Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.467
Filtrar
1.
Brain Res ; 1844: 149140, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111522

RESUMEN

Nearly half of the amyotrophic lateral sclerosis (ALS) patients showed hyperintensity of the corticospinal tract (CST+), yet whether brain functional pattern differs between CST+and CST- patients remains obscure. In the current study, 19 ALS CST+, 41 ALS CST- patients and 37 healthy controls (HC) underwent resting state fMRI scans. We estimated local activity and connectivity patterns via the Amplitude of Low Frequency Fluctuations (ALFF) and the Network-Based Statistic (NBS) approaches respectively. The ALS CST+patients did not differ from the CST- patients in amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) score and disease duration. ALFF of the superior frontal gyrus (SFG) and the inferior frontal gyrus pars opercularis (OIFG) were highest in the HC and lowest in the ALS CST- patients, resulting in significant group differences (PFWE<0.05). NBS analysis revealed a frontal network consisting of connections between SFG, OIFG, orbital frontal gyrus, middle cingulate cortex and the basal ganglia, which exhibited HC>ALS CST+ > ALS CST- group differences (PFWE=0.037) as well. The ALFF of the OIFG was significantly correlated with ALSFRS-R (R=0.34, P=0.028) and mean connectivity of the frontal network was trend-wise significantly correlated with disease duration (R=-0.31, P=0.052) in the ALS CST- patients. However, these correlations were insignificant in ALS CST+patients (P values > 0.8). In conclusion, The ALS CST+patients exhibited different patterns of baseline functional activity and connectivity in the frontal cortex which may indicate a functional compensatory effect.


Asunto(s)
Esclerosis Amiotrófica Lateral , Lóbulo Frontal , Imagen por Resonancia Magnética , Tractos Piramidales , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Masculino , Femenino , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/diagnóstico por imagen , Anciano , Adulto , Mapeo Encefálico/métodos
2.
Medicina (Kaunas) ; 60(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39202523

RESUMEN

D-waves (also called direct waves) result from the direct activation of fast-conducting, thickly myelinated corticospinal tract (CST) fibres after a single electrical stimulus. During intraoperative neurophysiological monitoring, D-waves are used to assess the long-term motor outcomes of patients undergoing surgery for intramedullary spinal cord tumours, selected cases of intradural extramedullary tumours and surgery for syringomyelia. In the present manuscript, we discuss D-wave monitoring and its role as a tool for monitoring the CST during spinal cord surgery. We describe the neurophysiological background and provide some recommendations for recording and stimulation, as well as possible future perspectives. Further, we introduce the concept of anti D-wave and present an illustrative case with successful recordings.


Asunto(s)
Neoplasias de la Médula Espinal , Humanos , Neoplasias de la Médula Espinal/cirugía , Neoplasias de la Médula Espinal/fisiopatología , Monitorización Neurofisiológica Intraoperatoria/métodos , Tractos Piramidales/fisiopatología , Monitoreo Intraoperatorio/métodos , Masculino
3.
J Neurosci Methods ; 411: 110267, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39191303

RESUMEN

BACKGROUND: This study investigates the potential of transcranial magnetic stimulation (TMS) to enhance spinal cord axon regeneration by modulating corticospinal pathways and improving motor nerve function recovery in rats with spinal cord injury (SCI). NEW METHOD: TMS is a non-invasive neuromodulation technique that generates a magnetic field to activate neurons in the brain, leading to depolarization and modulation of cortical activity. Initially utilized for brain physiology research, TMS has evolved into a diagnostic and prognostic tool in clinical settings, with increasing interest in its therapeutic applications. However, its potential for treating motor dysfunction in SCI has been underexplored. RESULTS: The TMS intervention group exhibited significant improvements compared to the control group across behavioral assessments, neurophysiological measurements, pathological analysis, and immunological markers. COMPARISON WITH EXISTING METHODS: Unlike most studies that focus on localized spinal cord injury or muscle treatments, this study leverages the non-invasive, painless, and highly penetrating nature of TMS to focus on the corticospinal tracts, exploring its therapeutic potential for SCI. CONCLUSIONS: TMS enhances motor function recovery in rats with SCI by restoring corticospinal pathway integrity and promoting axonal regeneration. These findings highlight TMS as a promising therapeutic option for SCI patients with currently limited treatment alternatives.


Asunto(s)
Regeneración Nerviosa , Tractos Piramidales , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Estimulación Magnética Transcraneal/métodos , Tractos Piramidales/fisiopatología , Tractos Piramidales/fisiología , Femenino , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Modelos Animales de Enfermedad , Axones/fisiología , Ratas , Potenciales Evocados Motores/fisiología
4.
J Integr Neurosci ; 23(7): 132, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39082301

RESUMEN

BACKGROUND: Non-invasive brain mapping using navigated transcranial magnetic stimulation (nTMS) is a valuable tool prior to resection of malignant brain tumors. With nTMS motor mapping, it is additionally possible to analyze the function of the motor system and to evaluate tumor-induced neuroplasticity. Distinct changes in motor cortex excitability induced by certain malignant brain tumors are a focal point of research. METHODS: A retrospective single-center study was conducted involving patients with malignant brain tumors. Clinical data, resting motor threshold (rMT), and nTMS-based tractography were evaluated. The interhemispheric rMT-ratio (rMTTumor/rMTControl) was calculated for each extremity and considered pathological if it was >110% or <90%. Distances between the corticospinal tract and the tumor (lesion-to-tract-distance - LTD) were measured. RESULTS: 49 patients were evaluated. 16 patients (32.7%) had a preoperative motor deficit. The cohort comprised 22 glioblastomas (44.9%), 5 gliomas of Classification of Tumors of the Central Nervous System (CNS WHO) grade 3 (10.2%), 6 gliomas of CNS WHO grade 2 (12.2%) and 16 cerebral metastases (32.7%). 26 (53.1%) had a pathological rMT-ratio for the upper extremity and 35 (71.4%) for the lower extremity. All patients with tumor-induced motor deficits had pathological interhemispheric rMT-ratios, and presence of tumor-induced motor deficits was associated with infiltration of the tumor to the nTMS-positive cortex (p = 0.04) and shorter LTDs (all p < 0.021). Pathological interhemispheric rMT-ratio for the upper extremity was associated with cerebral metastases, but not with gliomas (p = 0.002). CONCLUSIONS: Our study underlines the diagnostic potential of nTMS motor mapping to go beyond surgical risk stratification. Pathological alterations in motor cortex excitability can be measured with nTMS mapping. Pathological cortical excitability was more frequent in cerebral metastases than in gliomas.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Corteza Motora , Tractos Piramidales , Estimulación Magnética Transcraneal , Humanos , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Corteza Motora/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Anciano , Glioma/fisiopatología , Glioma/patología , Glioma/diagnóstico por imagen , Mapeo Encefálico , Potenciales Evocados Motores/fisiología
5.
Clin Neurophysiol ; 165: 107-116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996612

RESUMEN

OBJECTIVE: Parkinson's disease (PD) patients exhibit changes in mechanisms underlying movement preparation, particularly the suppression of corticospinal excitability - termed "preparatory suppression" - which is thought to facilitate movement execution in healthy individuals. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) being an attractive treatment for advanced PD, we aimed to study the potential contribution of this nucleus to PD-related changes in such corticospinal dynamics. METHODS: On two consecutive days, we applied single-pulse transcranial magnetic stimulation to the primary motor cortex of 20 advanced PD patients treated with bilateral STN-DBS (ON vs. OFF), as well as 20 healthy control subjects. Motor-evoked potentials (MEPs) were elicited at rest or during movement preparation in an instructed-delay choice reaction time task including left- or right-hand responses. Preparatory suppression was assessed by expressing MEPs during movement preparation relative to rest. RESULTS: PD patients exhibited a deficit in preparatory suppression when it was probed on the responding hand side, particularly when this corresponded to their most-affected hand, regardless of their STN-DBS status. CONCLUSIONS: Advanced PD patients displayed a reduction in preparatory suppression which was not restored by STN-DBS. SIGNIFICANCE: The current findings confirm that PD patients lack preparatory suppression, as previously reported. Yet, the fact that this deficit was not responsive to STN-DBS calls for future studies on the neural source of this regulatory mechanism during movement preparation.


Asunto(s)
Estimulación Encefálica Profunda , Potenciales Evocados Motores , Corteza Motora , Movimiento , Enfermedad de Parkinson , Tractos Piramidales , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Masculino , Estimulación Encefálica Profunda/métodos , Femenino , Núcleo Subtalámico/fisiopatología , Persona de Mediana Edad , Tractos Piramidales/fisiopatología , Anciano , Potenciales Evocados Motores/fisiología , Movimiento/fisiología , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Tiempo de Reacción/fisiología
6.
CNS Neurosci Ther ; 30(7): e14889, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073240

RESUMEN

BACKGROUND: Upper limb motor impairment commonly occurs after stroke, impairing quality of life. Brain network reorganization likely differs between subgroups with differing impairment severity. This study explored differences in functional connectivity (FC) and corticospinal tract (CST) integrity between patients with mild/moderate versus severe hemiplegia poststroke to clarify the neural correlates underlying motor deficits. METHOD: Sixty chronic stroke patients with upper limb motor impairment were categorized into mild/moderate and severe groups based on Fugl-Meyer scores. Resting-state FC was assessed using functional near-infrared spectroscopy (fNIRS) to compare connectivity patterns between groups across motor regions. CST integrity was evaluated by inducing motor evoked potentials (MEP) via transcranial magnetic stimulation. RESULTS: Compared to the mild/moderate group, the severe group exhibited heightened premotor cortex-primary motor cortex (PMC-M1) connectivity (t = 4.56, p < 0.01). Absence of MEP was also more frequent in the severe group (χ2 = 12.31, p = 0.01). Bayesian models effectively distinguished subgroups and identified the PMC-M1 connection as highly contributory (accuracy = 91.30%, area under the receiver operating characteristic curve [AUC] = 0.86). CONCLUSION: Distinct patterns of connectivity and corticospinal integrity exist between stroke subgroups with differing impairments. Strengthened connectivity potentially indicates recruitment of additional motor resources to compensate for damage. These findings elucidate the neural correlates underlying motor deficits poststroke and could guide personalized, network-based therapies targeting predictive biomarkers to improve rehabilitation outcomes.


Asunto(s)
Potenciales Evocados Motores , Tractos Piramidales , Espectroscopía Infrarroja Corta , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Estimulación Magnética Transcraneal/métodos , Espectroscopía Infrarroja Corta/métodos , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Potenciales Evocados Motores/fisiología , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Enfermedad Crónica , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Biomarcadores , Adulto
7.
Neuroscience ; 552: 29-38, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38878816

RESUMEN

OBJECTIVE: Chronic low back pain (CLBP) impacts on spine movement. Altered sensorimotor integration can be involved. Afferents from the lumbo-pelvic area might be processed differently in CLBP and impact on descending motor control. This study aimed to determine whether afferents influence the corticomotor control of paravertebral muscles in CLBP. Fourteen individuals with CLBP (11 females) and 13 pain-free controls (8 females) were tested with transcranial magnetic stimulation (TMS) to measure the motor-evoked potential [MEP] amplitude of paravertebral muscles. Noxious and non-noxious electrical stimulation, and magnetic stimulation in the lumbo-sacral area were used as afferent stimuli and triggered 20 to 200 ms prior to TMS. EMG modulation elicited by afferent stimulation alone was measured to control net motoneuron excitability. MEP/EMG ratio was used as a measure of corticospinal excitability with control of net motoneuron excitability. MEP/EMG ratio was larger at 60, 80 and 100-ms intervals in CLBP compared to controls, and afferent stimulations alone reduced EMG amplitude greater in CLBP than controls at 100 ms. Our results suggest alteration in sensorimotor integration in CLBP highlighted by a greater facilitation of the descending corticospinal input to paravertebral muscles. Our results can help to optimise interventions by better targeting mechanisms.


Asunto(s)
Electromiografía , Potenciales Evocados Motores , Dolor de la Región Lumbar , Músculo Esquelético , Estimulación Magnética Transcraneal , Humanos , Femenino , Masculino , Dolor de la Región Lumbar/fisiopatología , Adulto , Potenciales Evocados Motores/fisiología , Músculo Esquelético/fisiopatología , Persona de Mediana Edad , Estimulación Eléctrica , Dolor Crónico/fisiopatología , Adulto Joven , Corteza Motora/fisiopatología , Tractos Piramidales/fisiopatología
8.
Mult Scler Relat Disord ; 88: 105741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936325

RESUMEN

INTRODUCTION: Mobility impairment is common in multiple sclerosis (MS); however, agility has received less attention. Agility requires strength and neuromuscular coordination to elicit controlled propulsive rapid whole-body movement. Grip strength is a common method to assess whole body force production, but also reflects neuromuscular integrity and global brain health. Impaired agility may be linked to loss of neuromuscular integrity (reflected by grip strength or corticospinal excitability). OBJECTIVES: We aimed to determine whether grip strength would be associated with agility and transcranial magnetic stimulation (TMS)-based indices of corticospinal excitability and inhibition in persons with MS having low disability. We hypothesized that low grip strength would predict impaired agility and reflect low corticospinal excitability. METHODS: We recruited 34 persons with relapsing MS (27 females; median [range] age 45.5 [21.0-65.0] years) and mild disability (median [range] Expanded Disability Status Scale 2.0 [0-3.0]), as well as a convenience sample of age- and sex-matched apparently healthy controls. Agility was tested by measuring hop length during bipedal hopping on an instrumented walkway. Grip strength was measured using a calibrated dynamometer. Corticospinal excitability and inhibition were examined using TMS-based motor evoked potential (MEP) and corticospinal silent period (CSP) recruitment curves, respectively. RESULTS: MS participants had significantly lower grip strength than controls independent of sex. Females with and without MS had weaker grip strength than males. There were no statistically significant sex or group differences in agility. After controlling for sex, weaker grip strength was associated with shorter hop length in controls only (r = 0.645, p < .05). Grip strength did not significantly predict agility in persons with MS, nor was grip strength predicted by corticospinal excitability or inhibition. CONCLUSIONS: In persons with MS having low disability, grip strength (normalized to body mass) was reduced despite having intact agility and walking performance. Grip strength was not associated with corticospinal excitability or inhibition, suggesting peripheral neuromuscular function, low physical activity or fitness, or other psychosocial factors may be related to weakness. Low grip strength is a putative indicator of early neuromuscular aging in persons with MS having mild disability and normal mobility.


Asunto(s)
Potenciales Evocados Motores , Fuerza de la Mano , Esclerosis Múltiple Recurrente-Remitente , Tractos Piramidales , Estimulación Magnética Transcraneal , Humanos , Femenino , Masculino , Tractos Piramidales/fisiopatología , Adulto , Persona de Mediana Edad , Fuerza de la Mano/fisiología , Potenciales Evocados Motores/fisiología , Adulto Joven , Anciano , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/complicaciones
9.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38879808

RESUMEN

Navigated repetitive transmagnetic stimulation is a non-invasive and safe brain activity modulation technique. When combined with the classical rehabilitation process in stroke patients it has the potential to enhance the overall neurologic recovery. We present a case of a peri-operative stroke, treated with ultra-early low frequency navigated repetitive transmagnetic stimulation over the contralesional hemisphere. The patient received low frequency navigated repetitive transmagnetic stimulation within 12 hours of stroke onset for seven consecutive days and a significant improvement in his right sided weakness was noticed and he was discharge with normal power. This was accompanied by an increase in the number of positive responses evoked by navigated repetitive transmagnetic stimulation and a decrease of the resting motor thresholds at a cortical level. Subcortically, a decrease in the radial, axial, and mean diffusivity were recorded in the ipsilateral corticospinal tract and an increase in fractional anisotropy, axial diffusivity, and mean diffusivity was observed in the interhemispheric fibers of the corpus callosum responsible for the interhemispheric connectivity between motor areas. Our case demonstrates clearly that ultra-early low frequency navigated repetitive transmagnetic stimulation applied to the contralateral motor cortex can lead to significant clinical motor improvement in patients with subcortical stroke.


Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Potenciales Evocados Motores/fisiología
10.
Gait Posture ; 113: 151-157, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901387

RESUMEN

BACKGROUND: Children with spastic cerebral palsy (CP) have damage to the corticospinal tracts that are responsible for selective motor control (SMC). Force, velocity and timing of joint movement are related biomechanical features controlled by the corticospinal tracts (CSTs) that are important for skilled movement. RESEARCH QUESTION: Does SMC influence knee joint biomechanics in spastic CP? METHODS: In this prospective study, relationships between SMC and knee biomechanics (peak torque, total work, average power) across a range of velocities (0-300 deg/s) were assessed using an isokinetic dynamometer in 23 children with spastic CP. SMC was assessed using Selective Control Assessment of the Lower Extremity (SCALE). Logistic and linear regression models were used to evaluate relationships between SCALE and biomechanical measures. RESULTS: The ability to produce knee torque diminished with increasing velocity for both Low (0-4 points) and High (5-10 points) SCALE limb score groups (p < 0.01). More knees in the High group produced extension torque at 300 deg/s (p < 0.05) and flexion torque at 30, 90,180, 240 and 300 deg/s (p < 0.05). The ability to produce torque markedly decreased above 180 deg/s for Low group flexion. For knees that produced torque, significant positive correlations between SCALE limb scores and joint torque (0 and 120 deg/s), work (120 deg/s) and power (120 deg/s) were found (p < 0.05). Greater knee torque, work and power for the High group was found for the extensors at most velocities and the flexors for up to 120 deg/s (p < 0.05). Few Low group participants generated knee flexor torque above 120 deg/s limiting comparisons. SIGNIFICANCE: Biomechanical impairments found for children with low SMC are concerning as skilled movements during gait, play and sport activities occur at high velocities. Differences in SMC should be considered when designing individualized assessments and interventions.


Asunto(s)
Parálisis Cerebral , Articulación de la Rodilla , Torque , Humanos , Parálisis Cerebral/fisiopatología , Niño , Articulación de la Rodilla/fisiopatología , Masculino , Femenino , Estudios Prospectivos , Fenómenos Biomecánicos , Adolescente , Rango del Movimiento Articular/fisiología , Tractos Piramidales/fisiopatología , Músculo Esquelético/fisiopatología , Dinamómetro de Fuerza Muscular
11.
J Appl Physiol (1985) ; 137(1): 51-62, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722751

RESUMEN

Acute intermittent hypoxia (AIH) can induce sustained facilitation of motor output in people with spinal cord injury (SCI). Most studies of corticospinal tract excitability in humans have used 9% fraction inspired oxygen ([Formula: see text]) AIH (AIH-9%), with inconsistent outcomes. We investigated the effect of single sessions of 9% [Formula: see text] and 12% [Formula: see text] AIH (AIH-12%) on corticospinal excitability of a hand and leg muscle in able-bodied adults. Ten naïve participants completed three sessions on separate days comprising 15 epochs of 1 min of AIH-9%, AIH-12%, or sham (SHAM-21%) followed by 1 min of room air (21% [Formula: see text]) in a randomized crossover design. Motor-evoked potentials (MEPs; n = 30, ∼1 mV) elicited at rest by transcranial magnetic stimulation and maximal M-waves (Mmax) evoked by peripheral nerve stimulation were measured from the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles at baseline and at ∼0, 20, 40, and 60 min post intervention. AIH-9% induced the greatest reduction in peripheral oxygen saturation (to 85% vs. 93% and 100% in AIH-12% and SHAM-21%, respectively; P < 0.001) and the greatest increase in ventilation [by 22% vs. 12% and -3% in AIH-9%, AIH-12%, and SHAM-21%, respectively (P < 0.001)]. There was no difference in MEP amplitudes (%Mmax) after any of the three conditions (AIH-9%, AIH-12%, SHAM-21%) for both the FDI (P = 0.399) and TA (P = 0.582). Despite greater cardiorespiratory changes during AIH-9%, there was no evidence of corticospinal facilitation (tested with MEPs) in this study. Further studies could explore variability in response to AIH between individuals and other methods to measure motor facilitation in people with and without spinal cord injuries.NEW & NOTEWORTHY This is the first study that tests whether acute intermittent hypoxia (AIH) induces motor output facilitation in humans after two different doses of AIH (9% and 12% [Formula: see text]) and the reproducibility of participant responses after a repeat AIH intervention at 9% AIH. There was no motor output facilitation in response to either dose of AIH. The results question the effectiveness of a single 30-min session of AIH in inducing motor output facilitation, tested in this way.


Asunto(s)
Potenciales Evocados Motores , Hipoxia , Extremidad Inferior , Músculo Esquelético , Estimulación Magnética Transcraneal , Humanos , Masculino , Potenciales Evocados Motores/fisiología , Hipoxia/fisiopatología , Adulto , Femenino , Músculo Esquelético/fisiopatología , Estimulación Magnética Transcraneal/métodos , Extremidad Inferior/fisiopatología , Adulto Joven , Tractos Piramidales/fisiopatología , Estudios Cruzados , Extremidad Superior/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología
12.
J Neurophysiol ; 132(1): 87-95, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748436

RESUMEN

The flexion synergy and extension synergy are a representative consequence of a stroke and appear in the upper extremity and the lower extremity. Since the ipsilesional corticospinal tract (CST) is the most influential neural pathway for both extremities in motor execution, damage by a stroke to this tract could lead to similar motor pathological features (e.g., abnormal synergies) in both extremities. However, less attention has been paid to the interlimb correlations in the flexion synergy and extension synergy across different recovery phases of a stroke. We used results of the Fugl-Meyer assessment (FMA) to characterize those correlations in a total of 512 participants with hemiparesis after stroke from the acute phase to 1 year. The FMA provides indirect indicators of the degrees of the flexion synergy and extension synergy after stroke. We found that, generally, strong interlimb correlations (r > 0.65 with all P values < 0.0001) between the flexion synergy and extension synergy appeared in the acute-to-subacute phase (<90 days). However, the correlations of the lower-extremity extension synergy with the upper-extremity flexion synergy and extension synergy decreased (down to r = 0.38) 360 days after stroke (P < 0.05). These results suggest that the preferential use of alternative neural pathways after damage by a stroke to the CST enhances the interlimb correlations between the flexion synergy and extension synergy. At the same time, the results imply that the recovery of CST integrity or/and the fragmentation (remodeling) of the alternative neural substrates in the chronic phase may contribute to diversity in neural pathways in motor execution, eventually leading to reduced interlimb correlations.NEW & NOTEWORTHY For the first time, this article addresses the asynchronous relationships in the strengths of flexion and extension synergy expressions between the paretic upper extremity and lower extremity across various phases of stroke.


Asunto(s)
Extremidad Inferior , Paresia , Accidente Cerebrovascular , Extremidad Superior , Humanos , Masculino , Accidente Cerebrovascular/fisiopatología , Femenino , Extremidad Superior/fisiopatología , Persona de Mediana Edad , Anciano , Paresia/fisiopatología , Paresia/etiología , Extremidad Inferior/fisiopatología , Tractos Piramidales/fisiopatología , Adulto
13.
J Neurophysiol ; 132(1): 78-86, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691520

RESUMEN

Stroke-caused synergies may result from the preferential use of the reticulospinal tract (RST) due to damage to the corticospinal tract. The RST branches multiple motoneuron pools across the arm together resulting in gross motor control or abnormal synergies, and accordingly, the controllability of individual muscles decreases. However, it is not clear whether muscles involuntarily activated by abnormal synergy vary depending on the muscles voluntarily activated when motor commands descend through the RST. Studies showed that abnormal synergies may originate from the merging and reweighting of synergies in individuals without neurological deficits. This leads to a hypothesis that those abnormal synergies are still selectively excited depending on the context. In this study, we test this hypothesis, leveraging the Fugl-Meyer assessment that could characterize the neuroanatomical architecture in individuals with a wide range of impairments. We examine the ability to perform an out-of-synergy movement with the flexion synergy caused by either shoulder or elbow loading. The results reveal that about 14% [8/57, 95% confidence interval (5.0%, 23.1%)] of the participants with severe impairment (total Fugl-Meyer score <29) in the chronic phase (6 months after stroke) are able to keep the elbow extended during shoulder loading and keep the shoulder at neutral during elbow loading. Those participants underwent a different course of neural reorganization, which enhanced abnormal synergies in comparison with individuals with mild impairment (P < 0.05). These results provide evidence that separate routes and synergy modules to motoneuron pools across the arm might exist even if the motor command is mediated possibly via the RST.NEW & NOTEWORTHY We demonstrate that abnormal synergies are still selectively excited depending on the context.


Asunto(s)
Músculo Esquelético , Tractos Piramidales , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Tractos Piramidales/fisiopatología , Tractos Piramidales/fisiología , Anciano , Adulto , Codo/fisiología , Codo/fisiopatología , Hombro/fisiología , Hombro/fisiopatología
14.
Neurorehabil Neural Repair ; 38(6): 425-436, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676561

RESUMEN

BACKGROUND: Corticospinal tract (CST) is the principal motor pathway; we aim to explore the structural plasticity mechanism in CST during stroke rehabilitation. METHODS: A total of 25 patients underwent diffusion tensor imaging before rehabilitation (T1), 1-month post-rehabilitation (T2), 2 months post-rehabilitation (T3), and 1-year post-discharge (T4). The CST was segmented, and fractional anisotropy (FA), axial diffusion (AD), mean diffusivity (MD), and radial diffusivity (RD) were determined using automated fiber quantification tractography. Baseline level of laterality index (LI) and motor function for correlation analysis. RESULTS: The FA values of all segments in the ipsilesional CST (IL-CST) were lower compared with normal CST. Repeated measures analysis of variance showed time-related effects on FA, AD, and MD of the IL-CST, and there were similar dynamic trends in these 3 parameters. At T1, FA, AD, and MD values of the mid-upper segments of IL-CST (around the core lesions) were the lowest; at T2 and T3, values for the mid-lower segments were lower than those at T1, while the values for the mid-upper segments gradually increased; at T4, the values for almost entire IL-CST were higher than before. The highest LI was observed at T2, with a predominance in contralesional CST. The LIs for the FA and AD at T1 were positively correlated with the change rate of motor function. CONCLUSIONS: IL-CST showed aggravation followed by improvement from around the lesion to the distal end. Balance of interhemispheric CST may be closely related to motor function, and LIs for FA and AD may have predictive value for mild-to-moderate stroke rehabilitation. Clinical Trial Registration. URL: http://www.chictr.org.cn; Unique Identifier: ChiCTR1800019474.


Asunto(s)
Imagen de Difusión Tensora , Plasticidad Neuronal , Tractos Piramidales , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiopatología , Tractos Piramidales/patología , Masculino , Femenino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Anciano , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Adulto
15.
Clin Neurophysiol ; 161: 188-197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520799

RESUMEN

OBJECTIVE: Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI. METHODS: We studied 27 adults with chronic C1-C8 SCI (age 48.8 ± 16.1 years, 3 females) and 16 able-bodied participants (age 33.2 ± 11.8 years, 9 females). CSP characteristics were assessed across biceps (muscle power = 3-5) and triceps (muscle power = 1-3) representing stronger and weaker muscles, respectively. We assessed functional abilities using the Capabilities of the Upper Extremity Test (CUE-T). RESULTS: Participants with chronic SCI had prolonged CSPs for biceps but delayed and diminished CSPs for triceps compared to able-bodied participants. Early-onset CSPs for biceps and longer, deeper CSPs for triceps correlated with better CUE-T scores. CONCLUSIONS: Corticospinal inhibition is pronounced for stronger biceps but diminished for weaker triceps muscle in SCI indicating innervation relative to the level of injury matters in the study of CSP. SIGNIFICANCE: Nevertheless, corticospinal inhibition or CSP holds relevance for upper extremity function following SCI.


Asunto(s)
Inhibición Neural , Tractos Piramidales , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Extremidad Superior , Humanos , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Masculino , Adulto , Persona de Mediana Edad , Tractos Piramidales/fisiopatología , Extremidad Superior/fisiopatología , Estimulación Magnética Transcraneal/métodos , Inhibición Neural/fisiología , Músculo Esquelético/fisiopatología , Potenciales Evocados Motores/fisiología , Médula Cervical/fisiopatología , Médula Cervical/lesiones , Adulto Joven , Vértebras Cervicales/fisiopatología , Electromiografía/métodos
16.
Eur Arch Psychiatry Clin Neurosci ; 274(5): 1167-1175, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38265467

RESUMEN

This study aims to explore the link between Apo-E, brain white matter, and suicide in patients with major depressive disorder (MDD) to investigate the potential neuroimmune mechanisms of Apo-E that may lead to suicide. Thirty-nine patients with MDD (22 patients with suicidality) and 57 age, gender, and education-matched healthy controls participated in this study, provided plasma Apo-E samples, and underwent diffusion tensor imaging scans. Plasma Apo-E levels and white matter microstructure were analyzed among the MDD with suicidality, MDD without suicidality, and HC groups using analysis of variance with post hoc Bonferroni correction and tract-based spatial statistics (TBSS) with threshold-free cluster enhancement correction. Mediation analysis investigated the relationship between Apo-E, brain white matter, and suicidality in MDD. The MDD with suicidality subgroup had higher depressive and suicide scores, longer disease course, and lower plasma Apo-E levels than MDD without suicidality. TBSS revealed that the MDD non-suicide subgroup showed significantly increased mean diffusivity in the left corticospinal tract and body of the left corpus callosum, as well as increased axial diffusivity in the left anterior corona radiata and the right posterior thalamic radiation compared to the suicidal MDD group. The main finding was that the increased MD of the left corticospinal tract contributed to the elevated suicide score, with Apo-E mediating the effect. Preliminary result that Apo-E's mediating role between the left corticospinal tract and the suicide factor suggests the neuroimmune mechanism of suicide in MDD. The study was registered on ClinicalTrials.gov (NCT03790085).


Asunto(s)
Apolipoproteínas E , Trastorno Depresivo Mayor , Imagen de Difusión Tensora , Tractos Piramidales , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteínas E/genética , Apolipoproteínas E/sangre , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Tractos Piramidales/fisiopatología , Ideación Suicida , Suicidio , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios de Casos y Controles
17.
J Neurol Sci ; 451: 120726, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421883

RESUMEN

INTRODUCTION: Pseudobulbar affect (PBA) is a distressing symptom of a multitude of neurological conditions affecting patients with a rage of neuroinflammatory, neurovascular and neurodegenerative conditions. It manifests in disproportionate emotional responses to minimal or no contextual stimulus. It has considerable quality of life implications and treatment can be challenging. METHODS: A prospective multimodal neuroimaging study was conducted to explore the neuroanatomical underpinnings of PBA in patients with primary lateral sclerosis (PLS). All participants underwent whole genome sequencing and screening for C9orf72 hexanucleotide repeat expansions, a comprehensive neurological assessment, neuropsychological screening (ECAS, HADS, FrSBe) and PBA was evaluated by the emotional lability questionnaire. Structural, diffusivity and functional MRI data were systematically evaluated in whole-brain (WB) data-driven and region of interest (ROI) hypothesis-driven analyses. In ROI analyses, functional and structural corticobulbar connectivity and cerebello-medullary connectivity alterations were evaluated separately. RESULTS: Our data-driven whole-brain analyses revealed associations between PBA and white matter degeneration in descending corticobulbar as well as in commissural tracts. In our hypothesis-driven analyses, PBA was associated with increased right corticobulbar tract RD (p = 0.006) and decreased FA (p = 0.026). The left-hemispheric corticobulbar tract, as well as functional connectivity, showed similar tendencies. While uncorrected p-maps revealed both voxelwise and ROI trends for associations between PBA and cerebellar measures, these did not reach significance to unequivocally support the "cerebellar hypothesis". CONCLUSIONS: Our data confirm associations between cortex-brainstem disconnection and the clinical severity of PBA. While our findings may be disease-specific, they are consistent with the classical cortico-medullary model of pseudobulbar affect.


Asunto(s)
Cerebelo , Corteza Cerebral , Llanto , Risa , Modelos Neurológicos , Enfermedad de la Neurona Motora , Tractos Piramidales , Radiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Cerebelo/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/patología , Lóbulo Frontal/fisiopatología , Imagen por Resonancia Magnética , Bulbo Raquídeo/diagnóstico por imagen , Bulbo Raquídeo/patología , Bulbo Raquídeo/fisiopatología , Corteza Motora/diagnóstico por imagen , Corteza Motora/patología , Corteza Motora/fisiopatología , Enfermedad de la Neurona Motora/complicaciones , Enfermedad de la Neurona Motora/diagnóstico por imagen , Enfermedad de la Neurona Motora/patología , Enfermedad de la Neurona Motora/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Tractos Piramidales/fisiopatología , Calidad de Vida , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Lóbulo Temporal/fisiopatología
18.
Behav Brain Res ; 416: 113533, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34453971

RESUMEN

A long held view in the spinal cord injury field is that corticospinal terminal sprouting is needed for new connections to form, that then mediate behavioral recovery. This makes sense, but tells us little about the relationship between corticospinal sprouting extent and recovery potential. The inference has been that more extensive axonal sprouting predicts greater recovery, though there is little evidence to support this. Here we addressed this by comparing behavioral data from monkeys that had received one of two established deafferentation spinal injury models in monkeys (Darian-Smith et al., 2014, Fisher et al., 2019, 2020). Both injuries cut similar afferent pools supplying the thumb, index and middle fingers of one hand but each resulted in a very different corticospinal tract (CST) sprouting response. Following a cervical dorsal root lesion, the somatosensory CST retracted significantly, while the motor CST stayed largely intact. In contrast, when a dorsal column lesion was combined with the DRL, somatosensory and motor CSTs sprouted dramatically within the cervical cord. How these two responses relate to the behavioral outcome was not clear. Here we analyzed the behavioral outcome for the two lesions, and provide a clear example that sprouting extent does not track with behavioral recovery.


Asunto(s)
Conducta Animal/fisiología , Macaca , Regeneración Nerviosa/fisiología , Tractos Piramidales/fisiopatología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Axones/fisiología , Mano/inervación , Haplorrinos , Masculino , Plasticidad Neuronal , Corteza Sensoriomotora/fisiopatología
19.
Behav Brain Res ; 417: 113563, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34499938

RESUMEN

Mirror contractions refer to unintended contractions of the contralateral homologous muscles during voluntary unilateral contractions or movements. Exaggerated mirror contractions have been found in several neurological diseases and indicate dysfunction or lesion of the cortico-spinal pathway. The present study investigates mirror contractions and the associated interhemispheric and corticomuscular interactions in adults with spinal cord injury (SCI) - who present a lesion of the cortico-spinal tract - compared to able-bodied participants (AB). Eight right-handed adults with chronic cervical SCI and ten age-matched right-handed able-bodied volunteers performed sets of right elbow extensions at 20% of maximal voluntary contraction. Electromyographic activity (EMG) of the right and left elbow extensors, interhemispheric coherence over cerebral sensorimotor regions evaluated by electroencephalography (EEG) and corticomuscular coherence between signals over the cerebral sensorimotor regions and each extensor were quantified. Overall, results revealed that participants with SCI exhibited (1) increased EMG activity of both active and unintended active limbs, suggesting more mirror contractions, (2) reduced corticomuscular coherence between signals over the left sensorimotor region and the right active limb and increased corticomuscular coherence between the right sensorimotor region and the left unintended active limb, (3) decreased interhemispheric coherence between signals over the two sensorimotor regions. The increased corticomuscular communication and decreased interhemispheric communication may reflect a reduced inhibition leading to increased communication with the unintended active limb, possibly resulting to exacerbated mirror contractions in SCI. Finally, mirror contractions could represent changes of neural and neuromuscular communication after SCI.


Asunto(s)
Médula Cervical , Sincronización Cortical , Corteza Motora/fisiopatología , Contracción Muscular/fisiología , Músculo Esquelético/inervación , Tractos Piramidales/lesiones , Adulto , Médula Cervical/lesiones , Médula Cervical/fisiopatología , Electromiografía , Femenino , Humanos , Masculino , Movimiento , Tractos Piramidales/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología
20.
Arch Phys Med Rehabil ; 103(1): 62-68, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34371017

RESUMEN

OBJECTIVE: To determine if lateral corticospinal tract (LCST) integrity demonstrates a significant predictive relationship with future ipsilateral lower extremity motor function (LEMS) and if dorsal column (DC) integrity demonstrates a significant predictive relationship with future light touch (LT) sensory function post spinal cord injury (SCI) at time of discharge from inpatient rehabilitation. DESIGN: Retrospective analyses of imaging and clinical outcomes. SETTING: University and academic hospital. PARTICIPANTS: A total of 151 participants (N=151) with SCI. INTERVENTIONS: Inpatient rehabilitation. MAIN OUTCOME MEASURES: LEMS and LT scores at discharge from inpatient rehabilitation. RESULTS: In 151 participants, right LCST spared tissue demonstrated a significant predictive relationship with right LEMS percentage recovered (ß=0.56; 95% confidence interval [CI], 0.37-0.73; R=0.43; P<.001). Left LCST spared tissue demonstrated a significant predictive relationship with left LEMS percentage recovered (ß=0.66; 95% CI, 0.50-0.82; R=0.51; P<.001). DC spared tissue demonstrated a significant predictive relationship with LT percentage recovered (ß=0.69; 95% CI, 0.52-0.87; R=0.55; P<.001). When subgrouping the participants into motor complete vs incomplete SCI, motor relationships were no longer significant, but the sensory relationship remained significant. Those who had no voluntary motor function but recovered some also had significantly greater LCST spared tissue than those who did not recover motor function. CONCLUSIONS: LCST demonstrated significant moderate predictive relationships with lower extremity motor function at the time of discharge from inpatient rehabilitation, in an ipsilesional manner. DC integrity demonstrated a significant moderate predictive relationship with recovered function of LT. With further development, these neuroimaging methods might be used to predict potential deficits after SCI and to provide corresponding targeted interventions.


Asunto(s)
Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/lesiones , Recuperación de la Función , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Evaluación de la Discapacidad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Alta del Paciente , Valor Predictivo de las Pruebas , Tractos Piramidales/fisiopatología , Estudios Retrospectivos , Traumatismos de la Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...