Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607253

RESUMEN

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Asunto(s)
Oxidación-Reducción , Transaldolasa , Espectroscopía de Absorción de Rayos X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/química , Procesamiento Proteico-Postraduccional , Soluciones , Azufre/química , Azufre/metabolismo , Transaldolasa/metabolismo , Transaldolasa/química
2.
Methods Enzymol ; 696: 179-199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658079

RESUMEN

ß-Hydroxy-α-amino acids (ßHAAs) are an essential class of building blocks of therapeutically important compounds and complex natural products. They contain two chiral centers at Cα and Cß positions, resulting in four possible diastereoisomers. Many innovative asymmetric syntheses have been developed to access structurally diverse ßHAAs. The main challenge, however, is the control of the relative and absolute stereochemistry of the asymmetric carbons in a sustainable way. In this respect, there has been considerable attention focused on the chemoenzymatic synthesis of ßHAAs via a one-step process. Nature has evolved different enzymatic routes to produce these valuable ßHAAs. Among these naturally occurring transformations, L-threonine transaldolases present potential biocatalysts to generate ßHAAs in situ. 4-Fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA) catalyzes the cross-over transaldolation reaction between L-Thr and fluoroacetaldehyde to give 4-fluorothreonine and acetaldehyde (Ad). It has been demonstrated that FTaseMA displays considerable substrate plasticity toward structurally diverse aldehyde acceptors, leading to the production of various ßHAAs. In this chapter, we describe methods for the preparation of FTaseMA, and the chemoenzymatic synthesis of ßHAAs from various aldehydes and L-Thr using FTaseMA.


Asunto(s)
Streptomyces , Transaldolasa , Streptomyces/enzimología , Transaldolasa/metabolismo , Transaldolasa/química , Transaldolasa/genética , Treonina/análogos & derivados , Treonina/química , Treonina/metabolismo , Biocatálisis , Aminoácidos/química , Aminoácidos/metabolismo , Especificidad por Sustrato , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Acetaldehído/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pruebas de Enzimas/métodos , Estereoisomerismo
3.
Int J Biol Macromol ; 265(Pt 2): 130819, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508550

RESUMEN

Norepinephrine, a kind of ß-adrenergic receptor agonist, is commonly used for treating shocks and hypotension caused by a variety of symptoms. The development of a straightforward, efficient and environmentally friendly biocatalytic route for manufacturing norepinephrine remains a challenge. Here, we designed and realized an artificial biocatalytic cascade to access norepinephrine starting from 3, 4-dihydroxybenzaldehyde and L-threonine mediated by a tailored-made L-threonine transaldolase PsLTTA-Mu1 and a newly screened tyrosine decarboxylase ErTDC. To overcome the imbalance of multi-enzymes in a single cell, engineering of PsLTTA for improved activity and fine-tuning expression mode of multi-enzymes in single E.coli cells were combined, leading to a robust whole cell biocatalyst ES07 that could produce 100 mM norepinephrine with 99% conversion, delivering a highest time-space yield (3.38 g/L/h) ever reported. To summarized, the current study proposed an effective biocatalytic approach for the synthesis of norepinephrine from low-cost substrates, paving the way for industrial applications of enzymatic norepinephrine production.


Asunto(s)
Treonina , Transaldolasa , Transaldolasa/metabolismo , Norepinefrina/metabolismo , Biocatálisis , Escherichia coli/metabolismo
4.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531855

RESUMEN

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Asunto(s)
Pseudomonas putida , Xilosa , Xilosa/metabolismo , Pseudomonas putida/genética , Transaldolasa/genética , Ingeniería Metabólica , Vía de Pentosa Fosfato
5.
Int J Biol Macromol ; 263(Pt 2): 130310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382774

RESUMEN

L-threo-p-nitrophenylserine (component 2) is an important intermediate during synthesis of chloramphenicol. However, its biosynthesis is limited by enzyme activity and stereoselectivity. In this study, we achieved a breakthrough in the high-efficiency production of 2 by employing engineered Chitiniphilus shinanonensis L-threonine transaldolase (ChLTTA) in conjunction with a by-product elimination system within a one-pot reaction. Notably, a novel visual stepwise high-throughput screening method was developed for the directed evolution of ChLTTA, leveraging its characteristic color. The engineered mutant F70D/F59A (Mu6 variant) emerged as a star performer, exhibiting a remarkable 2.6-fold increase in catalytic efficiency over the wild-type ChLTTA, coupled with an outstanding 91.5 % diastereoisomer excess (de). Molecular dynamics (MD) simulations unraveled the mechanism responsible for the enhanced catalytic performance observed in the Mu6 variant. Meanwhile, the Mu6 variant was coupled with Saccharomyces cerevisiae ethanol dehydrogenase (ScADH) and Candida boidinii formate dehydrogenase (CbFDH) to create a high-efficiency cascade system (E.coli/pRSF-Mu6-ScADH-CbFDH). Under optimized conditions, this cascade system demonstrated unparalleled performance, yielding 201.5 mM of 2 with an impressive conversion of 95.9 % and a de value of 94.5 %. This achievement represents the highest reported yield to date. This study offers a novel insight into the sustainable and efficient production of chloramphenicol intermediate.


Asunto(s)
Treonina , Transaldolasa , Cloranfenicol , Escherichia coli/genética
6.
PLoS Negl Trop Dis ; 18(2): e0012007, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394337

RESUMEN

Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.


Asunto(s)
Gluconeogénesis , Trypanosoma brucei brucei , Animales , Humanos , Gluconeogénesis/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Transaldolasa/metabolismo , Glicerol/metabolismo , Glucosa/metabolismo , Fosfofructoquinasas/metabolismo , Carbono/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos
8.
J Agric Food Chem ; 72(1): 461-474, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153324

RESUMEN

l-threo-p-methylsulfonylphenylserine (compound 1b) is the main intermediate of florfenicol, and its efficient synthesis has been the subject of current research. Herein, Burkholderia diffusa l-threonine transaldolase (BuLTTA) was rationally designed based on the sequence-structure-function relationship. A mutant M4 (Asn35Ser/Thr352Asn) could produce 35.5 mM 1b with 88.8% conversion and 93.8% diastereoselectivity, 314 and 129% of the values observed for wild-type BuLTTA. Molecular dynamics simulations indicated that the shortened distance between key active site residues and the transition state (PLP-1b) and the improved hydrogen bond force enhanced the catalytic performance of the M4 variant. Then, the mutant M4 was combined with K. kurtzmanii alcohol dehydrogenase (KkADH) to eliminate the BuLTTA-inhibiting byproduct acetaldehyde, and a cosubstrate was added to regenerate the ADH cofactor NADH. Under optimized conditions, the yield of 1b reached 115.2 mM with a conversion of 96% and a diastereoselectivity of 95.5%. This work provides a new strategy for the efficient and sustainable production of 1b.


Asunto(s)
Tianfenicol , Treonina , Transaldolasa , Acetaldehído
9.
Commun Biol ; 6(1): 929, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696954

RESUMEN

Beta-hydroxy non-standard amino acids (ß-OH-nsAAs) have utility as small molecule drugs, precursors for beta-lactone antibiotics, and building blocks for polypeptides. While the L-threonine transaldolase (TTA), ObiH, is a promising enzyme for ß-OH-nsAA biosynthesis, little is known about other natural TTA sequences. We ascertained the specificity of the TTA enzyme class more comprehensively by characterizing 12 candidate TTA gene products across a wide range (20-80%) of sequence identities. We found that addition of a solubility tag substantially enhanced the soluble protein expression level within this difficult-to-express enzyme family. Using an optimized coupled enzyme assay, we identified six TTAs, including one with less than 30% sequence identity to ObiH that exhibits broader substrate scope, two-fold higher L-Threonine (L-Thr) affinity, and five-fold faster initial reaction rates under conditions tested. We harnessed these TTAs for first-time bioproduction of ß-OH-nsAAs with handles for bio-orthogonal conjugation from supplemented precursors during aerobic fermentation of engineered Escherichia coli, where we observed that higher affinity of the TTA for L-Thr increased titer. Overall, our work reveals an unexpectedly high level of sequence diversity and broad substrate specificity in an enzyme family whose members play key roles in the biosynthesis of therapeutic natural products that could benefit from chemical diversification.


Asunto(s)
Aminoácidos , Treonina , Transaldolasa , Fermentación , Antibacterianos , Escherichia coli/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1496-1505, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528662

RESUMEN

In atherosclerosis, macrophage-derived foam cell formation is considered to be a hallmark of the pathological process; this occurs via the uptake of modified lipoproteins. In the present study, we aim to determine the role of transaldolase in foam cell formation and atherogenesis and reveal the mechanisms underlying its role. Bone marrow-derived macrophages (BMDMs) isolated from mice successfully form foam cells after treatment with oxidized low-density lipoprotein (80 µg/mL). Elevated transaldolase levels in the foam cell model are assessed by quantitative polymerase chain reaction and western blot analysis. Transaldolase overexpression and knockdown in BMDMs are achieved via plasmid transfection and small interfering RNA technology, respectively. We find that transaldolase overexpression effectively attenuates, whereas transaldolase knockdown accelerates, macrophage-derived foam cell formation through the inhibition or activation of cholesterol uptake mediated by the scavenger receptor cluster of differentiation 36 (CD36) in a p38 mitogen-activated protein kinase (MAPK) signaling-dependent manner. Transaldolase-mediated glutathione (GSH) homeostasis is identified as the upstream regulator of p38 MAPK-mediated CD36-dependent cholesterol uptake in BMDMs. Transaldolase upregulates GSH production, thereby suppressing p38 activity and reducing the CD36 level, ultimately preventing foam cell formation and atherosclerosis. Thus, our findings indicate that the transaldolase-GSH-p38-CD36 axis may represent a promising therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Ratones , Animales , Transaldolasa/metabolismo , Transaldolasa/farmacología , Antígenos CD36/genética , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerosis/metabolismo , Glutatión/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Colesterol/metabolismo
11.
Structure ; 31(3): 244-252.e4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36805128

RESUMEN

Sulfoquinovose (SQ) is a key component of plant sulfolipids (sulfoquinovosyl diacylglycerols) and a major environmental reservoir of biological sulfur. Breakdown of SQ is achieved by bacteria through the pathways of sulfoglycolysis. The sulfoglycolytic sulfofructose transaldolase (sulfo-SFT) pathway is used by gut-resident firmicutes and soil saprophytes. After isomerization of SQ to sulfofructose (SF), the namesake enzyme catalyzes the transaldol reaction of SF transferring dihydroxyacetone to 3C/4C acceptors to give sulfolactaldehyde and fructose-6-phosphate or sedoheptulose-7-phosphate. We report the 3D cryo-EM structure of SF transaldolase from Bacillus megaterium in apo and ligand bound forms, revealing a decameric structure formed from two pentameric rings of the protomer. We demonstrate a covalent "Schiff base" intermediate formed by reaction of SF with Lys89 within a conserved Asp-Lys-Glu catalytic triad and defined by an Arg-Trp-Arg sulfonate recognition triad. The structural characterization of the signature enzyme of the sulfo-SFT pathway provides key insights into molecular recognition of the sulfonate group of sulfosugars.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Transaldolasa , Transaldolasa/química , Transaldolasa/metabolismo , Fructosa-Bifosfato Aldolasa/química , Metilglucósidos/química , Metilglucósidos/metabolismo
12.
Biosci Rep ; 42(10)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36196895

RESUMEN

Sulfoquinovose (SQ, 6-deoxy-6-sulfo-D-glucose) is a sulfo-sugar with a ubiquitous distribution in the environment due to its production by plants and other photosynthetic organisms. Bacteria play an important role in degradation of SQ and recycling of its constituent sulfur and carbon. Since its discovery in 1963, SQ was noted to have a structural resemblance to glucose-6-phosphate and proposed to be degraded through a pathway analogous to glycolysis, termed sulfoglycolysis. Studies in recent years have uncovered an unexpectedly diverse array of sulfoglycolytic pathways in different bacteria, including one analogous to the Embden-Meyerhof-Parnas pathway (sulfo-EMP), one analogous to the Entner-Doudoroff pathway (sulfo-ED), and two involving sulfo-sugar cleavage by a transaldolase (sulfo-TAL) and transketolase (sulfo-TK), respectively, analogous to reactions in the pentose phosphate (PP) pathway. In addition, a non-sulfoglycolytic SQ degradation pathway was also reported, involving oxygenolytic C-S cleavage catalyzed by a homolog of alkanesulfonate monooxygenase (sulfo-ASMO). Here, we review the discovery of these new mechanisms of SQ degradation and lessons learnt in the study of new catabolic enzymes and pathways in bacteria.


Asunto(s)
Glucosa-6-Fosfato , Transaldolasa , Transaldolasa/metabolismo , Transcetolasa/metabolismo , Bacterias/metabolismo , Glucólisis , Azufre/metabolismo , Glucosa/metabolismo , Carbono , Alcanosulfonatos , Oxigenasas de Función Mixta/metabolismo , Fosfatos , Pentosas
13.
J Agric Food Chem ; 70(37): 11678-11688, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36095239

RESUMEN

Bifidobacteria are important mediators of immune system development within the gastrointestinal system and immunological homeostasis. The present study explored the anti-colitic activity of Bifidobacterium bifidum H3-R2 in a murine dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). Moreover, this study offers novel insight regarding the molecular basis for the probiotic properties of B. bifidum H3-R2 by analyzing the underlying mechanisms whereby B. bifidum H3-R2-derived proteins affect the intestinal barrier. B. bifidum H3-R2 administration was sufficient to alleviate clinical manifestations consistent with DSS-induced colitis, restoring aberrant inflammatory cytokine production, enhancing tight junction protein expression, and positively impacting overall intestinal microecological homeostasis in these animals. Moreover, the bifidobacteria-derived GroEL and transaldolase (TAL) proteins were found to regulate tight junction protein expression via the NF-κB, myosin light chain kinase (MLCK), RhoA/Rho-associated protein kinase (ROCK), and mitogen-activated protein kinase (MAPK) signaling pathways, preventing the lipopolysaccharide (LPS)-mediated disruption of the intestinal epithelial cell barrier.


Asunto(s)
Bifidobacterium bifidum , Colitis Ulcerosa , Colitis , Animales , Bifidobacterium/metabolismo , Bifidobacterium bifidum/genética , Colitis/inducido químicamente , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Transaldolasa/metabolismo
14.
PLoS Pathog ; 18(9): e1010864, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121870

RESUMEN

Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.


Asunto(s)
Vía de Pentosa Fosfato , Toxoplasma , Antiparasitarios , Carbono/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfato/metabolismo , Isomerasas/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato/fisiología , Fosfatos/metabolismo , Racemasas y Epimerasas/metabolismo , Ribosa , Toxoplasma/metabolismo , Transaldolasa/metabolismo
15.
Sci Rep ; 12(1): 3984, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296702

RESUMEN

The Calvin-Benson cycle (CB cycle) is quantitatively the most important metabolic pathway for CO2 fixation. In the canonical CB cycle, fructose 6-phosphate (F6P), fructose 1,6-bisphosphate (FBP), sedoheptulose 7-phosphate (S7P), and sedoheptulose 1,7-bisphosphate (SBP) appear as essential intermediates, where F6P is formed from FBP by the fructose 1,6-bisphosphatase (FBPase) reaction, and S7P is formed from SBP by the sedoheptulose 1,7-bisphosphatase (SBPase) reaction. Although the involvement of SBP and SBPase in the canonical CB cycle is consistent with the reported dependency of photosynthetic carbon metabolism on SBPase, the involvement of FBP and FBPase is not completely consistent with the reported FBP- or FBPase-related findings such as, although with a diminished growth rate, an Arabidopsis mutant lacking FBPase grew photoautotrophically in soil. Here, we show a novel variant of the CB cycle involving SBP, SBPase, and transaldolase, but neither FBP nor FBPase. This novel variant, named the S7P-removing transaldolase variant, bypasses FBP. This variant explains the FBP- or FBPase-related findings more easily than the canonical CB cycle as well as the dependency of photosynthetic carbon metabolism on SBPase and further suggests that co-overexpression of SBPase and transaldolase can be a strategy for enhancing photosynthetic carbon metabolism, which is important for the global environment.


Asunto(s)
Fructosa-Bifosfatasa , Monoéster Fosfórico Hidrolasas , Carbono , Fructosa , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fotosíntesis , Transaldolasa
16.
Hepatol Commun ; 6(3): 473-479, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677006

RESUMEN

Mutations in the transaldolase 1 (TALDO1) gene have been described in a limited number of cases. Several organs can be affected and clinical manifestations are variable, but often include liver dysfunction and/or hepatosplenomegaly. We report 4 patients presenting with liver disease: 2 with early-onset hepatocellular carcinoma (HCC). Patients with cholestasis and mutations in TALDO1 were identified by next-generation sequencing. Clinical, laboratory, and histological data were collected. Four (1 male) patients were identified with variants predicted to be damaging in TALDO1. Three patients were homozygous (two protein truncating/one missense mutations), 1 one was compound heterozygous (two missense mutations). Median age at presentation was 4 months (range, 2-210 days) with jaundice (3), hepatosplenomegaly (3), and pancytopaenia (1). The diagnosis was corroborated by detection of minimal transaldolase enzyme activity in skin fibroblasts in two cases and raised urine polyols in the third. Three patients underwent liver transplantation (LT), 2 of whom had confirmed HCC on explanted liver. One patient suddenly died shortly after LT. The nontransplanted case has a chronic liver disease with multiple dysplastic liver nodules, but normal liver biochemistry and alpha-fetoprotein. Median follow-up was 4 years (range, 1-21). Conclusion: Transaldolase deficiency can include early-onset normal gamma-glutamyltransferase liver disease with multisystem involvement and variable progression. Patients with this disease are at risk of early-onset HCC and may require early LT.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transaldolasa , Carcinoma Hepatocelular/genética , Femenino , Humanos , Lactante , Recién Nacido , Neoplasias Hepáticas/genética , Masculino , Mutación , Transaldolasa/genética
17.
Chembiochem ; 23(2): e202100577, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34699683

RESUMEN

Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well-characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of ß-hydroxy-α-amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, an l-threonine transaldolase, to achieve selective milligram-scale synthesis of a diverse array of non-standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re-entry into the catalytic cycle. ObiH-catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of ß-hydroxy-α-amino acids possessing broad functional-group diversity. Furthermore, we demonstrated that ObiH-generated ß-hydroxy-α-amino acids could be modified through additional transformations to access important motifs, such as ß-chloro-α-amino acids and substituted α-keto acids.


Asunto(s)
Aminoácidos/biosíntesis , Treonina/metabolismo , Transaldolasa/metabolismo , Aminoácidos/química , Catálisis , Cromatografía Liquida/métodos , Cristalografía por Rayos X , Espectrometría de Masas/métodos , Estructura Molecular , Estereoisomerismo
18.
Breast Cancer Res Treat ; 189(2): 317-331, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34282517

RESUMEN

PURPOSE: Identification of effective biomarkers for the benefit of endocrine treatment and understanding the molecular pathways that contribute to the development of resistance are of crucial importance to the management of luminal breast cancer. The amino acid transporter SLC1A5 has emerging importance as a prognostic marker and potential therapeutic target in various types of cancer. This study aims to investigate its role in luminal breast cancer as a potential predictive marker for endocrine treatment. METHODS: SLC1A5 expression was assessed at the transcriptomic and proteomic levels in large, well-characterized cohorts of luminal breast cancer. The sensitivity to endocrine therapy after SLC1A5 knockdown was investigated in vitro, using MCF7 and MDA-MB-175 cell lines. Bioinformatic analyses were performed to study the interacting networks of SLC1A5 and to identify a key co-expressed gene with SLC1A5. RESULTS: Here, we showed that patients with tumors that highly expressed SLC1A5 associated with a high risk of relapse after endocrine treatment. In vitro, depletion of SLC1A5 increases the sensitivity of luminal breast cancer cells to tamoxifen. TALDO1 was identified as key co-expressed gene with SLC1A5, and in vitro knockdown of SLC1A5 showed reduction in TALDO1 expression. Indeed, TALDO1 was associated with poor clinical outcomes in patients who were subject to endocrine therapy. CONCLUSION: These findings suggest that metabolic alterations, particularly the interaction between the key amino acid transporter SLC1A5 and metabolic enzyme TALDO1, could affect the sensitivity of endocrine therapy. This study demonstrated the prognostic value of both SLC1A5 and TALDO1 as biomarkers in luminal breast cancer.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/genética , Neoplasias de la Mama , Antígenos de Histocompatibilidad Menor/genética , Receptores de Estrógenos , Transaldolasa/genética , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Recurrencia Local de Neoplasia , Proteómica , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Tamoxifeno/uso terapéutico
19.
Nature ; 593(7859): 460-464, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953398

RESUMEN

Disulfide bonds between cysteine residues are important post-translational modifications in proteins that have critical roles for protein structure and stability, as redox-active catalytic groups in enzymes or allosteric redox switches that govern protein function1-4. In addition to forming disulfide bridges, cysteine residues are susceptible to oxidation by reactive oxygen species, and are thus central not only to the scavenging of these but also to cellular signalling and communication in biological as well as pathological contexts5,6. Oxidized cysteine species are highly reactive and may form covalent conjugates with, for example, tyrosines in the active sites of some redox enzymes7,8. However, to our knowledge, regulatory switches with covalent crosslinks other than disulfides have not previously been demonstrated. Here we report the discovery of a covalent crosslink between a cysteine and a lysine residue with a NOS bridge that serves as an allosteric redox switch in the transaldolase enzyme of Neisseria gonorrhoeae, the pathogen that causes gonorrhoea. X-ray structure analysis of the protein in the oxidized and reduced state reveals a loaded-spring mechanism that involves a structural relaxation upon redox activation, which is propagated from the allosteric redox switch at the protein surface to the active site in the protein interior. This relaxation leads to a reconfiguration of key catalytic residues and elicits an increase in enzymatic activity of several orders of magnitude. The redox switch is highly conserved in related transaldolases from other members of the Neisseriaceae; for example, it is present in the transaldolase of Neisseria meningitides (a pathogen that is the primary cause of meningitis and septicaemia in children). We surveyed the Protein Data Bank and found that the NOS bridge exists in diverse protein families across all domains of life (including Homo sapiens) and that it is often located at catalytic or regulatory hotspots. Our findings will inform strategies for the design of proteins and peptides, as well as the development of new classes of drugs and antibodies that target the lysine-cysteine redox switch9,10.


Asunto(s)
Cisteína/metabolismo , Lisina/metabolismo , Nitrógeno/química , Oxígeno/química , Azufre/química , Transaldolasa/química , Transaldolasa/metabolismo , Regulación Alostérica , Animales , Secuencia Conservada , Bases de Datos de Proteínas , Activación Enzimática , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/enzimología , Oxidación-Reducción
20.
Appl Microbiol Biotechnol ; 105(9): 3507-3520, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900425

RESUMEN

The introduction of ß-hydroxy-α-amino acids (ßHAAs) into organic molecules has received considerable attention as these molecules have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of asymmetric synthesis of ßHAAs, stereoselective synthesis to control the two chiral centres at Cα and Cß positions is still challenging, with poor atomic economy and multi protection and deprotection steps. These syntheses are often operated under harsh conditions. Therefore, a biotransformation approach using biocatalysts is needed to selectively introduce these two chiral centres into structurally diverse molecules. Yet, there are few ways that enable one-step synthesis of ßHAAs. One is to extend the substrate scope of the existing enzyme inventory. Threonine aldolases have been explored to produce ßHAAs. However, the enzymes have poor controlled installation at Cß position, often resulting in a mixture of diastereoisomers which are difficult to be separated. In this respect, L-threonine transaldolases (LTTAs) offer an excellent potential as the enzymes often provide controlled stereochemistry at Cα and Cß positions. Another is to mine LTTA homologues and engineer the enzymes using directed evolution with the aim of finding engineered biocatalysts to accept broad substrates with enhanced conversion and stereoselectivity. Here, we review the development of LTTAs that incorporate various aldehyde acceptors to generate structurally diverse ßHAAs and highlight areas for future developments. KEY POINTS: • The general mechanism of the transaldolation reaction catalysed by LTTAs • Recent advances in LTTAs from different biosynthetic pathways • Applications of LTTAs as biocatalysts for production of ßHAAs.


Asunto(s)
Treonina , Transaldolasa , Aminoácidos , Glicina Hidroximetiltransferasa , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA