Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
1.
Biomed Pharmacother ; 176: 116935, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876050

RESUMEN

Breast cancer is one of the most common malignant tumors in women and is a serious threat to women's health. The pentose phosphate pathway (PPP) is a mode of oxidative breakdown of glucose that can be divided into oxidative (oxPPP) and non-oxidative (non-oxPPP) stages and is necessary for cell and body survival. However, abnormal activation of PPP often leads to proliferation, migration, invasion, and chemotherapy resistance in breast cancer. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in PPP oxidation. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced by G6PD is the raw material for cholesterol and lipid synthesis and can resist the production of oxygen species (ROS) and reduce oxidative stress damage to tumor cells. Transketolase (TKT) is a key enzyme in non-oxPPP. Ribose 5-phosphate (R5P), produced by TKT, is a raw material for DNA and RNA synthesis, and is essential for tumor cell proliferation and DNA damage repair. In this review, we describe the role and specific mechanism of the PPP and the two most important enzymes of the PPP, G6PD and TKT, in the malignant progression of breast cancer, providing strategies for future clinical treatment of breast cancer and a theoretical basis for breast cancer research.


Asunto(s)
Neoplasias de la Mama , Progresión de la Enfermedad , Glucosafosfato Deshidrogenasa , Vía de Pentosa Fosfato , Transcetolasa , Transcetolasa/metabolismo , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Glucosafosfato Deshidrogenasa/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Animales
2.
ACS Appl Bio Mater ; 7(6): 3660-3674, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38835217

RESUMEN

Protein compartments offer definitive structures with a large potential design space that are of particular interest for green chemistry and therapeutic applications. One family of protein compartments, encapsulins, are simple prokaryotic nanocompartments that self-assemble from a single monomer into selectively permeable cages of between 18 and 42 nm. Over the past decade, encapsulins have been developed for a diverse application portfolio utilizing their defined cargo loading mechanisms and repetitive surface display. Although it has been demonstrated that encapsulation of non-native cargo proteins provides protection from protease activity, the thermal effects arising from enclosing cargo within encapsulins remain poorly understood. This study aimed to establish a methodology for loading a reporter protein into thermostable encapsulins to determine the resulting stability change of the cargo. Building on previous in vitro reassembly studies, we first investigated the effectiveness of in vitro reassembly and cargo-loading of two size classes of encapsulins Thermotoga maritima T = 1 and Myxococcus xanthus T = 3, using superfolder Green Fluorescent Protein. We show that the empty T. maritima capsid reassembles with higher yield than the M. xanthus capsid and that in vitro loading promotes the formation of the M. xanthus T = 3 capsid form over the T = 1 form, while overloading with cargo results in malformed T. maritima T = 1 encapsulins. For the stability study, a Förster resonance energy transfer (FRET)-probed industrially relevant enzyme cargo, transketolase, was then loaded into the T. maritima encapsulin. Our results show that site-specific orthogonal FRET labels can reveal changes in thermal unfolding of encapsulated cargo, suggesting that in vitro loading of transketolase into the T. maritima T = 1 encapsulin shell increases the thermal stability of the enzyme. This work supports the move toward fully harnessing structural, spatial, and functional control of in vitro assembled encapsulins with applications in cargo stabilization.


Asunto(s)
Estabilidad de Enzimas , Tamaño de la Partícula , Thermotoga maritima , Transcetolasa , Transcetolasa/metabolismo , Transcetolasa/química , Thermotoga maritima/enzimología , Ensayo de Materiales , Materiales Biocompatibles/química
3.
Biochemistry ; 63(11): 1460-1473, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767928

RESUMEN

Transketolases (TKs) are key enzymes of the pentose phosphate pathway, regulating several other critical pathways in cells. Considering their metabolic importance, TKs are expected to be conserved throughout evolution. However, Tittmann et al. (J Biol Chem, 2010, 285(41): 31559-31570) demonstrated that Homo sapiens TK (hsTK) possesses several structural and kinetic differences compared to bacterial TKs. Here, we study 14 TKs from pathogenic bacteria, fungi, and parasites and compare them with hsTK using biochemical, bioinformatic, and structural approaches. For this purpose, six new TK structures are solved by X-ray crystallography, including the TK of Plasmodium falciparum. All of these TKs have the same general fold as bacterial TKs. This comparative study shows that hsTK greatly differs from TKs from pathogens in terms of enzymatic activity, spatial positions of the active site, and monomer-monomer interface residues. An ubiquitous structural pattern is identified in all TKs as a six-residue histidyl crown around the TK cofactor (thiamine pyrophosphate), except for hsTK containing only five residues in the crown. Residue mapping of the monomer-monomer interface and the active site reveals that hsTK contains more unique residues than other TKs. From an evolutionary standpoint, TKs from animals (including H. sapiens) and Schistosoma sp. belong to a distinct structural group from TKs of bacteria, plants, fungi, and parasites, mostly based on a different linker between domains, raising hypotheses regarding evolution and regulation.


Asunto(s)
Evolución Molecular , Transcetolasa , Transcetolasa/metabolismo , Transcetolasa/química , Transcetolasa/genética , Humanos , Cristalografía por Rayos X , Biología Computacional/métodos , Modelos Moleculares , Dominio Catalítico , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Conformación Proteica
4.
J Proteome Res ; 23(6): 2148-2159, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785273

RESUMEN

Diverse proteomics-based strategies have been applied to saliva to quantitatively identify diagnostic and prognostic targets for oral cancer. Considering that these targets may be regulated by events that do not imply variation in protein abundance levels, we hypothesized that changes in protein conformation can be associated with diagnosis and prognosis, revealing biological processes and novel targets of clinical relevance. For this, we employed limited proteolysis-mass spectrometry in saliva samples to explore structural alterations, comparing the proteome of healthy control and oral squamous cell carcinoma (OSCC) patients with and without lymph node metastasis. Thirty-six proteins with potential structural rearrangements were associated with clinical patient features including transketolase and its interacting partners. Moreover, N-glycosylated peptides contribute to structural rearrangements of potential diagnostic and prognostic markers. Altogether, this approach utilizes saliva proteins to search for targets for diagnosing and prognosing oral cancer and can guide the discovery of potential regulated sites beyond protein-level abundance.


Asunto(s)
Neoplasias de la Boca , Proteoma , Saliva , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/diagnóstico , Saliva/química , Saliva/metabolismo , Proteoma/análisis , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/diagnóstico , Femenino , Biomarcadores de Tumor/metabolismo , Masculino , Metástasis Linfática , Conformación Proteica , Persona de Mediana Edad , Pronóstico , Proteómica/métodos , Transcetolasa/metabolismo , Anciano , Espectrometría de Masas , Proteínas y Péptidos Salivales/metabolismo , Proteínas y Péptidos Salivales/análisis
5.
Cell Metab ; 36(5): 1013-1029.e5, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38547864

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.


Asunto(s)
Inosina , Mitocondrias , Transcetolasa , Animales , Femenino , Humanos , Masculino , Ratones , Hiperinsulinismo/metabolismo , Inosina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Transcetolasa/metabolismo
6.
Acta Physiol (Oxf) ; 240(4): e14113, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38380737

RESUMEN

AIM: Aortic dissection (AD) is a disease with rapid onset but with no effective therapeutic drugs yet. Previous studies have suggested that glucose metabolism plays a critical role in the progression of AD. Transketolase (TKT) is an essential bridge between glycolysis and the pentose phosphate pathway. However, its role in the development of AD has not yet been elucidated. In this study, we aimed to explore the role of TKT in AD. METHODS: We collected AD patients' aortic tissues and used high-throughput proteome sequencing to analyze the main factors influencing AD development. We generated an AD model using BAPN in combination with angiotensin II (Ang II) and pharmacological inhibitors to reduce TKT expression. The effects of TKT and its downstream mediators on AD were elucidated using human aortic vascular smooth muscle cells (HAVSMCs). RESULTS: We found that glucose metabolism plays an important role in the development of AD and that TKT is upregulated in patients with AD. Western blot and immunohistochemistry confirmed that TKT expression was upregulated in mice with AD. Reduced TKT expression attenuated AD incidence and mortality, maintained the structural integrity of the aorta, aligned elastic fibers, and reduced collagen deposition. Mechanistically, TKT was positively associated with impaired mitochondrial bioenergetics by upregulating AKT/MDM2 expression, ultimately contributing to NDUFS1 downregulation. CONCLUSION: Our results provide new insights into the role of TKT in mitochondrial bioenergetics and AD progression. These findings provide new intervention options for the treatment of AD.


Asunto(s)
Disección Aórtica , Transcetolasa , Humanos , Ratones , Animales , Transcetolasa/metabolismo , Metabolismo Energético , Glucólisis , Glucosa
7.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255994

RESUMEN

Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with perturbed thiamine-dependent metabolism, known to occur in neurodegenerative diseases. The perturbations are modeled by the administration of oxythiamine inhibiting ThDP-dependent enzymes in vivo or by reduced thiamine availability in the presence of metformin and amprolium, inhibiting intracellular thiamine transporters. Compared to control rats, chronic administration of oxythiamine does not significantly change the modification level of the two detected TKT acetylation sites (K6 and K102) but doubles malonylation of TKT K499, concomitantly decreasing 1.7-fold the level of demalonylase sirtuin 5. The inhibitors of thiamine transporters do not change average levels of TKT acylation or sirtuin 5. TKT structures indicate that the acylated residues are distant from the active sites. The acylations-perturbed electrostatic interactions may be involved in conformational shifts and/or the formation of TKT complexes with other proteins or nucleic acids. Acetylation of K102 may affect the active site entrance/exit and subunit interactions. Correlation analysis reveals that the action of oxythiamine is characterized by significant negative correlations of K499 malonylation or K6 acetylation with TKT activity, not observed upon the action of the inhibitors of thiamine transport. However, the transport inhibitors induce significant negative correlations between the TKT activity and K102 acetylation or TKT expression, absent in the oxythiamine group. Thus, perturbations in the ThDP-dependent catalysis or thiamine transport manifest in the insult-specific patterns of the brain TKT malonylation and acetylations.


Asunto(s)
Sirtuinas , Tiamina Pirofosfato , Transcetolasa , Animales , Ratas , Acilación , Encéfalo , Proteínas de Transporte de Membrana , Oxitiamina , Tiamina/farmacología , Transcetolasa/metabolismo
8.
J Comp Neurol ; 532(2): e25576, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189676

RESUMEN

In this review, we focus on human-specific features of neocortical neurogenesis in development and evolution. Two distinct topics will be addressed. In the first section, we discuss the expansion of the neocortex during human evolution and concentrate on the human-specific gene ARHGAP11B. We review the ability of ARHGAP11B to amplify basal progenitors and to expand a primate neocortex. We discuss the contribution of ARHGAP11B to neocortex expansion during human evolution and its potential implications for neurodevelopmental disorders and brain tumors. We then review the action of ARHGAP11B in mitochondria as a regulator of basal progenitor metabolism, and how it promotes glutaminolysis and basal progenitor proliferation. Finally, we discuss the increase in cognitive performance due to the ARHGAP11B-induced neocortical expansion. In the second section, we focus on neocortical development in modern humans versus Neanderthals. Specifically, we discuss two recent findings pointing to differences in neocortical neurogenesis between these two hominins that are due to a small number of amino acid substitutions in certain key proteins. One set of such proteins are the kinetochore-associated proteins KIF18a and KNL1, where three modern human-specific amino acid substitutions underlie the prolongation of metaphase during apical progenitor mitosis. This prolongation in turn is associated with an increased fidelity of chromosome segregation to the apical progenitor progeny during modern human neocortical development, with implications for the proper formation of radial units. Another such key protein is transketolase-like 1 (TKTL1), where a single modern human-specific amino acid substitution endows TKTL1 with the ability to amplify basal radial glia, resulting in an increase in upper-layer neuron generation. TKTL1's ability is based on its action in the pentose phosphate pathway, resulting in increased fatty acid synthesis. The data imply greater neurogenesis during neocortical development in modern humans than Neanderthals due to TKTL1, in particular in the developing frontal lobe.


Asunto(s)
Hombre de Neandertal , Neocórtex , Células-Madre Neurales , Animales , Humanos , Células-Madre Neurales/metabolismo , Hombre de Neandertal/metabolismo , Células Ependimogliales/metabolismo , Neocórtex/metabolismo , Neurogénesis/fisiología , Transcetolasa/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
9.
Int J Biol Macromol ; 257(Pt 2): 128734, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086429

RESUMEN

Tartaric acid (TA) is a major non-fermentable plant soluble acid that abundantly occur in grapes and wines, imparting low pH and tart flavour to berries thereby regulating numerous quality attributes of wine, such as flavour, microbial stability, and aging potential. Evaluation of acidity in mature fruits of 21 wine grape (Vitis vinifera) varieties revealed significant variation between 'Beichun' and 'Gewürztraminer', which was correlated with TA content. RNA-seq analysis of fruits from the two cultivars at different developmental stages revealed that a transketolase gene, VvTK2, was significantly dominantly expressed in the high TA phenotype 'Beichun' variety. Subcellular localization assay showed that VvTK2 protein was located in the chloroplast. Virus-induced VvTK2 gene silencing significantly decreased the expression of 2-keto-L-gulonic acid reductase (Vv2-KGR) as well as L-idonate dehydrogenase (VvL-IdnDH3) and inhibited TA accumulation, while its transient over-expression in grape showed the opposite results. Heterologous VvTK2 over-expression in tomato demonstrated its obvious capacity to induce TA synthesis. Overall, these results highlights a novel role of VvTK2 in modulating TA biosynthesis, which could be an excellent strategy for future genetic improvement of grape flavour.


Asunto(s)
Solanum lycopersicum , Tartratos , Vitis , Vino , Vitis/genética , Vitis/metabolismo , Frutas/química , Transcetolasa/análisis , Transcetolasa/metabolismo , Vino/análisis , Oxidorreductasas/metabolismo
10.
Mol Carcinog ; 63(2): 339-355, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37988232

RESUMEN

Over 99% of precancerous cervical lesions are associated with human papillomavirus (HPV) infection, with HPV types 16 and 18 (especially type 16) found in over 70% of cervical cancer cases globally. E6, a critical HPV gene, triggers malignant proliferation by degrading p53; however, this mechanism alone cannot fully explain the oncogenic effects of HPV16 E6. Therefore, we aimed to investigate new targets of HPV oncogenic mechanisms. Our results revealed significant changes in nonoxidative pentose phosphate pathway (PPP) metabolites in HPV16-positive cells. However, the role of nonoxidative PPP in HPV-associated cell transformation and tumor development remained unexplored. In this study, we investigated the impact and mechanisms of HPV16 E6 on cervical cancer proliferation using the HPV-negative cervical cancer cell line (C33A). HPV16 E6 was found to promote cervical cancer cell proliferation both in vitro and in vivo, activating the nonoxidative PPP. Transketolase (TKT), a key enzyme in the nonoxidative PPP, is highly expressed in cervical cancer tissues and associated with poor prognosis. HPV16 E6 promotes cervical cancer cell proliferation by upregulating TKT activity through the activation of AKT. In addition, oxythiamine (OT), a TKT inhibitor, hindered tumor growth, with enhanced effects when combined with cisplatin (DDP). In conclusion, HPV16 E6 promotes cervical cancer proliferation by upregulating TKT activity through the activation of AKT. OT demonstrates the potential to inhibit HPV16-positive cervical cancer growth, and when combined with DDP, could further enhance the tumor-suppressive effect of DDP.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Papillomavirus Humano 16/metabolismo , Transcetolasa/metabolismo , Neoplasias del Cuello Uterino/genética , Infecciones por Papillomavirus/genética , Proteínas Oncogénicas Virales/metabolismo , Proliferación Celular , Línea Celular Tumoral
11.
Protein Sci ; 33(3): e4884, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145310

RESUMEN

Vibrio vulnificus (vv) is a multidrug-resistant human bacterial pathogen whose prevalence is expected to increase over the years. Transketolases (TK), transferases catalyzing two reactions of the nonoxidative branch of the pentose-phosphate pathway and therefore linked to several crucial metabolic pathways, are potential targets for new drugs against this pathogen. Here, the vvTK is crystallized and its structure is solved at 2.1 Å. A crown of 6 histidyl residues is observed in the active site and expected to participate in the thiamine pyrophosphate (cofactor) activation. Docking of fructose-6-phosphate and ferricyanide used in the activity assay, suggests that both substrates can bind vvTK simultaneously. This is confirmed by steady-state kinetics showing a sequential mechanism, on the contrary to the natural transferase reaction which follows a substituted mechanism. Inhibition by the I38-49 inhibitor (2-(4-ethoxyphenyl)-1-(pyrimidin-2-yl)-1H-pyrrolo[2,3-b]pyridine) reveals for the first time a cooperative behavior of a TK and docking experiments suggest a previously undescribed binding site at the interface between the pyrophosphate and pyridinium domains.


Asunto(s)
Transcetolasa , Vibrio vulnificus , Humanos , Transcetolasa/química , Transcetolasa/metabolismo , Vibrio vulnificus/metabolismo , Cinética , Conducta Cooperativa , Tiamina Pirofosfato/metabolismo , Transferasas/metabolismo
12.
Exp Mol Med ; 55(10): 2162-2176, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653031

RESUMEN

Metastatic hepatocellular carcinoma (HCC) is the most lethal malignancy and lacks effective treatment. FBXL6 is overexpressed in human hepatocellular carcinoma (HCC), but whether this change drives liver tumorigenesis and lung metastasis in vivo remains unknown. In this study, we aimed to identify FBXL6 (F-Box and Leucine Rich Repeat Protein 6) as a key driver of HCC metastasis and to provide a new paradigm for HCC therapy. We found that elevated FBXL6 expression in hepatocytes drove HCC lung metastasis and was a much stronger driver than Kras mutation (KrasG12D/+;Alb-Cre), p53 haploinsufficiency (p53+/-) or Tsc1 loss (Tsc1fl/fl;Alb-Cre). Mechanistically, VRK2 promoted Thr287 phosphorylation of TKT and then recruited FBXL6 to promote TKT ubiquitination and activation. Activated TKT further increased PD-L1 and VRK2 expression via the ROS-mTOR axis, leading to immune evasion and HCC metastasis. Targeting or knockdown of TKT significantly blocked FBXL6-driven immune evasion and HCC metastasis in vitro and in vivo. Notably, the level of active TKT (p-Thr287 TKT) was increased and was positively correlated with the FBXL6 and VRK2 expression levels in HCC patients. Our work provides novel mechanistic insights into FBXL6-driven HCC metastasis and suggests that targeting the TKT-ROS-mTOR-PD-L1/VRK2 axis is a new paradigm for treating patients with metastatic HCC with high FBXL6 expression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Transcetolasa/genética , Transcetolasa/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antígeno B7-H1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Evasión Inmune , Proteína p53 Supresora de Tumor/metabolismo , Hepatocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Mol Oncol ; 17(12): 2603-2617, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37341056

RESUMEN

The antigenic repertoire of tumors is critical for successful anti-cancer immune response and the efficacy of immunotherapy. Cancer-testis antigens (CTAs) are targets of humoral and cellular immune reactions. We aimed to characterize CTA expression in non-small cell lung cancer (NSCLC) in the context of the immune microenvironment. Of 90 CTAs validated by RNA sequencing, eight CTAs (DPEP3, EZHIP, MAGEA4, MAGEB2, MAGEC2, PAGE1, PRAME, and TKTL1) were selected for immunohistochemical profiling in cancer tissues from 328 NSCLC patients. CTA expression was compared with immune cell densities in the tumor environment and with genomic, transcriptomic, and clinical data. Most NSCLC cases (79%) expressed at least one of the analyzed CTAs, and CTA protein expression correlated generally with RNA expression. CTA profiles were associated with immune profiles: high MAGEA4 expression was related to M2 macrophages (CD163) and regulatory T cells (FOXP3), low MAGEA4 was associated with T cells (CD3), and high EZHIP was associated with plasma cell infiltration (adj. P-value < 0.05). None of the CTAs correlated with clinical outcomes. The current study provides a comprehensive evaluation of CTAs and suggests that their association with immune cells may indicate in situ immunogenic effects. The findings support the rationale to harness CTAs as targets for immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias Pulmonares/metabolismo , Testículo/metabolismo , Testículo/patología , Proteínas de Neoplasias/metabolismo , Microambiente Tumoral , Transcetolasa/metabolismo
14.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 290-303, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36974963

RESUMEN

Phosphoketolase and transketolase are thiamine diphosphate-dependent enzymes and play a central role in the primary metabolism of bifidobacteria: the bifid shunt. The enzymes both catalyze phosphorolytic cleavage of xylulose 5-phosphate or fructose 6-phosphate in the first reaction step, but possess different substrate specificity in the second reaction step, where phosphoketolase and transketolase utilize inorganic phosphate (Pi) and D-ribose 5-phosphate, respectively, as the acceptor substrate. Structures of Bifidobacterium longum phosphoketolase holoenzyme and its complex with a putative inhibitor, phosphoenolpyruvate, were determined at 2.5 Šresolution by serial femtosecond crystallography using an X-ray free-electron laser. In the complex structure, phosphoenolpyruvate was present at the entrance to the active-site pocket and plugged the channel to thiamine diphosphate. The phosphate-group position of phosphoenolpyruvate coincided well with those of xylulose 5-phosphate and fructose 6-phosphate in the structures of their complexes with transketolase. The most striking structural change was observed in a loop consisting of Gln546-Asp547-His548-Asn549 (the QN-loop) at the entrance to the active-site pocket. Contrary to the conformation of the QN-loop that partially covers the entrance to the active-site pocket (`closed form') in the known crystal structures, including the phosphoketolase holoenzyme and its complexes with reaction intermediates, the QN-loop in the current ambient structures showed a more compact conformation with a widened entrance to the active-site pocket (`open form'). In the phosphoketolase reaction, the `open form' QN-loop may play a role in providing the binding site for xylulose 5-phosphate or fructose 6-phosphate in the first step, and the `closed form' QN-loop may help confer specificity for Pi in the second step.


Asunto(s)
Bifidobacterium longum , Tiamina Pirofosfato , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Bifidobacterium longum/metabolismo , Cristalografía por Rayos X , Transcetolasa/química , Transcetolasa/metabolismo , Fosfoenolpiruvato , Temperatura , Xilulosa , Dominio Catalítico , Fructosa
15.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768400

RESUMEN

Transketolase catalyzes the interconversion of keto and aldo sugars. Its coenzyme is thiamine diphosphate. The binding of keto sugar with thiamine diphosphate is possible only after C2 deprotonation of its thiazole ring. It is believed that deprotonation occurs due to the direct transfer of a proton to the amino group of its aminopyrimidine ring. Using mass spectrometry, it is shown that a water molecule is directly involved in the deprotonation process. After the binding of thiamine diphosphate with transketolase and its subsequent cleavage, a thiamine diphosphate molecule is formed with a mass increased by one oxygen molecule. After fragmentation, a thiamine diphosphate molecule is formed with a mass reduced by one and two hydrogen atoms, that is, HO and H2O are split off. Based on these data, it is assumed that after the formation of holotransketolase, water is covalently bound to thiamine diphosphate, and carbanion is formed as a result of its elimination. This may be a common mechanism for other thiamine enzymes. The participation of a water molecule in the catalysis of the one-substrate transketolase reaction and a possible reason for the effect of the acceptor substrate on the affinity of the donor substrate for active sites are also shown.


Asunto(s)
Tiamina Pirofosfato , Transcetolasa , Tiamina Pirofosfato/metabolismo , Transcetolasa/metabolismo , Tiamina/química , Dominio Catalítico , Catálisis , Cinética
16.
Biosci Biotechnol Biochem ; 87(4): 448-457, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36617231

RESUMEN

Free dihomo-γ-linolenic acid (DGLA), a polyunsaturated free fatty acid (FFA), can potentially be used to produce eicosanoid pharmaceuticals, such as prostaglandin E1. Previously, we constructed an Aspergillus oryzae mutant strain, named DGLA3, which produced free DGLA at an increased yield by faaA gene disruption and cooverexpression of one elongase and two desaturase genes. In this study, we achieved a further increase. Since FFA production is increased by enhancing the pentose phosphate pathway, we overexpressed a predicted transketolase gene composing the pathway in DGLA3, which consequently increased the free DGLA yield by 1.9-fold to 403 mg/L. Additionally, we disrupted the α-1,3-glucan synthase gene agsB involved in cell-wall biosynthesis, which further increased it by 1.3-fold to 533 mg/L. Overall, the yield increased by 2.5-fold. Free DGLA productivity and biomass increased similarly, but residual glucose concentration decreased. Increased hyphal dispersion appeared to cause additional glucose consumption, resulting in an increase in biomass and yield.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico , Aspergillus oryzae , Ácido 8,11,14-Eicosatrienoico/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Transcetolasa/genética , Transcetolasa/metabolismo , Glucanos/metabolismo , Ácidos Grasos no Esterificados/metabolismo
17.
J Endocrinol ; 256(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449405

RESUMEN

Transketolase (TKT), an enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), bi-directionally regulates the carbon flux between the PPP and glycolysis. Loss of TKT in adipose tissues decreased glycolysis and increased lipolysis and uncoupling protein-1 (UCP1) expression, protecting mice from high-fat diet-induced obesity. However, the role of TKT in brown adipose tissue (BAT)-dependent glucose homeostasis under normal chow diet remains to be elucidated. We found that TKT ablation increased levels of glucose transporter 4 (GLUT4), promoting glucose uptake and glycogen accumulation in BAT. Using the streptozotocin (STZ)-induced diabetic mouse model, we discovered that enhanced glucose uptake due to TKT deficiency in BAT contributed to decreasing blood glucose and weight loss, protecting mice from STZ-induced diabetes. Mechanistically, TKT deficiency decreased the level of thioredoxin-interacting protein, a known inhibitor for GLUT4, by decreasing NADPH and glutathione levels and inducing oxidative stress in BAT. Therefore, our data reveal a new role of TKT in regulating the anti-diabetic function of BAT as well as glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo , Diabetes Mellitus Experimental , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Transcetolasa/metabolismo , Glucólisis , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo
18.
Appl Microbiol Biotechnol ; 107(1): 233-245, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36441206

RESUMEN

Transketolase is a key enzyme in the pentose phosphate pathway in all organisms, recognizing sugar phosphates as substrates. Transketolase with a cofactor of thiamine pyrophosphate catalyzes the transfer of a 2-carbon unit from D-xylulose-5-phosphate to D-ribose-5-phosphate (5-carbon aldose), giving D-sedoheptulose-7-phosphate (7-carbon ketose). Transketolases can also recognize non-phosphorylated monosaccharides as substrates, and catalyze the formation of non-phosphorylated 7-carbon ketose (heptulose), which has attracted pharmaceutical attention as an inhibitor of sugar metabolism. Here, we report the structural and biochemical characterizations of transketolase from Thermus thermophilus HB8 (TtTK), a well-characterized thermophilic Gram-negative bacterium. TtTK showed marked thermostability with maximum enzyme activity at 85 °C, and efficiently catalyzed the formation of heptuloses from lithium hydroxypyruvate and four aldopentoses: D-ribose, L-lyxose, L-arabinose, and D-xylose. The X-ray structure showed that TtTK tightly forms a homodimer with more interactions between subunits compared with transketolase from other organisms, contributing to its thermal stability. A modeling study based on X-ray structures suggested that D-ribose and L-lyxose could bind to the catalytic site of TtTK to form favorable hydrogen bonds with the enzyme, explaining the high conversion rates of 41% (D-ribose) and 43% (L-lyxose) to heptulose. These results demonstrate the potential of TtTK as an enzyme producing a rare sugar of heptulose. KEY POINTS: • Transketolase catalyzes the formation of a 7-carbon sugar phosphate • Structural and biochemical characterizations of thermophilic transketolase were done • The enzyme could produce non-phosphorylated 7-carbon ketoses from sugars.


Asunto(s)
Thermus thermophilus , Transcetolasa , Transcetolasa/química , Transcetolasa/metabolismo , Ribosa , Monosacáridos , Fosfatos , Cetosas , Carbono
19.
Biosci Rep ; 42(10)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36196895

RESUMEN

Sulfoquinovose (SQ, 6-deoxy-6-sulfo-D-glucose) is a sulfo-sugar with a ubiquitous distribution in the environment due to its production by plants and other photosynthetic organisms. Bacteria play an important role in degradation of SQ and recycling of its constituent sulfur and carbon. Since its discovery in 1963, SQ was noted to have a structural resemblance to glucose-6-phosphate and proposed to be degraded through a pathway analogous to glycolysis, termed sulfoglycolysis. Studies in recent years have uncovered an unexpectedly diverse array of sulfoglycolytic pathways in different bacteria, including one analogous to the Embden-Meyerhof-Parnas pathway (sulfo-EMP), one analogous to the Entner-Doudoroff pathway (sulfo-ED), and two involving sulfo-sugar cleavage by a transaldolase (sulfo-TAL) and transketolase (sulfo-TK), respectively, analogous to reactions in the pentose phosphate (PP) pathway. In addition, a non-sulfoglycolytic SQ degradation pathway was also reported, involving oxygenolytic C-S cleavage catalyzed by a homolog of alkanesulfonate monooxygenase (sulfo-ASMO). Here, we review the discovery of these new mechanisms of SQ degradation and lessons learnt in the study of new catabolic enzymes and pathways in bacteria.


Asunto(s)
Glucosa-6-Fosfato , Transaldolasa , Transaldolasa/metabolismo , Transcetolasa/metabolismo , Bacterias/metabolismo , Glucólisis , Azufre/metabolismo , Glucosa/metabolismo , Carbono , Alcanosulfonatos , Oxigenasas de Función Mixta/metabolismo , Fosfatos , Pentosas
20.
Clin Transl Med ; 12(11): e1095, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36314067

RESUMEN

BACKGROUND: Transketolase (TKT), a key rate-limiting enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), provides more than 85% of the ribose required for de novo nucleotide biosynthesis and promotes the development of hepatocellular carcinoma (HCC). Pharmacologic inhibition of TKT could impede HCC development and enhance treatment efficacy. However, no safe and effective TKT inhibitor has been approved. METHODS: An online two-dimensional TKT protein immobilised biochromatographic system was established for high-throughput screening of TKT ligands. Oroxylin A was found to specifically bind TKT. Drug affinity responsive target stability, cellular thermal shift assay, surface plasmon resonance, molecular docking, competitive displacement assay, and site mutation were performed to identify the binding of oroxylin A with TKT. Antitumour effects of oroxylin A were evaluated in vitro, in human xenograft mice, diethylnitrosamine (DEN)-induced HCC mice, and patient-derived organoids (PDOs). Metabolomic analysis was applied to detect the enzyme activity. Transcriptome profiling was conducted to illustrate the anti-HCC mechanism of oroxylin A. TKT knocking-down HCC cell lines and PDOs were established to evaluate the role of TKT in oroxylin A-induced HCC suppression. RESULTS: By targeting TKT, oroxylin A stabilised the protein to proteases and temperature extremes, decreased its activity and expression, resulted in accumulation of non-oxidative PPP substrates, and activated p53 signalling. In addition, oroxylin A suppressed cell proliferation, induced apoptosis and cell-cycle arrest, and inhibited the growth of human xenograft tumours and DEN-induced HCC in mice. Crucially, TKT depletion exerted identical effects to oroxylin A, and the promising inhibitor also exhibited excellent therapeutic efficacy against clinically relevant HCC PDOs. CONCLUSIONS: These results uncover a unique role for oroxylin A in TKT inhibition, which directly targets TKT and suppresses the non-oxidative PPP. Our findings will facilitate the development of small-molecule inhibitors of TKT and novel therapeutics for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transcetolasa/genética , Transcetolasa/metabolismo , Vía de Pentosa Fosfato , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Organoides/metabolismo , Organoides/patología , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...