Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.364
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720960

RESUMEN

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Asunto(s)
Antígenos de Protozoos , Ensayo de Inmunoadsorción Enzimática , Proteínas Protozoarias , Serotipificación , Enfermedades de las Ovejas , Toxoplasma , Toxoplasmosis Animal , Animales , Ovinos , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasma/clasificación , Toxoplasmosis Animal/diagnóstico , Toxoplasmosis Animal/parasitología , Porcinos , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Serotipificación/métodos , Anticuerpos Antiprotozoarios/sangre , Péptidos/inmunología , Enfermedades de los Porcinos/parasitología , Enfermedades de los Porcinos/diagnóstico , Genotipo
2.
Nat Commun ; 15(1): 3792, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710711

RESUMEN

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Asunto(s)
Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/genética , Glicosilación , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Humanos , Cristalografía por Rayos X , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Pared Celular/metabolismo , Animales
3.
BMC Infect Dis ; 24(1): 490, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741041

RESUMEN

BACKGROUND: Toxoplasma gondii (T. gondii) is capable of infecting nearly all warm-blooded animals and approximately 30% of the global population. Though most infections are subclinical in immunocompetent individuals, congenital contraction can lead to severe consequences such as spontaneous abortion, stillbirth, and a range of cranio-cerebral and/or ocular abnormalities. Previous studies reported that T. gondii-infected pregnancy mice unveiled a deficit in both the amount and suppressive functions of regulatory T (Treg) cells, accompanied with reduced levels of forkhead box p3 (Foxp3). Recently, accumulative studies have demonstrated that microRNAs (miRNAs) are, to some extent, relevant to T. gondii infection. However, the link between alterations in miRNAs and downregulation of Foxp3 triggered by T. gondii has been only sporadically studied. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR), protein blotting and immunofluorescence were employed to evaluate the impact of T. gondii infection and antigens on miRNA transcription and Foxp3 expression. Dual-luciferase reporter gene assays were performed to examine the fluorescence activity in EL4 cells, which were transfected with recombinant plasmids containing full-length/truncated/mutant microRNA-142a-3p (miR-142a) promoter sequence or wild type/mutant of Foxp3 3' untranslated region (3' UTR). RESULTS: We found a pronounced increase in miR-142a transcription, concurrent with a decrease in Foxp3 expression in T. gondii-infected mouse placental tissue. Similarly, comparable findings have been experimentally confirmed through the treatment of EL4 cells with T. gondii antigens (TgAg) in vitro. Simultaneously, miR-142a mimics attenuated Foxp3 expression, whereas its inhibitors markedly augmented Foxp3 expression. miR-142a promoter activity was elevated upon the stimulation of T. gondii antigens, which mitigated co-transfection of mutant miR-142a promoter lacking P53 target sites. miR-142a mimics deceased the fluorescence activity of Foxp3 3' untranslated region (3' UTR), but it did not affect the fluorescence activity upon the co-transfection of mutant Foxp3 3' UTR lacking miR-142a target site. CONCLUSION: In both in vivo and in vitro studies, a negative correlation was discovered between Foxp3 expression and miR-142a transcription. TgAg enhanced miR-142a promoter activity to facilitate miR-142a transcription through a P53-dependent mechanism. Furthermore, miR-142a directly targeted Foxp3 3' UTR, resulting in the downregulation of Foxp3 expression. Therefore, harnessing miR-142a may be a possible therapeutic approach for adverse pregnancy caused by immune imbalances, particularly those induced by T. gondii infection.


Asunto(s)
Regulación hacia Abajo , Factores de Transcripción Forkhead , MicroARNs , Toxoplasma , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Animales , Embarazo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ratones , Toxoplasma/genética , Toxoplasmosis/parasitología , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Resultado del Embarazo , Linfocitos T Reguladores/inmunología , Ratones Endogámicos C57BL , Regiones no Traducidas 3'
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673969

RESUMEN

This study presents an evaluation of seventeen newly produced recombinant trivalent chimeric proteins (containing the same immunodominant fragment of SAG1 and SAG2 of Toxoplasma gondii antigens, and an additional immunodominant fragment of one of the parasite antigens, such as AMA1, GRA1, GRA2, GRA5, GRA6, GRA7, GRA9, LDH2, MAG1, MIC1, MIC3, P35, and ROP1) as a potential alternative to the whole-cell tachyzoite lysate (TLA) used in the detection of infection in small ruminants. These recombinant proteins, obtained by genetic engineering and molecular biology methods, were tested for their reactivity with specific anti-Toxoplasma IgG antibodies contained in serum samples of small ruminants (192 samples of sheep serum and 95 samples of goat serum) using an enzyme-linked immunosorbent assay (ELISA). The reactivity of six recombinant trivalent chimeric proteins (SAG1-SAG2-GRA5, SAG1-SAG2-GRA9, SAG1-SAG2-MIC1, SAG1-SAG2-MIC3, SAG1-SAG2-P35, and SAG1-SAG2-ROP1) with IgG antibodies generated during T. gondii invasion was comparable to the sensitivity of TLA-based IgG ELISA (100%). The obtained results show a strong correlation with the results obtained for TLA. This suggests that these protein preparations may be a potential alternative to TLA used in commercial tests and could be used to develop a cheaper test for the detection of parasite infection in small ruminants.


Asunto(s)
Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Ensayo de Inmunoadsorción Enzimática , Cabras , Inmunoglobulina G , Toxoplasma , Animales , Toxoplasma/inmunología , Toxoplasma/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Ovinos , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/genética , Toxoplasmosis Animal/diagnóstico , Toxoplasmosis Animal/inmunología , Toxoplasmosis Animal/parasitología , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Enfermedades de las Cabras/parasitología , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/inmunología
5.
J Biotechnol ; 387: 69-78, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582406

RESUMEN

Banana, a globally popular fruit, is widely cultivated in tropical and sub-tropical regions. After fruit harvest, remaining banana plant materials are low-value byproducts, mostly composted or used as fibre or for food packaging. As an aim to potentially increase farmer income, this study explored underutilised banana biomass as a novel plant tissue for production of a high-value product. Protein scFvTG130 used in this study, is an anti-toxoplasma single chain variable fragment antibody that can be used in diagnostics and neutralising the Toxoplasma gondii pathogen. Using detached banana leaves, we investigated the factors influencing the efficacy of a transient expression system using reporter genes and recombinant protein, scFvTG130. Transient expression was optimal at 2 days after detached banana leaves were vacuum infiltrated at 0.08 MPa vacuum pressure for a duration of 3 min with 0.01% (v/v) Tween20 using Agrobacterium strain GV3101 harbouring disarmed virus-based vector pIR-GFPscFvTG130. The highest concentration of anti-toxoplasma scFvTG130 antibody obtained using detached banana leaves was 22.8 µg/g fresh leaf tissue. This first study using detached banana leaf tissue for the transient expression of a recombinant protein, successfully demonstrated anti-toxoplasma scFvTG130 antibody expression, supporting the potential application for other related proteins using an underutilised detached banana leaf tissue.


Asunto(s)
Musa , Hojas de la Planta , Anticuerpos de Cadena Única , Musa/genética , Musa/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Proteínas Recombinantes/genética , Toxoplasma/genética , Agrobacterium/genética , Plantas Modificadas Genéticamente/genética , Agricultura/métodos
6.
Parasit Vectors ; 17(1): 195, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671515

RESUMEN

BACKGROUND: Toxoplasma gondii and Neospora caninum are closely related protozoan parasites that are considered important causes of abortion in livestock, causing huge economic losses. Hunan Province ranks 12th in the production of beef and mutton in China. However, limited data are available on the seroprevalence, risk factors and molecular characterization of T. gondii and N. caninum in beef cattle and goats in Hunan province, China. METHODS: Sera of 985 beef cattle and 1147 goats were examined for the presence of specific antibodies against T. gondii using indirect hemagglutination test (IHAT) and anti-N. caninum IgG using competitive-inhibition enzyme-linked immunoassay assay (cELISA). Statistical analysis of possible risk factors was performed using PASW Statistics. Muscle samples of 160 beef cattle and 160 goats were examined for the presence of T. gondii DNA (B1 gene) and N. caninum DNA (Nc-5 gene) by nested PCR. The B1 gene-positive samples were genotyped at 10 genetic markers using the multilocus nested PCR-RFLP (Mn-PCR-RFLP). RESULTS: Specific IgG against T. gondii were detected in 8.3% (82/985) and 13.3% (153/1147) and against N. caninum in 2.1% (21/985) and 2.0% (23/1147) of the beef cattle and goats, respectively. Based on statistical analysis, the presence of cats, semi-intensive management mode and gender were identified as significant risk factors for T. gondii infection in beef cattle. Age was a significant risk factor for T. gondii infection in goats (P < 0.05), and age > 3 years was a significant risk factor for N. caninum infection in beef cattle (P < 0.05). PCR positivity for T. gondii was observed in three beef samples (1.9%; 3/160) and seven chevon samples (4.4%; 7/160). Genotyping of PCR positive samples identified one to be ToxoDB#10. The N. caninum DNA was observed in one beef sample (0.6%; 1/160) but was negative in all chevon samples. CONCLUSIONS: To our knowledge, this is the first large-scale serological and molecular investigation of T. gondii and N. caninum and assessment of related risk factors in beef cattle and goats in Hunan Province, China. The findings provide baseline data for executing prevention and control of these two important parasites in beef cattle and goats in China.


Asunto(s)
Anticuerpos Antiprotozoarios , Enfermedades de los Bovinos , Coccidiosis , Enfermedades de las Cabras , Cabras , Neospora , Toxoplasma , Toxoplasmosis Animal , Animales , Cabras/parasitología , Neospora/genética , Neospora/inmunología , Neospora/aislamiento & purificación , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/parasitología , China/epidemiología , Bovinos , Estudios Seroepidemiológicos , Coccidiosis/veterinaria , Coccidiosis/epidemiología , Coccidiosis/parasitología , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/parasitología , Anticuerpos Antiprotozoarios/sangre , Femenino , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Masculino , Factores de Riesgo , Inmunoglobulina G/sangre , ADN Protozoario/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Genotipo , Reacción en Cadena de la Polimerasa/veterinaria
7.
Trends Parasitol ; 40(5): 416-426, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637184

RESUMEN

The micropore, a mysterious structure found in apicomplexan species, was recently shown to be essential for nutrient acquisition in Plasmodium falciparum and Toxoplasma gondii. However, the differences between the micropores of these two parasites questions the nature of a general apicomplexan micropore structure and whether the formation process model from Plasmodium can be applied to other apicomplexans. We analyzed the literature on different apicomplexan micropores and found that T. gondii probably harbors a more representative micropore type than the more widely studied ones in Plasmodium. Using recent knowledge of the Kelch 13 (K13) protein interactome and gene depletion phenotypes in the T. gondii micropore, we propose a model of micropore formation, thus enriching our wider understanding of micropore protein function.


Asunto(s)
Apicomplexa , Plasmodium falciparum , Toxoplasma , Apicomplexa/fisiología , Apicomplexa/genética , Toxoplasma/genética , Toxoplasma/fisiología , Plasmodium falciparum/fisiología , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
8.
Rev Bras Parasitol Vet ; 33(2): e003624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656050

RESUMEN

Toxoplasma gondii and Neospora caninum are two closely related protozoans that infect a wide range of animals, including birds. However, the occurrence of N. caninum and T. gondii in seabirds is unknown. Therefore, this study aimed to determine the presence of T. gondii and N. caninum DNA in tissue samples of seabirds. Tissue samples of the pectoral muscles, heart, and brain were collected from 47 birds along the coastline of Santa Catarina State, SC, Brazil. The DNA was extracted from the tissues and screened using nested-PCR (nPCR) targeting internal transcribed spacer 1 (ITS1). T. gondii DNA was detected in tissues from seven seabirds (7/47, 14.8%), kelp gull (Larus dominicanus) (5/21), and Manx shearwater (Puffinus puffinus) (2/8). N. caninum DNA was detected in tissues of nine seabirds (9/47, 19.1%), the kelp gull (L. dominicanus) (4/21), Manx shearwater (P. puffinus) (2/8), neotropic cormorant (Phalacrocorax brasilianus) (1/4), brown booby (Sula leucogaster) (1/5), and white-chinned petrel (Procellaria aequinoctialis) (1/1); however, no co-infection was observed. In conclusion, this study showed the circulation of N. caninum and T. gondii in seabirds along the coastline of Santa Catarina State. Further studies are required to clarify the role of these birds in the epidemiology of neosporosis and toxoplasmosis.


Asunto(s)
Enfermedades de las Aves , Coccidiosis , ADN Protozoario , Neospora , Toxoplasma , Toxoplasmosis Animal , Animales , Toxoplasma/aislamiento & purificación , Toxoplasma/genética , Brasil/epidemiología , Neospora/aislamiento & purificación , Neospora/genética , Toxoplasmosis Animal/diagnóstico , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/parasitología , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/diagnóstico , Enfermedades de las Aves/epidemiología , Coccidiosis/veterinaria , Coccidiosis/diagnóstico , Coccidiosis/epidemiología , Coccidiosis/parasitología , ADN Protozoario/aislamiento & purificación , ADN Protozoario/análisis , Reacción en Cadena de la Polimerasa/veterinaria , Aves/parasitología , Charadriiformes/parasitología
9.
J Clin Microbiol ; 62(4): e0142823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470023

RESUMEN

The molecular detection of Toxoplasma gondii DNA is a key tool for the diagnosis of disseminated and congenital toxoplasmosis. This multicentric study from the Molecular Biology Pole of the French National Reference Center for toxoplasmosis aimed to evaluate Toxoplasma gondii Real-TM PCR kit (Sacace). The study compared the analytical and clinical performances of this PCR assay with the reference PCRs used in proficient laboratories. PCR efficiencies varied from 90% to 112%; linearity zone extended over four log units (R2 > 0.99) and limit of detection varied from 0.01 to ≤1 Tg/mL depending on the center. Determined on 173 cryopreserved DNAs from a large range of clinical specimens, clinical sensitivity was 100% [106/106; 95 confidence interval (CI): 96.5%-100%] and specificity was 100% (67/67; 95 CI: 94.6%-100%). The study revealed two potential limitations of the Sacace PCR assay: the first was the inconsistency of the internal control (IC) when added to the PCR mixture. This point was not found under routine conditions when the IC was added during the extraction step. The second is a lack of practicality, as the mixture is distributed over several vials, requiring numerous pipetting operations. Overall, this study provides useful information for the molecular diagnosis of toxoplasmosis; the analytical and clinical performances of the Sacace PCR kit were satisfactory, the kit having sensitivity and specificity similar to those of expert center methods and being able to detect low parasite loads, at levels where multiplicative analysis gives inconsistently positive results. Finally, the study recommends multiplicative analysis in particular for amniotic fluids, aqueous humor, and other single specimens.


Asunto(s)
Toxoplasma , Toxoplasmosis Congénita , Toxoplasmosis , Humanos , Toxoplasma/genética , Toxoplasmosis/diagnóstico , Toxoplasmosis/parasitología , Toxoplasmosis Congénita/diagnóstico , Toxoplasmosis Congénita/parasitología , ADN , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad , ADN Protozoario/genética , ADN Protozoario/análisis
10.
Methods Mol Biol ; 2776: 43-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502497

RESUMEN

Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.


Asunto(s)
Apicoplastos , Parásitos , Plasmodium , Toxoplasma , Animales , Humanos , Apicoplastos/genética , Apicoplastos/metabolismo , Simbiosis , Toxoplasma/genética , Toxoplasma/metabolismo
11.
Int J Food Microbiol ; 416: 110643, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38452660

RESUMEN

Consumption of raw and undercooked meat is considered as an important source of Toxoplasma gondii infections. However, most non-heated meat products contain salt and additives, which affect T. gondii viability. It was our aim to develop an in vitro method to substitute the mouse bioassay for determining the effect of salting on T. gondii viability. Two sheep were experimentally infected by oral inoculation with 6.5 × 104 oocysts. Grinded meat samples of 50 g were prepared from heart, diaphragm, and four meat cuts. Also, pooled meat samples were either kept untreated (positive control), frozen (negative control) or supplemented with 0.6 %, 0.9 %, 1.2 % or 2.7 % NaCl. All samples were digested in pepsin-HCl solution, and digests were inoculated in duplicate onto monolayers of RK13 (a rabbit kidney cell line). Cells were maintained for up to four weeks and parasite growth was monitored by assessing Cq-values using the T. gondii qPCR on cell culture supernatant in intervals of one week and ΔCq-values determined. Additionally, 500 µL of each digest from the individual meat cuts, heart and diaphragm were inoculated in duplicate in IFNγ KO mice. Both sheep developed an antibody response and tissue samples contained similar concentrations of T. gondii DNA. From all untreated meat samples positive ΔCq-values were obtained in the in vitro assay, indicating presence and multiplication of viable parasites. This was in line with the mouse bioassay, with the exception of a negative mouse bioassay on one heart sample. Samples supplemented with 0.6 %-1.2 % NaCl showed positive ΔCq-values over time. The frozen sample and the sample supplemented with 2.7 % NaCl remained qPCR positive but with high Cq-values, which indicated no growth. In conclusion, the in vitro method has successfully been used to detect viable T. gondii in tissues of experimentally infected sheep, and a clear difference in T. gondii viability was observed between the samples supplemented with 2.7 % NaCl and those with 1.2 % NaCl or less.


Asunto(s)
Productos de la Carne , Toxoplasma , Toxoplasmosis Animal , Ovinos , Animales , Ratones , Conejos , Toxoplasma/genética , Cloruro de Sodio , Toxoplasmosis Animal/parasitología , Carne/parasitología , Productos de la Carne/parasitología
12.
Parasit Vectors ; 17(1): 105, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439083

RESUMEN

BACKGROUND: The human sortilin protein is an important drug target and detection marker for cancer research. The sortilin from Toxoplasma gondii transports proteins associated with the apical organelles of the parasite. In this study, we aimed to determine the intracellular localization and structural domains of T. gondii sortilin, which may mediate protein transportation. Approaches to the functional inhibition of sortilin to establish novel treatments for T. gondii infections were explored. METHODS: A gene encoding the sortilin protein was identified in the T. gondii genome. Immunoprecipitation and mass spectrometry were performed to identify the protein species transported by T. gondii sortilin. The interaction of each structural domain of sortilin with the transported proteins was investigated using bio-layer interferometry. The binding regions of the transported proteins in sortilin were identified. The effect of the sortilin inhibitor AF38469 on the infectivity of T. gondii was investigated. The binding site of AF38469 on sortilin was determined. RESULTS: The subdomains Vps10, sortilin-C, and sortilin-M of the sortilin were identified as the binding regions for intracellular transportation of the target proteins. The sortilin inhibitor AF38469 bound to the Vps10 structural domain of T. gondii sortilin, which inhibited parasite invasion, replication, and intracellular growth in vitro and was therapeutic in mice infected with T. gondii. CONCLUSION: The Vps10, sortilin-C, and sortilin-M subdomains of T. gondii sortilin were identified as functional regions for intracellular protein transport. The binding region for the sortilin inhibitor AF38469 was also identified as the Vps10 subdomain. This study establishes sortilin as a promising drug target against T. gondii and provides a valuable reference for the development of anti-T. gondii drug-target studies.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Hidrocarburos Fluorados , Parásitos , Piridinas , Toxoplasma , Humanos , Animales , Ratones , Toxoplasma/genética , Proliferación Celular
13.
Trends Parasitol ; 40(5): 401-415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531711

RESUMEN

Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.


Asunto(s)
Citoesqueleto , Toxoplasma , Tubulina (Proteína) , Toxoplasma/metabolismo , Toxoplasma/genética , Toxoplasma/fisiología , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Citoesqueleto/metabolismo , Animales , Microtúbulos/metabolismo , Humanos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
14.
Mol Biochem Parasitol ; 258: 111615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38354788

RESUMEN

Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.


Asunto(s)
Adaptación Fisiológica , Epigénesis Genética , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/crecimiento & desarrollo , Animales , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación de la Expresión Génica , Humanos , Evolución Biológica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Evolución Molecular
15.
Trends Parasitol ; 40(3): 209-210, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311493

RESUMEN

Antunes et al. successfully grew cat-restricted stages of Toxoplasma gondii in cell culture by targeting parasite epigenetics and transcription factors. The highlight of this report is how efficiently parasites convert to these pre-sexual stages. Their work is an important step toward achieving feline-free recapitulation of the T. gondii sexual cycle.


Asunto(s)
Parásitos , Toxoplasma , Gatos , Animales , Toxoplasma/genética , Desarrollo Sexual
16.
Braz J Microbiol ; 55(1): 933-941, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305952

RESUMEN

Infectious diseases are one of the most concerning threats to maned wolves (Chrysocyon brachyurus) due to the potential impact on free-ranging populations. The species is currently classified as vulnerable according to the national list of threatened species and occurs mainly in open habitats, such as the Cerrado, a tropical savannah, which comprises its main distribution area in Brazil. In the northeastern region, it occurs in the Cerrado of Bahia, Piauí, Maranhão, and Tocantins states. Therefore, this study aimed to investigate the occurrence of infectious agents in Chrysocyon brachyurus through an epidemiological assessment of free-ranging individuals in western Bahia, specifically in the Barreiras microregion, a Cerrado area intensely fragmented and anthropized by agricultural activity. Eleven specimens were evaluated for serological titration, antigen research, and genetic material research for canine distemper virus (CDV), canine parvovirus (CPV), adenovirus-canine-type 1 (CAdV-1), canine coronavirus (CCoV), Leptospira interrogans and Toxoplasma gondii from 2020 to 2022. In addition to maned wolves, domestic dogs were also evaluated and tested. All maned wolves (100%) evaluated by the dot-ELISA technique exhibited immunoglobulin M (IgM) and seven (64%) exhibited immunoglobulin G (IgG) against CDV and CPV, while 100% exhibited IgG against CDV when using the immunochromatographic technique. Regarding CAdV-1, 90% were seropositive for IgG, while 64% exhibited IgG against T. gondii. Nine dogs from the region were also sampled, and all (100%) exhibited IgM and IgG against CDV and CPV. For IgG against T. gondii and against CAdV-1, 90% of the animals were seropositive. Molecular evaluation yielded negative results for all maned wolves and dogs assessed for CAdV-1, CDV, and T. gondii, as well as the CCoV antigen. These data indicate the occurrence of viral agents and Toxoplasma gondii in maned wolves and dogs, suggesting circulation in both populations.


Asunto(s)
Canidae , Virus del Moquillo Canino , Parvovirus Canino , Toxoplasma , Lobos , Animales , Perros , Brasil/epidemiología , Inmunoglobulina G , Toxoplasma/genética , Inmunoglobulina M
17.
Biosens Bioelectron ; 251: 116132, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382270

RESUMEN

Early detection of Toxoplasma gondii (T. gondii) is critical due to a lack of effective treatment for toxoplasmosis.This study established a simple, cost-effective, and rapid colorimetric detection method for T. gondii. The entire testing process, from sample collection to results, takes only 0.5 h. These characteristics fulfill the demands of researchers seeking rapid target detection with minimal equipment reliance. For genomic extraction, this study evaluated the ability of two filter papers to capture genomes. A rapid genomic extraction device combined with the two filter papers was designed to simplify the genomic extraction process, which was completed within 10 min and increased the detection sensitivity tenfold. The method utilized a simplified primer design for isothermal amplification, namely allosteric strand displacement (ASD), and employed an underutilized commercial color indicator, Bromothymol Blue (BTB), for signal output. Compared with other reported indicators, BTB exhibited a more pronounced color change, shifting from blue to yellow in positive samples, facilitating easier visual differentiation. The reaction was completed in 20 min with a limit of detection (LOD) as low as 0.014 T. gondii per microliter.


Asunto(s)
Técnicas Biosensibles , Toxoplasma , Toxoplasma/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , ADN Protozoario/genética , Azul de Bromotimol
18.
Acta Parasitol ; 69(1): 175-182, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319447

RESUMEN

Toxoplasmosis is a zoonotic disease with a worldwide prevalence that is caused by Toxoplasma gondii. This study aimed to summarize available data on genotyping T. gondii strains based on the GRA6 gene marker in different hosts around the world. We conducted a comprehensive literature search using five international databases (PubMed, Scopus, Science Direct, Web of Science, and Google Scholar) from inception until December 2021. We identified 32 papers eligible for inclusion in this systematic review. The majority of studies (50%) were carried out in Iran (n = 16) to identify T. gondii genotypes based on the GRA6 gene. Other countries with reported studies include China, Japan, Sweden, and Italy (n = 2 each). Out of 3,434 samples collected from various hosts, most studies (n = 11) focused on human samples (34.4%), followed by ovine (n = 7), pig (n = 4), goat (n = 3) and soil and cattle (n = 2).Using various molecular methods such as conventional PCR, nested-PCR, real-time PCR, microsatellite analysis, and Restriction Fragment Length Polymorphism (RFLP), we found DNA positive results in 805 out of 3,434 samples. Of these, 285 (35.40%), 207 (25.71%), 182 (22.60%), 65 (8.07%), and 18 (2.23%) were infected with types I, II, III, mix I, II, III, and mix II, III, respectively. Our data demonstrate that the GRA6 gene marker has sufficient polymorphism to detect three types of T. gondii genotypes in various hosts. Identifying the specific genotype could be valuable in developing new strategies for treatment, vaccination, diagnosis, control, and prevention of T. gondii infection.


Asunto(s)
Antígenos de Protozoos , Genotipo , Proteínas Protozoarias , Toxoplasma , Toxoplasma/genética , Toxoplasma/clasificación , Toxoplasma/aislamiento & purificación , Animales , Proteínas Protozoarias/genética , Antígenos de Protozoos/genética , Humanos , Marcadores Genéticos , Tipificación Molecular , Cabras/parasitología , Ovinos , Toxoplasmosis/parasitología , Bovinos , Irán/epidemiología , Toxoplasmosis Animal/parasitología , Porcinos , Polimorfismo de Longitud del Fragmento de Restricción
19.
mBio ; 15(3): e0308123, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38380952

RESUMEN

Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins secreted from dense granule organelles to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions, we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant "bubble vacuole" morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections. IMPORTANCE: Toxoplasma gondii is a parasite that poses significant health risks to those with impaired immunity. It replicates inside host cells shielded by the PVM, which controls nutrient and waste exchange with the host. GRA72, previously identified as essential in the absence of the GRA17 nutrient channel, is implicated in forming an alternative nutrient channel. Here we found that GRA47 associates with GRA72 and is also important for the PVM's permeability to small molecules. Removal of GRA47 leads to distorted vacuoles and impairs small molecule transport across the PVM, resembling the effects of GRA17 and GRA72 deletions. Structural models suggest GRA47 and GRA72 form distinct pore structures, with a pore-lining histidine critical to their function. Toxoplasma strains lacking GRA47 or those with a histidine mutation have impaired growth and reduced virulence in mice, highlighting these proteins as potential targets for new treatments against toxoplasmosis.


Asunto(s)
Toxoplasma , Animales , Ratones , Toxoplasma/genética , Vacuolas/metabolismo , Proteínas Protozoarias/genética , Histidina/metabolismo , Permeabilidad
20.
Parasitol Res ; 123(2): 139, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381180

RESUMEN

The flow of calcium ions (Ca2+) is involved in numerous vital activities of Toxoplasma gondii. Calreticulin is a type of Ca2+-binding protein in the endoplasmic reticulum (ER) that is involved in Ca2+ signaling pathway regulation, Ca2+ storage, and protein folding. In this work, the calreticulin (CALR), a protein predicted to possess a conserved domain of calreticulin in T. gondii, was characterized. The CALR localized in the ER. Using reverse genetics, we discovered that CALR is not necessary for the lytic cycle, including invasion and replication. However, depletion of CALR affected microneme secretion triggered by A23187, which is a Ca2+ ionophore used to increase cytoplasmic Ca2+ concentration. Furthermore, we discovered that CALR influences Ca2+ release. Transcriptomic comparison between Δcalr and Δku80 parasites showed that 226 genes in the Δcalr parasites were significantly downregulated (p < 0.05). The cellular biological functions of the downregulated genes were mainly involved in calmodulin-dependent protein kinase pathways. Furthermore, in the absence of CALR, tachyzoites were still able to cause acute infection in mice. These results imply that by influencing ER Ca2+ release content, CALR may further impair the ionophore-induced secretion of the parasite. However, this protein is not required for the completion of the parasite's lytic cycle or for the acute virulence of the parasite.


Asunto(s)
Toxoplasma , Animales , Ratones , Toxoplasma/genética , Calreticulina/genética , Micronema , Retículo Endoplásmico , Ionóforos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA