Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
J Neurosci ; 41(15): 3432-3445, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33637562

RESUMEN

Locomotion, scratching, and stabilization of the body orientation in space are basic motor functions which are critically important for animal survival. Their execution requires coordinated activity of muscles located in the left and right halves of the body. Commissural interneurons (CINs) are critical elements of the neuronal networks underlying the left-right motor coordination. V0 interneurons (characterized by the early expression of the transcription factor Dbx1) contain a major class of CINs in the spinal cord (excitatory, V0V; inhibitory, V0D), and a small subpopulation of excitatory ipsilaterally projecting interneurons. The role of V0 CINs in left-right coordination during forward locomotion was demonstrated earlier. Here, to reveal the role of glutamatergic V0 and other V0 subpopulations in control of backward locomotion, scratching, righting behavior, and postural corrections, kinematics of these movements performed by wild-type mice and knock-out mice with glutamatergic V0 or all V0 interneurons ablated were compared. Our results suggest that the functional effect of excitatory V0 neurons during backward locomotion and scratching is inhibitory, and that the execution of scratching involves active inhibition of the contralateral scratching central pattern generator mediated by excitatory V0 neurons. By contrast, other V0 subpopulations are elements of spinal networks generating postural corrections. Finally, all V0 subpopulations contribute to the generation of righting behavior. We found that different V0 subpopulations determine left-right coordination in the anterior and posterior parts of the body during a particular behavior. Our study shows a differential contribution of V0 subpopulations to diverse motor acts that provides new insight to organization of motor circuits.SIGNIFICANCE STATEMENT Commissural interneurons with their axons crossing the midline of the nervous system are critical elements of the neuronal networks underlying the left-right motor coordination. For the majority of motor behaviors, the neuronal mechanisms underlying left-right coordination are unknown. Here, we demonstrate the functional role of excitatory V0 neurons and other subpopulations of V0 interneurons in control of a number of basic motor behaviors-backward locomotion, scratching, righting behavior, and postural corrections-which are critically important for animal survival. We have shown that different subpopulations of V0 neurons determine left-right coordination in the context of different behaviors as well as in the anterior and posterior parts of the body during a particular behavior.


Asunto(s)
Interneuronas/fisiología , Locomoción , Periodicidad , Corteza Sensoriomotora/citología , Animales , Potenciales Postsinápticos Excitadores , Lateralidad Funcional , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Equilibrio Postural , Tractos Piramidales/citología , Tractos Piramidales/fisiología , Corteza Sensoriomotora/fisiología
2.
J Neurophysiol ; 125(3): 828-842, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502947

RESUMEN

Modulatory actions of inputs from the visual system to cervical interneurons (IN) for arm muscle control are poorly understood in humans. In the present study, we examined whether visual stimulation modulates the excitation of cervical IN systems mediating corticospinal tract (CST) inputs to biceps brachii (BB). Twenty-eight healthy volunteers were seated, and electromyogram recordings from the BB were performed across six experiments, each with discrete objectives. A flash stimulator for visual stimulation (50-µs duration) was placed 60 cm from the participant's eye. The CST was stimulated with transcranial magnetic/electrical stimulation (TMS/TES, respectively) contralateral to the recording site. Visual stimulation with TMS/TES was randomly delivered during weak tonic BB contractions. Single TMS/TES-induced motor-evoked potentials (MEPs) were markedly enhanced from 60-100 ms after visual stimulation compared with the control condition. The MEPs were significantly increased by combining the electrical stimulation of the ulnar nerve at the wrist [7.5-12 ms of nerve stimulation (NERVE)/TMS interval] with and without visual stimulation compared with the algebraic summation of responses obtained with either TMS or NERVE. Interestingly, the combined stimulation-induced MEP facilitation was significantly increased after visual stimulation compared with the control. Single motor unit (MU) recording also revealed the further enhancement of combined stimulation effects on the firing probabilities of MU during visual stimulation, which was observed in the peaks of the peristimulus time histogram, 1-2 ms later than the onset latency. The present findings suggest that visual stimulation facilitates the oligosynaptic CST excitation of arm motoneurons mediated by the cervical IN system.NEW & NOTEWORTHY To date, little is known about how visual information modulates the human cervical motor systems, including the presumed interneuron (IN) circuitry. This study demonstrates that photic visual stimulation influences presumed oligosynaptic corticospinal transmission to arm motoneurons, which are mediated by cervical INs. In animals, these systems are known to be crucial for visually guided switching movements, and similar visual input systems to INs may exist in humans.


Asunto(s)
Potenciales Evocados Motores , Interneuronas/fisiología , Tractos Piramidales/fisiología , Percepción Visual , Adulto , Vértebras Cervicales/citología , Vértebras Cervicales/fisiología , Estimulación Eléctrica , Femenino , Humanos , Masculino , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Estimulación Luminosa , Tractos Piramidales/citología , Tiempo de Reacción , Estimulación Magnética Transcraneal , Nervio Cubital/fisiología
3.
Acta Neuropathol Commun ; 8(1): 214, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287888

RESUMEN

Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos/fisiología , Neuronas/metabolismo , Tractos Piramidales/metabolismo , Paraplejía Espástica Hereditaria/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Benzoatos/farmacología , Bencilaminas/farmacología , Corteza Cerebral/citología , Proteínas de Unión al GTP/genética , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Receptores X del Hígado/agonistas , Proteínas de la Membrana/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Células Madre Pluripotentes , Tractos Piramidales/citología , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología
4.
Neuron ; 107(6): 1197-1211.e9, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32707082

RESUMEN

Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.


Asunto(s)
Orientación del Axón , Células-Madre Neurales/citología , Neuroglía/citología , Animales , Axones/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Espinas Dendríticas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Globo Pálido/citología , Globo Pálido/crecimiento & desarrollo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Tractos Piramidales/citología , Tractos Piramidales/crecimiento & desarrollo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
5.
J Neurotrauma ; 37(18): 1933-1953, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32438858

RESUMEN

Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.


Asunto(s)
Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Estimulación de la Médula Espinal/métodos , Médula Espinal/fisiología , Animales , Ensayos Clínicos como Asunto/métodos , Humanos , Tractos Piramidales/citología , Tractos Piramidales/fisiología , Médula Espinal/citología , Traumatismos de la Médula Espinal/fisiopatología
6.
Nature ; 581(7806): 77-82, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376949

RESUMEN

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury1; however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their 'regenerative transcriptome' after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome; deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


Asunto(s)
Proliferación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regeneración Nerviosa/genética , Células-Madre Neurales/citología , Neuronas/metabolismo , Neuronas/patología , Transcripción Genética , Animales , Axones/patología , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Proteína Huntingtina/genética , Ratones , Células-Madre Neurales/trasplante , Plasticidad Neuronal , Neuronas/citología , Neuronas/trasplante , Biosíntesis de Proteínas , Tractos Piramidales/citología , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , RNA-Seq , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Transcriptoma
7.
Cereb Cortex ; 30(5): 3403-3418, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32026928

RESUMEN

Anatomical studies report a large proportion of fine myelinated fibers in the primate pyramidal tract (PT), while very few PT neurons (PTNs) with slow conduction velocities (CV) (<~10 m/s) are reported electrophysiologically. This discrepancy might reflect recording bias toward fast PTNs or prevention of antidromic invasion by recurrent inhibition (RI) of slow PTNs from faster axons. We investigated these factors in recordings made with a polyprobe (32 closely-spaced contacts) from motor cortex of anesthetized rats (n = 2) and macaques (n = 3), concentrating our search on PTNs with long antidromic latencies (ADLs). We identified 21 rat PTNs with ADLs >2.6 ms and estimated CV 3-8 m/s, and 67 macaque PTNs (>3.9 ms, CV 6-12 m/s). Spikes of most slow PTNs were small and present on only some recording contacts, while spikes from simultaneously recorded fast-conducting PTNs were large and appeared on all contacts. Antidromic thresholds were similar for fast and slow PTNS, while spike duration was considerably longer in slow PTNs. Most slow PTNs showed no signs of failure to respond antidromically. A number of tests, including intracortical microinjection of bicuculline (GABAA antagonist), failed to provide any evidence that RI prevented antidromic invasion of slow PTNs. Our results suggest that recording bias is the main reason why previous studies were dominated by fast PTNs.


Asunto(s)
Corteza Motora/citología , Conducción Nerviosa/fisiología , Neuronas/fisiología , Tractos Piramidales/citología , Animales , Bicuculina/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Macaca , Conducción Nerviosa/efectos de los fármacos , Inhibición Neural , Neuronas/efectos de los fármacos , Ratas
8.
Cereb Cortex ; 30(2): 656-671, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31343065

RESUMEN

Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Neuronas/fisiología , Tractos Piramidales/citología , Tractos Piramidales/embriología , Animales , Axones/fisiología , Macaca fascicularis , Vías Nerviosas/citología , Vías Nerviosas/embriología , Técnicas de Trazados de Vías Neuroanatómicas
9.
J Comp Neurol ; 528(8): 1293-1306, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31769033

RESUMEN

The corticospinal tract (CST) is the major descending pathway controlling voluntary hand function in primates, and though less dominant, it mediates voluntary paw movements in rats. As with primates, the CST in rats originates from multiple (albeit fewer) cortical sites, and functionally different motor and somatosensory subcomponents terminate in different regions of the spinal gray matter. We recently reported in monkeys that following a combined cervical dorsal root/dorsal column lesion (DRL/DCL), both motor and S1 CSTs sprout well beyond their normal terminal range. The S1 CST sprouting response is particularly dramatic, indicating an important, if poorly understood, somatosensory role in the recovery process. As rats are used extensively to model spinal cord injury, we asked if the S1 CST response is conserved in rodents. Rats were divided into sham controls, and two groups surviving post-lesion for ~6 and 10 weeks. A DRL/DCL was made to partially deafferent one paw. Behavioral testing showed a post-lesion deficit and recovery over several weeks. Three weeks prior to ending the experiment, S1 cortex was mapped electrophysiologically, for tracer injection placement to determine S1 CST termination patterns within the cord. Synaptogenesis was also assessed for labeled S1 CST terminals within the dorsal horn. Our findings show that the affected S1 CST sprouts well beyond its normal range in response to a DRL/DCL, much as it does in macaque monkeys. This, along with evidence for increased synaptogenesis post-lesion, indicates that CST terminal sprouting following a central sensory lesion, is a robust and conserved response.


Asunto(s)
Axones/fisiología , Médula Cervical/fisiología , Ganglios Espinales/fisiología , Tractos Piramidales/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Axones/química , Médula Cervical/química , Femenino , Ganglios Espinales/química , Tractos Piramidales/química , Tractos Piramidales/citología , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/química , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Asta Dorsal de la Médula Espinal/química , Asta Dorsal de la Médula Espinal/citología
10.
Neuroscience ; 424: 86-101, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678345

RESUMEN

Corticospinal neurons (CSNs) undertake direct cortical outputs to the spinal cord and innervate the upper limb through the brachial plexus. Our previous study has shown that the contralateral middle trunk transfer to the paralyzed upper extremity due to cerebral injury can reconstruct the functional cerebral cortex and improve the function of the paralyzed upper extremity. To interpret the cortical reconstruction and the motor improvement after the middle trunk transfer, we explored the distribution of CSNs connecting to the middle, upper, and lower trunk of the brachial plexus by retrograde trans-neuronal tracing using pseudorabies virus (PRV-EGFP or PRV-mRFP). We show that, rather than an individual specific area, these CSNs labelled by each trunk of the brachial plexus were widespread and mainly assembled within the primary motor cortex (M1), secondary motor cortex (M2), primary somatosensory cortex (S1), and slightly within the secondary somatosensory cortex (S2). The three trunk-labelled CSNs were intermingled in these cortices, and mostly connected to more than two trunks, especially the middle trunk-labelled CSNs with higher proportion of co-labelled neurons. Our findings revealed the distribution features of CSNs connecting to the adjacent spinal nerves that innervate the upper limb, which can improve our understanding of the corticospinal circuits associated with motor improvement and the functional cortical reconstruction after the middle trunk transfer.


Asunto(s)
Corteza Cerebral/química , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes/análisis , Neuronas/química , Tractos Piramidales/química , Sinapsis/química , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Tractos Piramidales/citología , Tractos Piramidales/fisiología , Sinapsis/fisiología
11.
Front Neural Circuits ; 13: 71, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803027

RESUMEN

There exist two major types of striatum-targeting neocortical neurons, specifically, intratelencephalic (IT) neurons and pyramidal-tract (PT) neurons. Regarding their striatal projections, it was once suggested that IT axons are extended whereas PT axons are primarily focal. However, subsequent study with an increased number of well-stained extended axons concluded that such an apparent distinction was spurious due to limited sample size. Recent work using genetically labeled neurons reintroduced the differential spatial extent of the striatal projections of IT and PT neurons through population-level analyses, complemented by observations of single axons. However, quantitative IT vs. PT comparison of a large number of axons remained to be conducted. We analyzed the data of axonal end-points of 161 IT neurons and 33 PT neurons in the MouseLight database (http://ml-neuronbrowser.janelia.org/). The number of axonal end-points in the ipsilateral striatum exhibits roughly monotonically decreasing distributions in both neuron types. Excluding neurons with no ipsilateral end-point, the distributions of the logarithm of the number of ipsilateral end-points are considerably overlapped between IT and PT neurons, although the proportion of neurons having more than 50 ipsilateral end-points is somewhat larger in IT neurons than in PT neurons. Looking at more details, among IT subpopulations in the secondary motor area (MOs), layer 5 neurons and bilateral striatum-targeting layer 2/3 neurons, but not contralateral striatum-non-targeting layer 2/3 neurons, have a larger number of ipsilateral end-points than MOs PT neurons. We also found that IT ipsilateral striatal axonal end-points are on average more widely distributed than PT end-points, especially in the medial-lateral direction. These results indicate that IT and PT striatal axons differ in the frequencies and spatial extent of end-points while there are wide varieties within each neuron type.


Asunto(s)
Axones/fisiología , Cuerpo Estriado/citología , Neuronas/citología , Tractos Piramidales/citología , Animales , Forma de la Célula , Bases de Datos Factuales , Ratones
12.
Sci Rep ; 9(1): 17078, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745212

RESUMEN

Traumatic brain injury (TBI) is a common cause of death and disability. Enhancing the midline-crossing of the contralateral corticospinal tract (CST) to the denervated side of spinal cord facilitates functional recovery after TBI. Activation of the gamma isoform of PKC (PKCγ) in contralateral CST implicates its roles in promoting CST remodeling after TBI. In this study, we deployed loss and gain of function strategies in N2a cells and primary cortical neurons in vitro, and demonstrated that PKCγ is not only important but necessary for neuronal differentiation, neurite outgrowth and axonal branching but not for axonal extension. Mechanically, through the phosphorylation of GSK3ß, PKCγ stabilizes the expression of cytosolic ß-catenin and increase GAP43 expression, thus promoting axonal outgrowth. Further, rAAV2/9-mediated delivery of constitutive PKCγ in the corticospinal tract after unilateral TBI in vivo additionally showed that specifically delivery of active PKCγ mutant to cortical neuron promotes midline crossing of corticospinal fibers from the uninjured side to the denervated cervical spinal cord. This PKCγ-mediated injury response promoted sensorimotor functional recovery. In conclusion, PKCγ mediates stability of ß-catenin through the phosphorylation of GSK3ß to facilitate neuronal differentiation, neurite outgrowth and axonal branching, and PKCγ maybe a novel therapeutic target for physiological and functional recovery after TBI.


Asunto(s)
Axones/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/fisiopatología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/citología , Proteína Quinasa C/farmacología , Tractos Piramidales/citología , beta Catenina/metabolismo , Animales , Axones/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Regeneración Nerviosa , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/metabolismo , Recuperación de la Función , Transducción de Señal , beta Catenina/genética
13.
J Exp Med ; 216(11): 2503-2514, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31391209

RESUMEN

The remodeling of supraspinal axonal circuits mediates functional recovery after spinal cord injury. This process critically depends on the selection of appropriate synaptic connections between cortical projection and spinal relay neurons. To unravel the principles that guide this target selection, we used genetic and chemogenetic tools to modulate NMDA receptor (NMDAR) integrity and function, CREB-mediated transcription, and neuronal firing of relay neurons during injury-induced corticospinal remodeling. We show that NMDAR signaling and CREB-mediated transcription maintain nascent corticospinal tract (CST)-relay neuron contacts. These activity-dependent signals act during a defined period of circuit remodeling and do not affect mature or uninjured circuits. Furthermore, chemogenetic modulation of relay neuron activity reveals that the regrowing CST axons select their postsynaptic partners in a competitive manner and that preventing such activity-dependent shaping of corticospinal circuits limits motor recovery after spinal cord injury.


Asunto(s)
Neuronas/fisiología , Tractos Piramidales/fisiopatología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Axones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Tractos Piramidales/citología , Tractos Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Recuperación de la Función/genética
14.
Neuron ; 102(5): 960-975.e6, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31027966

RESUMEN

Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.


Asunto(s)
Linaje de la Célula , Interneuronas/metabolismo , Neocórtex/embriología , Sinapsis/metabolismo , Animales , Movimiento Celular , Expresión Génica , Técnicas de Inactivación de Genes , Interneuronas/citología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/embriología , Neuronas/citología , Neuronas/metabolismo , Tractos Piramidales/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Telencéfalo/citología , Factores de Transcripción/genética
16.
J Comp Neurol ; 527(8): 1401-1415, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30620045

RESUMEN

The corticospinal (CS) neurons projecting to the cervical cord distribute not only in motor-related cortical areas, but also in somatosensory areas, including the primary somatosensory cortex (S1). The exact functions of these widely distributed CS neurons are largely unknown, however. In this study, we injected mice with adeno-associated virus encoding membrane-binding fluorescent proteins to investigate the distribution of axons from CS neurons in different regions within a broad cortical area. We found that CS axons from the primary motor cortex (M1), the rostral part of S1 (S1r), and the caudal part of S1 (S1c) differentially project to specific compartments within the spinal gray matter of the seventh cervical cord segment: (a) M1 projects mainly to intermediate and ventral areas, (b) S1r to the mediodorsal area, and (c) S1c to the dorsolateral area. We also found that the projection from S1r, which corresponds to the forelimb area, largely overlaps the cutaneous afferent terminals from the forepaw (hand) in the dorsal horn, and we detected a similar relation between S1c and the trunk. Our findings suggest the existence of considerably fine somatotopic compartments within the dorsal horn that process somatosensation and descending information, which is provided mainly by S1 CS neurons and contribute to delicate control of sensory information in generation of movement.


Asunto(s)
Vías Aferentes/citología , Sustancia Gris/citología , Tractos Piramidales/citología , Corteza Somatosensorial/citología , Médula Espinal/citología , Animales , Ratones
17.
Brain Res ; 1710: 209-219, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30599138

RESUMEN

The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrain-hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Tractos Piramidales/crecimiento & desarrollo , Semaforinas/fisiología , Animales , Encéfalo/citología , Ratones Noqueados , Técnicas de Trazados de Vías Neuroanatómicas , Tractos Piramidales/citología , Semaforinas/genética
18.
Cereb Cortex ; 29(2): 788-801, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490005

RESUMEN

The axonal composition of cortical projections originating in premotor, supplementary motor (SMA), primary motor (a4), somatosensory and parietal areas and descending towards the brain stem and spinal cord was characterized in the monkey with histological tract tracing, electron microscopy (EM) and diffusion MRI (dMRI). These 3 approaches provided complementary information. Histology provided accurate assessment of axonal diameters and size of synaptic boutons. dMRI revealed the topography of the projections (tractography), notably in the internal capsule. From measurements of axon diameters axonal conduction velocities were computed. Each area communicates with different diameter axons and this generates a hierarchy of conduction delays in this order: a4 (the shortest), SMA, premotor (F7), parietal, somatosensory, premotor F4 (the longest). We provide new interpretations for i) the well-known different anatomical and electrophysiological estimates of conduction velocity; ii) why conduction delays are probably an essential component of the cortical motor command; and iii) how histological and dMRI tractography can be integrated.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Corteza Motora/química , Corteza Motora/diagnóstico por imagen , Tractos Piramidales/química , Tractos Piramidales/diagnóstico por imagen , Animales , Cercopithecus , Macaca fascicularis , Macaca mulatta , Corteza Motora/citología , Tractos Piramidales/citología
19.
Cereb Cortex ; 29(9): 3977-3981, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30365013

RESUMEN

This feature article focuses on the discrepancy between the distribution of axon diameters within the primate corticospinal tract, determined neuroanatomically, and the distribution of axonal conduction velocities within the same tract, determined electrophysiologically. We point out the importance of resolving this discrepancy for a complete understanding of corticospinal functions, and discuss the various explanations for the mismatch between anatomy and physiology.


Asunto(s)
Axones/fisiología , Conducción Nerviosa , Tractos Piramidales/fisiología , Animales , Humanos , Corteza Motora/fisiología , Primates/fisiología , Tractos Piramidales/citología
20.
Nat Commun ; 9(1): 3549, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177709

RESUMEN

The striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tract (PT-type) neurons, using viral vectors expressing fluorescent reporters in Cre-driver mice. Corticostriatal projections from sensory and motor cortex are somatotopic, with a decreasing topographic specificity as injection sites move from sensory to motor and frontal areas. Topographic organization differs between IT-type and PT-type neurons, including injections in the same site, with IT-type neurons having higher topographic stereotypy than PT-type neurons. Furthermore, IT-type projections from interconnected cortical areas have stronger correlations in corticostriatal targeting than PT-type projections do. As predicted by a longstanding model, corticostriatal projections of interconnected cortical areas form parallel circuits in the basal ganglia.


Asunto(s)
Cuerpo Estriado/anatomía & histología , Corteza Motora/anatomía & histología , Neuronas/citología , Corteza Somatosensorial/anatomía & histología , Animales , Ganglios Basales/anatomía & histología , Ganglios Basales/fisiología , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Ratones , Modelos Neurológicos , Corteza Motora/fisiología , Vías Nerviosas , Neuronas/fisiología , Tractos Piramidales/citología , Corteza Somatosensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...