GSTM1 inhibited and MTF2, MT1, TET3, and p53 showing varying degrees of activation at different Sb concentrations. This could be attributed to Sb3+ potentially occupying the active site or tightly binding to the deep cavity of these genes. The IBR and MD results highlighted DNMT1 as the most sensitive biomarker among those assessed. This heightened sensitivity can be attributed to the stable binding of Sb3+ to DNMT1, resulting in alterations in the conformation of DNMT1's catalytic domain and inhibition of its activity. Consequently, this disruption leads to damage to the integrity of GDM. The study suggests that DNA methylation could serve as a valuable biomarker for assessing the ecotoxicological impact of Sb exposure. It contributes to a better understanding of the toxicity mechanisms in aquatic environments caused potential pollutants.


Asunto(s)
Antimonio , Bioacumulación , Metilación de ADN , Contaminantes Químicos del Agua , Pez Cebra , Animales , Antimonio/toxicidad , Metilación de ADN/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/metabolismo , Femenino , Toxicocinética , Simulación de Dinámica Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo
4.
ACS Biomater Sci Eng ; 10(4): 2534-2551, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38525821

RESUMEN

In vitro testing methods offer valuable insights into the corrosion vulnerability of metal implants and enable prompt comparison between devices. However, they fall short in predicting the extent of leaching and the biodistribution of implant byproducts under in vivo conditions. Physiologically based toxicokinetic (PBTK) models are capable of quantitatively establishing such correlations and therefore provide a powerful tool in advancing nonclinical methods to test medical implants and assess patient exposure to implant debris. In this study, we present a multicompartment PBTK model and a simulation engine for toxicological risk assessment of vascular stents. The mathematical model consists of a detailed set of constitutive equations that describe the transfer of nickel ions from the device to peri-implant tissue and circulation and the nickel mass exchange between blood and the various tissues/organs and excreta. Model parameterization was performed using (1) in-house-produced data from immersion testing to compute the device-specific diffusion parameters and (2) full-scale animal in situ implantation studies to extract the mammalian-specific biokinetic functions that characterize the time-dependent biodistribution of the released ions. The PBTK model was put to the test using a simulation engine to estimate the concentration-time profiles, along with confidence intervals through probabilistic Monte Carlo, of nickel ions leaching from the implanted devices and determine if permissible exposure limits are exceeded. The model-derived output demonstrated prognostic conformity with reported experimental data, indicating that it may provide the basis for the broader use of modeling and simulation tools to guide the optimal design of implantable devices in compliance with exposure limits and other regulatory requirements.


Asunto(s)
Modelos Biológicos , Níquel , Animales , Humanos , Níquel/toxicidad , Distribución Tisular , Toxicocinética , Stents/efectos adversos , Iones , Mamíferos
5.
Fa Yi Xue Za Zhi ; 40(1): 37-42, 2024 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500459

RESUMEN

OBJECTIVES: To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine (MDMA) and its metabolite 4,5-methylene dioxy amphetamine (MDA) in rats after single and continuous administration of MDMA, providing reference data for the forensic identification of MDMA. METHODS: A total of 24 rats in the single administration group were randomly divided into 5, 10 and 20 mg/kg experimental groups and the control group, with 6 rats in each group. The experimental group was given intraperitoneal injection of MDMA, and the control group was given intraperitoneal injection of the same volume of normal saline as the experimental group. The amount of 0.5 mL blood was collected from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. In the continuous administration group, 24 rats were randomly divided into the experimental group (18 rats) and the control group (6 rats). The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5, 7, 9, 11, 13, 15, 17 mg/kg per day, respectively, while the control group was given the same volume of normal saline as the experimental group by intraperitoneal injection. On the eighth day, the experimental rats were randomly divided into 5, 10 and 20 mg/kg dose groups, with 6 rats in each group. MDMA was injected intraperitoneally, and the control group was injected intraperitoneally with the same volume of normal saline as the experimental group. On the eighth day, 0.5 mL of blood was taken from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels, and statistical software was employed for data analysis. RESULTS: In the single-administration group, peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration, respectively, with the largest detection time limit of 12 h. In the continuous administration group, peak concentrations were reached at 30 min and 1.5 h after administration, respectively, with the largest detection time limit of 10 h. Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows: T=10.362C-1.183, R2=0.974 6; T=7.397 3C-0.694, R2=0.961 5 (T: injection time; C: concentration ratio of MDMA to MDA in plasma). CONCLUSIONS: The toxicokinetic data of MDMA and its metabolite MDA in rats, obtained through single and continuous administration, including peak concentration, peak time, detection time limit, and the relationship between concentration ratio and administration time, provide a theoretical and data foundation for relevant forensic identification.


Asunto(s)
3,4-Metilenodioxianfetamina , Anfetaminas , N-Metil-3,4-metilenodioxianfetamina , Ratas , Animales , Anfetamina , N-Metil-3,4-metilenodioxianfetamina/toxicidad , 3,4-Metilenodioxianfetamina/análisis , Toxicocinética , Solución Salina
6.
Toxicol Appl Pharmacol ; 484: 116879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431230

RESUMEN

In vitro methods are widely used in modern toxicological testing; however, the data cannot be directly employed for risk assessment. In vivo toxicity of chemicals can be predicted from in vitro data using physiologically based toxicokinetic (PBTK) modelling-facilitated reverse dosimetry (PBTK-RD). In this study, a minimal-PBTK model was constructed to predict the in-vivo kinetic profile of fenarimol (FNL) in rats and humans. The model was verified by comparing the observed and predicted pharmacokinetics of FNL for rats (calibrator) and further applied to humans. Using the PBTK-RD approach, the reported in vitro developmental toxicity data for FNL was translated to in vivo dose-response data to predict the assay equivalent oral dose in rats and humans. The predicted assay equivalent rat oral dose (36.46 mg/kg) was comparable to the literature reported in vivo BMD10 value (22.8 mg/kg). The model was also employed to derive the chemical-specific adjustment factor (CSAF) for interspecies toxicokinetics variability of FNL. Further, Monte Carlo simulations were performed to predict the population variability in the plasma concentration of FNL and to derive CSAF for intersubject human kinetic differences. The comparison of CSAF values for interspecies and intersubject toxicokinetic variability with their respective default values revealed that the applied uncertainty factors were adequately protective.


Asunto(s)
Modelos Biológicos , Pirimidinas , Ratas , Humanos , Animales , Toxicocinética , Método de Montecarlo , Medición de Riesgo
7.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535793

RESUMEN

Ochratoxin A (OTA), a mycotoxin commonly found in feedstuffs, is known for its detrimental effects on the kidneys and liver, posing significant health risks to animals and humans. This study investigated the toxicokinetics, excretion patterns, and milk transmission of Ochratoxin A (OTA) in lactating sows. The sows were administered a single oral dose of 500 µg/kg BW (body weight), followed by the systematic sampling of plasma, feces, urine, and milk. Plasma samples were collected at 0, 5, 15, and 30 min, and 1, 2, 3, 6, 9, 12, 24, 48, 72, 88, 96, and 120 h post administration. Feces samples were collected at 6 h intervals for the first 12 h, then at 12 h intervals until 120 h, while urine samples were collected at 6 h intervals up to 120 h. Milk samples were collected at 0, 6, 12, 24, 36, 48, 72, 96, and 120 h. The concentration of OTA and its primary metabolite OTα were quantitatively analyzed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results revealed that the peak plasma concentrations of OTA (920.25 ± 88.46 µg/L) were observed at 9 h following administration. The terminal elimination half-life was recorded at 78.47 ± 7.68 h, with a volume of distribution of 0.16 ± 0.003 L/kg. Moreover, this study documented the excretion of OTA and OTα across a span of 120 h, revealing that feces and urine accounted for 18.70 ± 0.04% and 8.40 ± 0.002% of the total intake amounts, respectively (calculated based on substance amounts). Furthermore, this experiment detected OTA residues in the milk of lactating sows, with the milk-to-plasma (M/P) ratio initially increasing from 0.06 to 0.46 within the first 24 h following OTA ingestion. These findings offer an exhaustive temporal analysis of OTA's toxicokinetics in lactating sows, emphasizing its pervasive distribution and elimination through various bodily excreta.


Asunto(s)
Lactancia , Leche , Ocratoxinas , Animales , Femenino , Humanos , Cromatografía Liquida , Porcinos , Espectrometría de Masas en Tándem , Toxicocinética
8.
Arch Toxicol ; 98(5): 1383-1398, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485782

RESUMEN

Homosalate (HMS) is a UV filter used in sunscreens and personal care products as a mixture of cis- and trans-isomers. Systemic absorption after sunscreen use has been demonstrated in humans, and concerns have been raised about possible endocrine activity of HMS, making a general population exposure assessment desirable. In a previous study, it was shown that the oral bioavailability of cis-HMS (cHMS) is lower than that of trans-HMS (tHMS) by a factor of 10, calling for a separate evaluation of both isomers in exposure and risk assessment. The aim of the current study is the investigation of HMS toxicokinetics after dermal exposure. Four volunteers applied a commercial sunscreen containing 10% HMS to their whole body under regular-use conditions (18-40 mg HMS (kg bw)-1). Parent HMS isomers and hydroxylated and carboxylic acid metabolites were quantified using authentic standards and isotope dilution analysis. Further metabolites were investigated semi-quantitatively. Elimination was delayed and slower compared to the oral route, and terminal elimination half-times were around 24 h. After dermal exposure, the bioavailability of cHMS was a factor of 2 lower than that of tHMS. However, metabolite ratios in relation to the respective parent isomer were very similar to the oral route, supporting the applicability of the oral-route urinary excretion fractions for dermal-route exposure assessments. Exemplary calculations of intake doses showed margins of safety between 11 and 92 (depending on the approach) after single whole-body sunscreen application. Human biomonitoring can reliably quantify oral and dermal HMS exposures and support the monitoring of exposure reduction measures.


Asunto(s)
Monitoreo Biológico , Salicilatos , Protectores Solares , Humanos , Administración Cutánea , Toxicocinética
9.
J Pharm Biomed Anal ; 243: 116086, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518457

RESUMEN

The use of new psychoactive substances derived from ketamine is rarely reported in France. A chronic GHB, 3-MMC, and methoxetamine consumer presented a loss of consciousness in a chemsex context and was referred to the intensive care unit with a rapid and favorable outcome. To investigate the chemicals responsible for the intoxication, a comprehensive analysis was conducted on the ten plasma samples collected over a 29.5-hour period, urine obtained upon admission, a 2-cm hair strand sample, and a seized crystal. These analyses were performed using liquid chromatography hyphenated to high resolution tandem mass spectrometry operating in targeted and untargeted modes. Additionally, analyses using gas chromatography coupled to mass spectrometry and nuclear magnetic resonance were conducted to probe the composition of the seized crystal. The molecular network-based approach was employed for data processing in non-targeted analyses. It allowed to confirm a multidrug exposure encompassing GHB, methyl-(aminopropyl)benzofuran (MAPB), (aminopropyl)benzofuran (APB), methylmethcathinone, chloromethcathinone, and a new psychoactive substance belonging to the arylcyclohexylamine family namely deschloro-N-ethyl-ketamine (O-PCE). Molecular network analysis facilitated the annotation of 27 O-PCE metabolites, including phase II compounds not previously reported. Plasma kinetics of O-PCE allowed the estimation of the elimination half-life of ∼5 hours. Kinetics of O-PCE metabolites was additionally characterized, possibly useful as surrogate biomarkers of consumption. We also observed marked alterations in lipid metabolism related to poly consumption of drugs. In conclusion, this case report provides a comprehensive analysis of exposure to O-PCE in a multidrug user including kinetic and metabolism data in human.


Asunto(s)
Benzofuranos , Oxibato de Sodio , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Toxicocinética , Oxibato de Sodio/análisis , Espectrometría de Masas en Tándem , Detección de Abuso de Sustancias/métodos
10.
Environ Toxicol Chem ; 43(5): 1030-1035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415798

RESUMEN

The prevalence of standardized toxicity testing in ecotoxicology has largely obscured the notion that toxicity is a function of time as well. The necessity of considering time is vividly demonstrated by observations of delayed mortality, that is, deaths continue to occur even when animals are no longer exposed to a toxicant. In this contribution, I explore to what extent toxicokinetic-toxicodynamic (TKTD) models from the framework of the General Unified Threshold model for Survival (GUTS) can capture delayed mortality, and to what extent this phenomenon can be predicted from short-term standard tests. I use a previously published data set for fluoroquinolones in Daphnia magna that shows strongly delayed mortality (using immobilization as a proxy for death). The model analysis shows that the GUTS stochastic death models can capture delayed mortality in the complete data set with a long recovery phase, but that the delayed effects would not have been predicted from a 2-day standard test. The study underlines the limited information content of standard acute test designs. Toxicokinetic-toxicodynamic modeling offers a handle on the time aspects of toxicity but cannot always be relied on to provide accurate extrapolations based on severely limited standard tests. The phenomenon of delayed toxicity requires more structured study to clarify its prevalence and impact; I discuss several avenues for further investigation. Environ Toxicol Chem 2024;43:1030-1035. © 2024 SETAC.


Asunto(s)
Daphnia , Toxicocinética , Animales , Daphnia/efectos de los fármacos , Modelos Biológicos , Fluoroquinolonas/toxicidad , Fluoroquinolonas/farmacocinética , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/farmacocinética
11.
Artículo en Inglés | MEDLINE | ID: mdl-38387688

RESUMEN

To understand the effect of salinity on the toxicokinetics, oxidative stress, and detoxification of cadmium-exposed Meretrix meretrix, M. meretrix were acclimatized to different salinities (8, 14, 20, 26, and 32 ppt) for 14 d, exposed to 10 µg/L Cd for 7 d, followed by a 28-day depuration period. The internal Cd concentration was determined, and the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST)), and the malondialdehyde (MDA) content were measured. The mRNA expression levels of antioxidant enzyme (Cu/Zn SOD, CAT) and detoxification-related genes metallothionein (MT) were analyzed. The mean concentrations of Cd in M. meretrix tissues were in the order gill > digestive gland > mantle > axe foot. The Cd uptake rate in the four tissues decreased with increasing salinity (range: 14-26 ppt). The Cd elimination half-lives were the highest at 8 ppt and 14 ppt salinity. Cadmium activated the four oxidative stress-related related enzymes in the gills. At the end of accumulation period, Cd exposure at 20 ppt salinity significantly increased the expression of Cu/Zn SOD. CAT expression was significantly inhibited at 20 ppt salinity, but was induced at 32 ppt. MT mRNA expression was only induced under Cd at 20 ppt salinity. At the end of depuration period, Cu/Zn SOD expression was inhibited at salinities of 8, 14, and 26 ppt. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, and MT were sensitive to cadmium in a water environment, and can be used as indicators of marine heavy metal pollution.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Animales , Cadmio/análisis , Antioxidantes/metabolismo , Salinidad , Metalotioneína/genética , Metalotioneína/metabolismo , Toxicocinética , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Estrés Oxidativo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Expresión Génica , ARN Mensajero/metabolismo
12.
Toxicol Lett ; 393: 78-83, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311194

RESUMEN

Organ-on-a-chip technology is considered a next-generation platform in pharmacology and toxicology. Nevertheless, this novel technology still faces several challenges concerning the respective materials which are used for these microfluidic devices. Currently available organ-chips are most often based on polydimethylsiloxane (PDMS). However, this material has strong limitations regarding compound binding. The current study investigated options to reduce compound absorption of the highly toxic nerve agent VX (1000 µmol/L) in a commercially available organ-chip. In addition, surface effects on degradation products of VX were investigated. The alternative polymer cyclic olefin copolymers (CoC) showed significantly less compound absorption compared to PDMS. Furthermore, a coating of PDMS- and CoC-based chips was investigated. The biocompatible polymer polyethyleneimine (PEI) successfully modified PDMS and CoC surfaces and further reduced compound absorption. A previously examined VX concentration after 72 h of 141 ± 10 µmol/L VX could be increased to 442 ± 54 µmol/L. Finally, the respective concentrations of VX and degradation products accounted for > 90% of the initial concentration of 1000 µmol/L VX. The currently described surface modification might be a first step towards the optimization of organ-on-a-chip surfaces, facilitating a better comparability of different studies and results.


Asunto(s)
Agentes Nerviosos , Compuestos Organotiofosforados , Agentes Nerviosos/toxicidad , Sistemas Microfisiológicos , Toxicocinética , Polímeros
13.
Ecotoxicol Environ Saf ; 272: 116022, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309230

RESUMEN

Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs.


Asunto(s)
Rutas de Resultados Adversos , Animales , Humanos , Microplásticos/toxicidad , Toxicocinética , Peces , Modelos Teóricos , Plásticos
14.
Environ Sci Technol ; 58(8): 3714-3725, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38350648

RESUMEN

Chemicals mainly exist in ecosystems as mixtures, and understanding and predicting their effects are major challenges in ecotoxicology. While the adverse outcome pathway (AOP) and toxicokinetic-toxicodynamic (TK-TD) models show promise as mechanistic approaches in chemical risk assessment, there is still a lack of methodology to incorporate the AOP into a TK-TD model. Here, we describe a novel approach that integrates the AOP and TK-TD models to predict mixture toxicity using metal mixtures (specifically Cd-Cu) as a case study. We preliminarily constructed an AOP of the metal mixture through temporal transcriptome analysis together with confirmatory bioassays. The AOP revealed that prolonged exposure time activated more key events and adverse outcomes, indicating different modes of action over time. We selected a potential key event as a proxy for damage and used it as a measurable parameter to replace the theoretical parameter (scaled damage) in the TK-TD model. This refined model, which connects molecular responses to organism outcomes, effectively predicts Cd-Cu mixture toxicity over time and can be extended to other metal mixtures and even multicomponent mixtures. Overall, our results contribute to a better understanding of metal mixture toxicity and provide insights for integrating the AOP and TK-TD models to improve risk assessment for chemical mixtures.


Asunto(s)
Rutas de Resultados Adversos , Animales , Cadmio/toxicidad , Modelos Biológicos , Toxicocinética , Ecosistema , Pez Cebra , Larva
15.
Environ Sci Technol ; 58(8): 3677-3689, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354091

RESUMEN

High-throughput in vitro assays combined with in vitro-in vivo extrapolation (IVIVE) leverage in vitro responses to predict the corresponding in vivo exposures and thresholds of concern. The integrated approach is also expected to offer the potential for efficient tools to provide estimates of chemical toxicity to various wildlife species instead of animal testing. However, developing fish physiologically based toxicokinetic (PBTK) models for IVIVE in ecological applications is challenging, especially for plausible estimation of an internal effective dose, such as fish equivalent concentration (FEC). Here, a fish PBTK model linked with the IVIVE approach was established, with parameter optimization of chemical unbound fraction, pH-dependent ionization and hepatic clearance, and integration of temperature effect and growth dilution. The fish PBTK-IVIVE approach provides not only a more precise estimation of tissue-specific concentrations but also a reasonable approximation of FEC targeting the estrogenic potency of endocrine-disrupting chemicals. Both predictions were compared with in vivo data and were accurate for most indissociable/dissociable chemicals. Furthermore, the model can help determine cross-species variability and sensitivity among the five fish species. Using the available IVIVE-derived FEC with target pathways is helpful to develop predicted no-effect concentration for chemicals with similar mode of action and support screening-level ecological risk assessment.


Asunto(s)
Disruptores Endocrinos , Modelos Biológicos , Animales , Toxicocinética , Disruptores Endocrinos/toxicidad , Peces , Medición de Riesgo
16.
Environ Int ; 184: 108474, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350256

RESUMEN

Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.


Asunto(s)
Rutas de Resultados Adversos , Modelos Biológicos , Animales , Humanos , Toxicocinética , Monitoreo Biológico , Medición de Riesgo/métodos
17.
Chem Res Toxicol ; 37(2): 385-394, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38206817

RESUMEN

Paraquat is a highly toxic quaternary ammonium herbicide. It can damage the functions of multiple organs and cause irreversible pulmonary fibrosis in the human body. However, the toxicological mechanism of paraquat is not yet fully understood, and due to the lack of specific antidotes, the clinical treatment of paraquat intoxication is still a great medical challenge. In-depth research on its toxicity mechanism, toxicokinetics, and effective antidotes is urgently demanded. A new molecular imaging technique, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), can simultaneously achieve quantitative and spatial analysis and offer an alternative, distinct, and useful technique for paraquat intoxication and consequent detoxication. Here, we visualized the spatial-temporal distribution and conducted toxicokinetic research on paraquat in zebrafish by using stable isotope-labeled internal-standard-aided MALDI-MSI for the first time. The results indicated that paraquat had a fast absorption rate and was widely distributed in different organs, such as the brain, gills, kidneys, and liver in zebrafish. Its half-life was long, and the elimination rate was slow. Paraquat reached its peak at 30 min and was mainly distributed in kidneys and intestines and then showed a tendency of declining first but mildly rising later at 6 h, accompanied by a wide distribution in kidneys and intestines again. It suggested that entero-systemic recirculation might lead to the observed secondary peaks, and perhaps it extended the residence time of paraquat in the body. In addition, we validated the potential detoxification effect of sodium salicylate as a potential antidote for paraquat from both the dimensions of distribution and quantification. In conclusion, MALDI-MSI conveniently provided the distinct and quantitative spatial-temporal distribution information on paraquat in the whole body of zebrafish; it will promote the understanding of its toxicokinetic characteristics and provide more valuable information for clinical treatment.


Asunto(s)
Paraquat , Pez Cebra , Animales , Humanos , Paraquat/toxicidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Antídotos , Toxicocinética , Rayos Láser
18.
Toxins (Basel) ; 16(1)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38251267

RESUMEN

Zearalenone (ZEN) is a mycotoxin produced by various Fusarium strains, that is present in food and feed raw materials worldwide, causing toxicity effects in animals and humans. This research aimed to explore the toxicokinetics of ZEN on female Dezhou donkeys following a single oral exposure dosage of 2 mg/kg BW (body weight). The sample collection of donkeys plasma was carried out at 0, 5, 10, 15, 20, 30, 45, 60, 90 min, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 6 h, 9 h, 12 h, 24 h, 48 h, 72 h, 96 h and 120 h via intravenous catheter, and fecal and urinary samples were severally collected at 0 h and every 6 h until 120 h. The concentrations of ZEN, α-zearalenol (α-ZOL), ß-zearalenol (ß-ZOL), α-zearalanol (α-ZAL), ß-zearalanol (ß-ZAL), zearalanone (ZAN) in plasma, urine, and feces were detected by UPLC-MS/MS. Only ZEN was detected in plasma, and the maximum was 15.34 ± 5.12 µg/L occurred at 0.48 h after gavage. The total plasma clearance (Cl) of ZEN was 95.20 ± 8.01 L·kg·BW-1·h-1. In addition, the volume of distribution (Vd) was up to 216.17 ± 58.71 L/kg. The percentage of total ZEN (ZEN plus the main metabolites) excretion in feces and urine was 2.49% and 2.10%, respectively. In summary, ZEN was fast absorbed and relatively slowly excreted in female donkeys during 120 h after a single gavage, indicating a trend of wider tissue distribution and longer tissue persistence.


Asunto(s)
Zearalenona , Zeranol/análogos & derivados , Femenino , Animales , Humanos , Zearalenona/toxicidad , Toxicocinética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Administración Oral
19.
Toxicology ; 502: 153733, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38253230

RESUMEN

4-tert-octylphenol (4-tert-OP) is a potentially harmful substance, which is found widely in the environment. Nevertheless, information on the in vivo toxicokinetics of 4-tert-OP is lacking, and quantitative risk assessment studies are urgently needed. Therefore, we aimed to quantitatively identify differences in the toxicokinetics of 4-tert-OP and its distribution among tissues between sexes. To this end, following exposure of male and female rats to 10 or 50 mg/kg 4-tert-OP orally and 4 or 8 mg/kg 4-tert-OP intravenously, we conducted a quantitative analysis of samples using ultra-high performance liquid chromatography-tandem mass spectrometry. The results revealed that the 4-tert-OP plasma concentration profiles differed between sexes; however, systemic absorption of 4-tert-OP through the gastrointestinal tract occurred within 0.5 h of exposure in both sexes. Although small, the excretion percentage of 4-tert-OP in urine and feces was lower in males than females (0.06-0.08% vs. 0.82-1.11% of exposure). Significant sex differences were also confirmed in the tissue distribution patterns of 4-tert-OP, and overall, the average tissue distribution in males was lower than that in females. The distribution of 4-tert-OP to liver, adipose, spleen, kidney, brain, and lung in both sexes was predominant. A covariate exploration modeling approach revealed that sex explained the differences in 4-tert-OP toxicokinetics between sexes. These significant differences in the toxicokinetics and tissue distribution of 4-tert-OP between sexes will be important for the scientific precision human risk assessment of 4-tert-OP.


Asunto(s)
Fenoles , Caracteres Sexuales , Masculino , Ratas , Humanos , Femenino , Animales , Fenoles/toxicidad , Fenoles/análisis , Hígado/química , Bazo , Toxicocinética
20.
Environ Sci Technol ; 58(2): 1055-1063, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38166384

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of highly persistent anthropogenic chemicals that are detectable in the serum of most humans. PFAS exposure has been associated with many adverse effects on human health including immunotoxicity, increased risk of certain cancers, and metabolic disruption. PFAS binding to the most abundant blood serum proteins (human serum albumin [HSA] and globulins) is thought to affect transport to active sites, toxicity, and elimination half-lives. However, few studies have investigated the competitive binding of PFAS to these proteins in human serum. Here, we use C18 solid-phase microextraction fibers to measure HSA-water and globulin-water distribution coefficients (DHSA/w, Dglob/w) for PFAS with carbon chains containing 4 to 13 perfluorinated carbons (ηpfc = 4-13) and several functional head-groups. PFAS with ηpfc < 7 were highly bound to HSA relative to globulins, whereas PFAS with ηpfc ≥ 7 showed a greater propensity for binding to globulins. Experimentally measured DHSA/w and Dglob/w and concentrations of serum proteins successfully predicted the variability in PFAS binding in human serum. We estimated that the unbound fraction of serum PFAS varied by up to a factor of 2.5 among individuals participating in the 2017-2018 U.S. National Health and Nutrition Examination Survey. These results suggest that serum HSA and globulins are important covariates for epidemiological studies aimed at understanding the effects of PFAS exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Contaminantes Ambientales , Fluorocarburos , Globulinas , Humanos , Toxicocinética , Encuestas Nutricionales , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Proteínas Sanguíneas , Carbono , Ácidos Alcanesulfónicos/análisis , Contaminantes Ambientales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA