Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.048
Filtrar
1.
J Ethnopharmacol ; 331: 118269, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697409

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, caused by Plasmodium parasites, remains a significant global health challenge, particularly in tropical and subtropical regions. At the same time, the prevalence of toxoplasmosis has been reported to be 30% worldwide. Traditional medicines have long played a vital role in discovering and developing novel drugs, and this approach is essential in the face of increasing resistance to current antimalarial and anti-Toxoplasma drugs. In Indonesian traditional medicine, various plants are used for their therapeutic properties. This study focuses on eleven medicinal plants from which nineteen extracts were obtained and screened for their potential medicinal benefits against malaria and toxoplasmosis. AIMS OF THE STUDY: The aim of this study was to evaluate the efficacy of extracts from Indonesian medicinal plants to inhibit Plasmodium falciparum, a parasite responsible for malaria, and Toxoplasma gondii, an opportunistic parasite responsible for toxoplasmosis. METHODS: Nineteen extracts from eleven plants were subjected to in vitro screening against P. falciparum 3D7 (a chloroquine-sensitive strain) and the T. gondii RH strain. In vitro treatments were conducted on P. falciparum 3D7 and K1 (multidrug-resistant strains) using the potent extracts, and in vivo assessments were carried out with mice infected with P. yoelii 17XNL. LCMS analysis was also conducted to identify the main components of the most effective extract. RESULTS: Seven extracts showed significant antiplasmodial activity (>80% inhibition) at a concentration of 100 µg/ml. These extracts were obtained from Dysoxylum parasiticum (Osbeck) Kosterm., Elaeocarpus glaber (Bl.) Bijdr., Eleutherine americana Merr., Kleinhovia hospita L., Peronema canescens Jack, and Plectranthus scutellarioides (L.) R.Br. Notably, the D. parasiticum ethyl acetate extract exhibited high selectivity and efficacy both in vitro and in vivo. Herein, the key active compounds oleamide and erucamide were identified, which had IC50 values (P. falciparum 3D7/K1) of 17.49/23.63 µM and 32.49/51.59 µM, respectively. CONCLUSIONS: The results of this study highlight the antimalarial potential of plant extracts collected from Indonesia. Particularly, extracts from D. parasiticum EtOH and EtOAc stood out for their low toxicity and strong antiplasmodial properties, with the EtOAc extract emerging as a notably promising antimalarial candidate. Key compounds identified within this extract demonstrate the complexity of extracts' action against malaria, potentially targeting both the parasite and the host. This suggests a promising approach for developing new antimalarial strategies that tackle the multifaceted challenges of drug resistance and disease management. Future investigations are necessary to unlock the full therapeutic potential of these extracts.


Asunto(s)
Antimaláricos , Extractos Vegetales , Plantas Medicinales , Plasmodium falciparum , Toxoplasma , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Plantas Medicinales/química , Plasmodium falciparum/efectos de los fármacos , Indonesia , Toxoplasma/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/aislamiento & purificación , Ratones , Femenino , Malaria/tratamiento farmacológico , Malaria/parasitología
2.
Acta Parasitol ; 69(2): 1275-1283, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753101

RESUMEN

PURPOSE: Toxoplasmosis is caused by the parasite Toxoplasma gondii (T. gondii). In immunocompetent individuals, the infection is often asymptomatic; however, in expectant mothers and those with immune system deficiencies, complications may arise. Consequently, there is a need for new drugs that cause minimal damage to host cells. The purpose of this study was to investigate the in vitro antiparasitic efficacy of quinolone-coumarin hybrids QC1-QC12, derived from quinolone antibacterials and novobiocin, against T. gondii. METHODS: The derivatives were compared with novobiocin and ciprofloxacin during testing, with pyrimethamine used as a positive control. We conducted the MTT assay to examine the anti-toxoplasmic effects of the test compounds and novobiocin. Evaluation included the infection and proliferation indices, as well as the size and number of plaques, based on the viability of both healthy and infected cells. RESULTS: The in vitro assays revealed that QC1, QC3, QC6, and novobiocin, with selectivity indices (SIs) of 7.27, 13.43, and 8.23, respectively, had the least toxic effect on healthy cells and the highest effect on infected cells compared to pyrimethamine (SI = 3.05). Compared to pyrimethamine, QC1, QC3, QC6, and novobiocin Without having a significant effect on cell viability, demonstrated a significant effect on reducing in both infection index and proliferation index, in addition to reducing the quantity and dimensions of plaques ( P < 0.05). CONCLUSION: Based on our results, QC1, QC3, QC6, and novobiocin due to their significant therapeutic effects could be considered as potential new leads in the development of novel anti-Toxoplasma agents.


Asunto(s)
Novobiocina , Quinolonas , Toxoplasma , Toxoplasma/efectos de los fármacos , Novobiocina/farmacología , Animales , Quinolonas/farmacología , Quinolonas/química , Fluoroquinolonas/farmacología , Cumarinas/farmacología , Cumarinas/química , Antiprotozoarios/farmacología , Humanos , Supervivencia Celular/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria
3.
Exp Parasitol ; 262: 108771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723847

RESUMEN

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Asunto(s)
Diterpenos , Fabaceae , Extractos Vegetales , Toxoplasma , Células HeLa , Humanos , Diterpenos/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/química , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Fabaceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular
4.
Parasitol Res ; 123(5): 217, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772951

RESUMEN

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Asunto(s)
Autofagia , Aceites Volátiles , Origanum , Especies Reactivas de Oxígeno , Toxoplasma , Aceites Volátiles/farmacología , Aceites Volátiles/química , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Origanum/química , Humanos , Autofagia/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Antiprotozoarios/farmacología , Concentración 50 Inhibidora , Necrosis/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
5.
ACS Infect Dis ; 10(6): 2276-2287, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38810215

RESUMEN

Our previous work identified a series of 12 xanthoquinodin analogues and 2 emodin-dianthrones with broad-spectrum activities against Trichomonas vaginalis, Mycoplasma genitalium, Cryptosporidium parvum, and Plasmodium falciparum. Analyses conducted in this study revealed that the most active analogue, xanthoquinodin A1, also inhibits Toxoplasma gondii tachyzoites and the liver stage of Plasmodium berghei, with no cross-resistance to the known antimalarial targets PfACS, PfCARL, PfPI4K, or DHODH. In Plasmodium, inhibition occurs prior to multinucleation and induces parasite death following 12 h of compound exposure. This moderately fast activity has impeded resistance line generation, with xanthoquinodin A1 demonstrating an irresistible phenotype in both T. gondii and P. falciparum.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Plasmodium berghei , Plasmodium falciparum , Toxoplasma , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Toxoplasma/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Animales , Antraquinonas/farmacología , Antraquinonas/química , Humanos
6.
ACS Infect Dis ; 10(6): 2212-2221, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743643

RESUMEN

Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular, to achieve optimal exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency and ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analogue series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.


Asunto(s)
Encéfalo , Fenilalanina-ARNt Ligasa , Pirrolidinas , Toxoplasma , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Pirrolidinas/farmacología , Pirrolidinas/química , Animales , Encéfalo/parasitología , Relación Estructura-Actividad , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/química , Antiparasitarios/farmacología , Antiparasitarios/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ratones , Toxoplasmosis/tratamiento farmacológico , Humanos , Azetidinas/farmacología , Azetidinas/química
7.
Acta Parasitol ; 69(2): 1201-1211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634986

RESUMEN

The present experimental survey designed to green synthesis, characterization, as well as in vitro and in vivo anti-Toxplasma gondii activity of silver nanoparticles (SLN) green synthesized by Lupinus arcticus extract. SLN were green synthesized based on the reducing by L. arcticus extract through the precipitation technique. In vitro lethal effects of SLN on T. gondii tachyzoites, infectivity rate, parasites inside of the human macrophage cells (THP-1 cells), nitric oxide (NO) triggering, and iNOS and interferon gamma (IFN-γ) expression genes were evaluated. In vivo, after establishment of toxoplasmosis in BALB/c mice via T. gondii ME49 strain, mice received SLN at 10 and 20 mg/kg/day alone and combined to pyrimethamine at 5 mg/kg for 14 days. SLN exhibited a spherical form with a size ranging from 25 to 90 nm. The 50% inhibitory concentration (IC50) value of SLN and pyrimethamine against tachyzoites was 29.1 and 25.7 µg/mL, respectively. While, the 50% cytotoxic concentration (CC50) value of SLN and pyrimethamine against THP-1 cells was 412.3 µg/mL and 269.5 µg/mL, respectively. SLN in combined with pyrimethamine obviously (p < 0.05) decreased the number and size of the T. gondii cysts in the infected mice. The level of NO, iNOS and IFN-γ genes was obviously (p < 0.001) upregulated. SLN obviously (p < 0.05) decreased the liver level of oxidative stress and increased the level of antioxidant factors. The findings displayed the promising beneficial effects of SLN mainly in combination with current synthetic drugs against latent T. gondii infection in mice. But we need more experiments to approve these findings, clarifying all possible mechanisms, and its efficiency in clinical phases.


Asunto(s)
Antiinflamatorios , Antioxidantes , Nanopartículas del Metal , Ratones Endogámicos BALB C , Plata , Toxoplasma , Animales , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Toxoplasma/efectos de los fármacos , Ratones , Antioxidantes/farmacología , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Factores Inmunológicos/farmacología , Factores Inmunológicos/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células THP-1 , Femenino , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Óxido Nítrico/metabolismo , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Tecnología Química Verde
8.
Acta Parasitol ; 69(1): 567-573, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231312

RESUMEN

PURPOSE: Pyrus boissieriana is a rich source of arbutin and has been used in herbal medicine to treat infectious diseases. This study aimed to investigate the effect of the arbutin-rich fraction of Pyrus boissieriana aerial parts on Toxoplasma gondii In Vitro and In Vivo. METHODS: An arbutin-rich fraction of P. boissieriana was prepared beforehand. Flow cytometry was used to evaluate the effect of different concentrations (1-512 µg/ml) of the P. boissieriana arbutin-rich fraction on Toxoplasma tachyzoites (RH strain). The cytotoxicity of the concentrations on the macrophage J774 cell line was also investigated by MTT assay. For In Vivo investigation, 4-6-week-old female mice infected with the RH strain of T. gondii were treated with different doses (16, 32, 64, 256, and 512 mg/kg) of the fraction using gavage. RESULTS: The highest and lowest lethality of the tachyzoites were 89.6% and 25.9% related to the concentrations of 512 µg/ml and 1 µg/ml, respectively, with an IC50 value of 18.1 µg/ml ± 0.37. The cytotoxicity test showed an IC50 value of 984.3 µg/ml ± 0.76 after 48 h incubation. The mean survival of mice at the lowest treated dose (16 mg/kg) was 6.6 days, and it was 15 days at the highest dose (512 mg/kg). The concentrations of 512, 256, 128, and 64 mg/kg of the fraction compared to the negative control (6.2 days mean survival) significantly increased the survival time of mice (P < 0.001, P = 0.009, P = 0.018, and P = 0.021, respectively). CONCLUSION: The results showed that the arbutin-rich fraction of P. boissieriana is effective against T. gondii In Vitro and In Vivo and may be a reliable alternative to conventional treatment for toxoplasmosis, although further studies are necessary.


Asunto(s)
Antiprotozoarios , Arbutina , Extractos Vegetales , Toxoplasma , Animales , Toxoplasma/efectos de los fármacos , Ratones , Femenino , Extractos Vegetales/farmacología , Línea Celular , Arbutina/farmacología , Antiprotozoarios/farmacología , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Toxoplasmosis Animal/tratamiento farmacológico , Toxoplasmosis Animal/parasitología , Concentración 50 Inhibidora , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología
9.
Eur J Med Chem ; 244: 114812, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274280

RESUMEN

The increasing resistance of Toxoplasma gondii to drugs and side effects of therapy indicate that specific treatment for these parasites is still needed. The 4-arylthiosemicarbazide derivatives seem to be a solution to this challenge because they have low cytotoxicity against host cells and high anti-T. gondii activity. The molecular mechanism for these compounds is related to the inhibition of tyrosine amino acids involved in the proliferation and parasitophorous vacuole formation. The pharmacokinetic analysis shows that 1-(4-Methylimidazol-5-oyl)-4-(4-nitrophenyl)thiosemicarbazide and 4-(3-Iodophenyl)-1-(4-methylimidazol-5-oyl)thiosemicarbazide administered intragastrically pass into the bloodstream and cross the blood-brain barrier, and the absorption of both compounds is first-order absorption. Toxicity analysis shows that our derivatives possess lower toxicity than the routinely used drugs trimethoprim, sulfadiazine and pyrimethamine, as was observed in the level of liver enzymes and creatinine. Both derivatives are highly potent antiparasitic agents against T. gondii, prolonged survival and cure parasite-infected mice. Additionally, significant reductions in cyst formation in the brain and heart were observed, but the highest decreases were noted in muscle and the level of bradyzoites was similar to these observed in mice treated with commercially used drugs. Collectively, the obtained results support the conclusion that both compounds are highly efficacious in a mouse model of acute and chronic toxoplasmosis.


Asunto(s)
Antiprotozoarios , Semicarbacidas , Toxoplasma , Toxoplasmosis , Animales , Ratones , Antiprotozoarios/química , Antiprotozoarios/farmacocinética , Antiprotozoarios/toxicidad , Semicarbacidas/química , Semicarbacidas/farmacocinética , Semicarbacidas/toxicidad , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico
10.
Expert Opin Drug Discov ; 17(9): 997-1011, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35772172

RESUMEN

INTRODUCTION: Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED: This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION: Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.


Asunto(s)
Antiprotozoarios , Citocromos , Toxoplasma , Toxoplasmosis , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Atovacuona/farmacología , Atovacuona/uso terapéutico , Citocromos/antagonistas & inhibidores , Humanos , Relación Estructura-Actividad , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología
11.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328634

RESUMEN

Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan Toxoplasma gondii (Tg), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of Tg to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds. Thiosemicarbazide derivatives are biologically active organic compounds. Previous studies on the initial preselection of 58 new 4-arylthiosemicarbazide derivatives in terms of their anti-Tg activity and selectivity made it possible to select two promising derivatives for further research. One of the important amino acids involved in the proliferation of Tg and the formation of parasitophorous vacuoles is tyrosine, which is converted by two unique aromatic amino acid hydroxylases to levodopa. Enzymatic studies with two derivatives (R: para-nitro and meta-iodo) and recombinant aromatic amino acid hydroxylase (AAHs) obtained in the E. coli expression system were performed, and the results indicated that toxoplasmic AAHs are a molecular target for 4-arylthiosemicarbazide derivatives. Moreover, the drug affinity responsive target stability assay also confirmed that the selected compounds bind to AAHs. Additionally, the anti-inflammatory activity of these derivatives was tested using THP1-Blue™ NF-κB reporter cells due to the similarity of the thiosemicarbazide scaffold to thiosemicarbazone, both of which are known NF-κB pathway inhibitors.


Asunto(s)
Antiinflamatorios , Antiprotozoarios , Oxigenasas de Función Mixta , Semicarbacidas , Toxoplasma , Antiinflamatorios/farmacología , Antiprotozoarios/farmacología , Escherichia coli , Humanos , Oxigenasas de Función Mixta/antagonistas & inhibidores , FN-kappa B , Semicarbacidas/farmacología , Toxoplasma/efectos de los fármacos , Tirosina
12.
Nat Commun ; 13(1): 459, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075105

RESUMEN

Toxoplasma gondii commonly infects humans and while most infections are controlled by the immune response, currently approved drugs are not capable of clearing chronic infection in humans. Hence, approximately one third of the world's human population is at risk of reactivation, potentially leading to severe sequelae. To identify new candidates for treating chronic infection, we investigated a series of compounds derived from diversity-oriented synthesis. Bicyclic azetidines are potent low nanomolar inhibitors of phenylalanine tRNA synthetase (PheRS) in T. gondii, with excellent selectivity. Biochemical and genetic studies validate PheRS as the primary target of bicyclic azetidines in T. gondii, providing a structural basis for rational design of improved analogs. Favorable pharmacokinetic properties of a lead compound provide excellent protection from acute infection and partial protection from chronic infection in an immunocompromised mouse model of toxoplasmosis. Collectively, PheRS inhibitors of the bicyclic azetidine series offer promise for treatment of chronic toxoplasmosis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Azetidinas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Toxoplasmosis/tratamiento farmacológico , Animales , Antiprotozoarios/química , Azetidinas/química , Inhibidores Enzimáticos/química , Femenino , Humanos , Cinética , Masculino , Ratones , Ratones Endogámicos CBA , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología
13.
Molecules ; 26(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770802

RESUMEN

The quinolone decoquinate (DCQ) is widely used in veterinary practice for the treatment of bacterial and parasitic infections, most notably, coccidiosis in poultry and in ruminants. We have investigated the effects of treatment of Toxoplasma gondii in infected human foreskin fibroblasts (HFF) with DCQ. This induced distinct alterations in the parasite mitochondrion within 24 h, which persisted even after long-term (500 nM, 52 days) treatment, although there was no parasiticidal effect. Based on the low half-maximal effective concentration (IC50) of 1.1 nM and the high selectivity index of >5000, the efficacy of oral treatment of pregnant mice experimentally infected with T. gondii oocysts with DCQ at 10 mg/kg/day for 5 days was assessed. However, the treatment had detrimental effects, induced higher neonatal mortality than T. gondii infection alone, and did not prevent vertical transmission. Thus, three quinoline-O-carbamate derivatives of DCQ, anticipated to have better physicochemical properties than DCQ, were assessed in vitro. One such compound, RMB060, displayed an exceedingly low IC50 of 0.07 nM, when applied concomitantly with the infection of host cells and had no impact on HFF viability at 10 µM. As was the case for DCQ, RMB060 treatment resulted in the alteration of the mitochondrial matrix and loss of cristae, but the changes became apparent at just 6 h after the commencement of treatment. After 48 h, RMB060 induced the expression of the bradyzoite antigen BAG1, but TEM did not reveal any other features reminiscent of bradyzoites. The exposure of infected cultures to 300 nM RMB060 for 52 days did not result in the complete killing of all tachyzoites, although mitochondria remained ultrastructurally damaged and there was a slower proliferation rate. The treatment of mice infected with T. gondii oocysts with RMB060 did reduce parasite burden in non-pregnant mice and dams, but vertical transmission to pups could not be prevented.


Asunto(s)
Antiprotozoarios/farmacología , Carbamatos , Decoquinato/farmacología , Quinolinas/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasmosis Animal/tratamiento farmacológico , Toxoplasmosis Animal/parasitología , Animales , Antiprotozoarios/química , Carbamatos/química , Decoquinato/análogos & derivados , Decoquinato/química , Modelos Animales de Enfermedad , Femenino , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Ratones , Estructura Molecular , Oocistos/efectos de los fármacos , Embarazo , Quinolinas/química , Toxoplasma/ultraestructura
14.
Chem Biodivers ; 18(12): e2100687, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34726832

RESUMEN

Toxoplasmosis post serious threaten to human health, leading to severely eye and brain disease, especially for immunocompromised patients and pregnant women. The multiple side effects and long dosing period of current main treatment regiments calls for high effective and low toxicity anti-toxoplasmosis drugs. Herein, we report our efforts to synthesize a series of 2-(piperazin-1-yl)quinazolin-4(3H)-one derivatives and investigate their activity against Toxoplasma gondii tachyzoites in vitro based on cell phenotype screening. Among the 26 compounds, 8w and 8x with diaryl ether moiety at the side chain of piperazine exhibited good efficacy to inhibit T. gondii, with IC50 values of 4 µM and 3 µM, respectively. Structure-activity relationship (SAR) studies implies that hydrophobic aryl at the side chain would be preferred for improvement of activity. Molecular docking study reveals these two compounds appeared high affinity to TgCDPK1 by interaction with the hydrophobic pocket of ATP-binding cleft.


Asunto(s)
Antiprotozoarios/farmacología , Quinazolinonas/farmacología , Toxoplasma/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Quinazolinonas/síntesis química , Quinazolinonas/química
15.
FASEB J ; 35(12): e21898, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34727385

RESUMEN

Toxoplasma gondii is an obligate intracellular apicomplexan parasite causing lethal diseases in immunocompromised patients. UBL-UBA shuttle proteins (DDI1, RAD23, and DSK2) are important components of the ubiquitin-proteasome system. By degrading ubiquitinated proteins, UBL-UBA shuttle proteins regulate many cellular processes. However, the specific processes regulated by UBL-UBA shuttle proteins remain elusive. Here, we revealed that the deletion of shuttle proteins results in a selective accumulation of ubiquitinated proteins in the nucleus and aberrant DNA replication. ROP18 was mistargeted and accumulated in the shuttle protein mutant strain, resulting in the recruitment of immunity-related GTPases to the parasitophorous vacuole membrane (PVM). Furthermore, the mistargeting of ROP18 and the recruitment of Irgb6 to the PVM were also observed in the DDI1 mutant strain. DDI1 is a nonclassical UBL-UBA shuttle protein homologous to the HIV-1 protease. Molecular docking showed that DDI1 was a potential target of HIV-1 protease inhibitors. However, these inhibitors blocked the growth of T gondii in vitro but not in vivo. In conclusion, the Toxoplasma UBL-UBA shuttle protein regulates several important cellular processes and the mistargeting of ROP18 may be a representative of the abnormal homeostasis caused by shuttle protein mutation.


Asunto(s)
Indinavir/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Animales , Replicación del ADN , Femenino , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
16.
Bioorg Med Chem ; 50: 116467, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34666274

RESUMEN

Toxoplasma gondiiis an apicomplexan parasite, the causative agent of toxoplasmosis, a common disease in the world. Toxoplasmosis could be severe, especially in immunocompromised patients. The current therapy is limited, where pyrimethamine and sulfadiazine are the best choices despite being associated with side effects and ineffective against the bradyzoites, the parasitic form present during the chronic phase of the infection. Thus, new therapies against both tachyzoites and bradyzoites from T. gondii are urgent. Herein, we present the anti-T. gondii effect of 1,10-phenanthroline and its N-phenyl-1,10-phenanthroline-2-amine derivatives. The chemical modification of 1,10-phenanthroline tonew derivatives improved the anti-T. gondiiactivity 3.4 fold. The most active derivative presented ED50in the nanomolar range, the smallest value found was for Ph8, 0.1 µM for 96 h of treatment. The host cell viability was maintained after the treatment with the compounds, which were found to be highly selective presenting large selectivity indexes. Treatment with derivatives for 96 h was able to eliminate the T. gondii infection irreversibly. The ultrastructural alterations caused after the treatment with the most effective derivative (Ph8) included signs of cell death, specifically revealed by the Tunel assay for detection of DNA fragmentation. The Phen derivatives were also able to control the growth of the in vitro-derived bradyzoite forms of T. gondii EGS strain, causing its lysis and death. These findings promote the 1,10-phenanthroline derivatives as potential lead compounds for the development of a treatment for acute and chronic phases of toxoplasmosis.


Asunto(s)
Antiprotozoarios/farmacología , Toxoplasma/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Toxoplasma/crecimiento & desarrollo
17.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639127

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10-7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.


Asunto(s)
Nucleótidos/química , Compuestos de Rutenio/farmacología , Compuestos de Sulfhidrilo/química , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Humanos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Compuestos de Rutenio/química , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis/metabolismo , Tripanosomiasis/parasitología
18.
Bioorg Med Chem ; 50: 116458, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687983

RESUMEN

Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.


Asunto(s)
Antiparasitarios/farmacología , Desarrollo de Medicamentos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/antagonistas & inhibidores , Animales , Antiparasitarios/síntesis química , Antiparasitarios/química , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/enzimología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Schistosoma/efectos de los fármacos , Schistosoma/enzimología , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/enzimología
19.
Parasite ; 28: 68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34617883

RESUMEN

Toxoplasma gondii oocysts are responsible for food- and water-borne infections in humans worldwide. They are resistant to common chemical disinfectants, including chlorinated products, presumably due to the structure and molecular nature of the oocyst wall but also the sporocyst wall. In this study, we used fluorescence microscopy and transmission electron microscopy to characterise the structure of both the oocyst and sporocyst walls, exposed to household bleach. Bleach removed the outer layer of the oocyst wall and the outer layer of the wall of sporocysts exposed due to rupture of the oocyst wall. The loss of the outer sporocyst wall layer was associated with a decrease in its autofluorescence, which can be linked to the degradation of dityrosine cross-link proteins, and loss of Maclura pomifera lectin-reactive glycoproteins. This study suggests that the inner layers of the oocyst and sporocyst walls are the main structures responsible for the resistance of the parasite to household bleach.


TITLE: Effet de l'eau de Javel à usage domestique sur la structure de la paroi du sporocyste de Toxoplasma gondii. ABSTRACT: Les oocystes de Toxoplasma gondii sont responsables chez l'homme d'infections cosmopolites d'origine alimentaire et hydrique. Ils sont résistants aux désinfectants chimiques usuels, notamment aux produits chlorés, vraisemblablement en raison de la structure et de la nature moléculaire de la paroi de l'oocyste mais aussi de celle du sporocyste. Dans cette étude, nous avons utilisé la microscopie à fluorescence et la microscopie électronique à transmission pour caractériser la structure de la paroi des oocystes et des sporocystes exposés à l'eau de Javel à usage domestique. L'eau de Javel élimine la couche externe de la paroi de l'oocyste et la couche externe de la paroi des sporocystes exposés en raison de la rupture de la paroi de l'oocyste. La perte de la couche externe de la paroi du sporocyste est associée à une diminution de son autofluorescence, qui peut être liée à la dégradation de polymères protéiques de dityrosine, et à une perte des glycoprotéines réactives à la lectine Maclura pomifera. Cette étude suggère que les couches internes des parois de l'oocyste et du sporocyste sont les principales structures responsables de la résistance du parasite à l'eau de Javel à usage domestique.


Asunto(s)
Oocistos/efectos de los fármacos , Hipoclorito de Sodio/farmacología , Toxoplasma , Glicoproteínas , Microscopía Fluorescente , Toxoplasma/efectos de los fármacos
20.
Curr Top Med Chem ; 21(22): 2046-2069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34525920

RESUMEN

BACKGROUND: Naphthoquinones are a class of aromatic compounds relevant for their chemical characteristics, structural properties, and biological activity. These compounds are found in nature with a wide range of effects, highlighting their antibacterial, antifungal, and antiprotozoal properties. Additionally, naphthoquinones are used as a scaffold to obtain new derivatives with pharmacological potential, mainly compounds against parasitic diseases. OBJECTIVE: The purpose of this work was to carry out a comprehensive review of naphthoquinones and their derivatives obtained from both natural and synthetic sources, also, to analyze their biological activity against Leishmania spp. (Leishmaniasis), Trypanosoma cruzi (Chagas disease), Plasmodium falciparum (Malaria), Toxoplasma gondii (Toxoplasmosis), and Toxocara canis (Toxocariasis). All of these agents are responsible for relevant diseases worldwide. RESULTS: Natural naphthoquinones, such as plumbagin, diospyrin, burmanin, lapachol, lawsone and psychorubrin, show an antiprotozoal activity similar or enhanced antiprotozoal activity to reference drugs. Some naphthoquinones obtained by synthesis or semi-synthesis showed better biological activity or less toxic effects than natural compounds. CONCLUSION: In this review, natural and synthetic naphthoquinones showed antiparasitic activity, in most cases, with improved results than current drugs currently used in clinical trials. A modification of their structure with different functional groups can enhance their biological effects, improve solubility, and reduce undesirable side effects. Therefore, naphthoquinones are important molecules in the development of new chemotherapeutic agents against parasitic diseases.


Asunto(s)
Antiinfecciosos/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/farmacología , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Enfermedades Parasitarias/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Humanos , Leishmania/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Toxocara canis/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA