Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.047
Filtrar
1.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702347

RESUMEN

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Asunto(s)
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Células Secretoras de Insulina/metabolismo , Ratones , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Islotes Pancreáticos/metabolismo
2.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727276

RESUMEN

In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.


Asunto(s)
Transdiferenciación Celular , Células Ciliadas Auditivas , Transducción de Señal , Serina-Treonina Quinasas TOR , Ubiquitina Tiolesterasa , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Transdiferenciación Celular/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología , Ratones , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/citología , Indoles , Oximas
3.
Elife ; 132024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771186

RESUMEN

Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.


Asunto(s)
Transdiferenciación Celular , Pollos , Fibroblastos , Carne , Animales , Fibroblastos/metabolismo , Fibroblastos/citología , Tejido Adiposo/citología , Células Musculares/citología , Desarrollo de Músculos , Proliferación Celular , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Carne in Vitro
4.
Stem Cell Res Ther ; 15(1): 93, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561834

RESUMEN

BACKGROUND: Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS: We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS: Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION: These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.


Asunto(s)
Espermatogonias , Testículo , Masculino , Ratones , Animales , Testículo/metabolismo , Transdiferenciación Celular , Células Cultivadas , Células Madre/metabolismo
5.
J Cardiothorac Surg ; 19(1): 208, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616256

RESUMEN

BACKGROUND: Cardiac fibroblasts (CFs) are activated after initial injury, and then differentiate into myofibroblasts (MFs), which play a pivotal role as the primary mediator cells in pathological remodeling. Sodium butyrate (NaB), being a metabolite of gut microbiota, exhibits anti-inflammatory property in local therapies on sites other than the intestine. Thus, this study aimed to probe the mechanism by which NaB regulates CFs transdifferentiation through the NLRP3/Caspase-1 pyroptosis pathway. METHODS: CFs were cultured in vitro and induced into MFs by TGFß1. CFs were identified by immunofluorescence labelling technique of vimentin and α-SMA, followed by treatment with NaB or NLRP3 inflammasome inhibitor (CY-09) and its activator [nigericin sodium salt (NSS)]. The expression levels of α-SMA, GSDMD-N/NLRP3/cleaved Caspase-1 proteins, and inflammatory factors IL-1ß/IL-18/IL-6/IL-10 were determined using immunofluorescence, Western blot and ELISA. Cell proliferation and migration were evaluated using the CCK-8 assay and the cell scratch test, respectively. RESULTS: Following the induction of TGFß1, CFs exhibited increased expression levels of α-SMA proteins and IL-6/IL-10, as well as cell proliferative and migratory abilities. TGFß1 induced CFs to differentiate into MFs, while NaB inhibited this differentiation. NaB inactivated the NLRP3/Caspase-1 pyroptosis pathway. CY-09 demonstrated inhibitory effects on the NLRP3/Caspase-1 pyroptosis pathway, leading to a reduction in TGFß1-induced CFs transdifferentiation. NSS activated the NLRP3/Caspase-1 pyroptosis pathway, and thus partially counteracting the inhibitory effect of intestinal microbiota metabolite NaB on CFs transdifferentiation. CONCLUSION: NaB, a metabolite of the gut microbiota, inhibited the activation of the NLRP3/Caspase-1 pyroptosis pathway in TGFß1-induced CFs, repressed the transdifferentiation of CFs into MFs.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Caspasa 1 , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Butírico , Interleucina-10 , Transdiferenciación Celular , Interleucina-6 , Piroptosis , Fibroblastos
6.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652107

RESUMEN

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Diferenciación Celular/genética , Animales , Hematopoyesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Desarrollo Embrionario/genética , Transdiferenciación Celular/genética , Humanos
7.
Am J Hum Genet ; 111(5): 841-862, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593811

RESUMEN

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Asunto(s)
Transdiferenciación Celular , Fibroblastos , Neuronas , Análisis de Secuencia de ARN , Humanos , Transdiferenciación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citología , Análisis de Secuencia de ARN/métodos , Neuronas/metabolismo , Neuronas/citología , Transcriptoma , Reproducibilidad de los Resultados , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/diagnóstico , RNA-Seq/métodos , Femenino , Masculino
8.
Int Immunopharmacol ; 133: 112067, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608444

RESUMEN

Silicosis is one of the most common and severe types of pneumoconiosis and is characterized by lung dysfunction, persistent lung inflammation, pulmonary nodule formation, and irreversible pulmonary fibrosis. The transdifferentiation of fibroblasts into myofibroblasts is one of the main reasons for the exacerbation of silicosis. However, the underlying mechanism of transcription factors regulating silicosis fibrosis has not been clarified. The aim of this study was to investigate the potential mechanism of transcription factor FOXF1 in fibroblast transdifferentiation in silica-induced pulmonary fibrosis. Therefore, a silicosis mouse model was established, and we found that FOXF1 expression level was significantly down-regulated in the silicosis group, and after overexpression of FOXF1 by adeno-associated virus (AAV), FOXF1 expression level was up-regulated, and silicosis fibrosis was alleviated. In order to further explore the specific regulatory mechanism of FOXF1 in silicosis, we established a fibroblasts transdifferentiation model induced by TGF-ß in vitro. In the model, the expression levels of SMAD2/3 and P-SMAD2/3 were up-regulated, but the expression levels of SMAD2/3 and P-SMAD2/3 were down-regulated, inhibiting transdifferentiation and accumulation of extracellular matrix after the overexpressed FOXF1 plasmid was constructed. However, after silencing FOXF1, the expression levels of SMAD2/3 and P-SMAD2/3 were further up-regulated, aggravating transdifferentiation and accumulation of extracellular matrix. These results indicate that the activation of FOXF1 in fibroblasts can slow down the progression of silicosis fibrosis by inhibiting TGF-ß/SMAD2/3 classical pathway, which provides a new idea for further exploration of silicosis treatment.


Asunto(s)
Transdiferenciación Celular , Fibroblastos , Pulmón , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta , Animales , Fibroblastos/metabolismo , Proteína smad3/metabolismo , Proteína smad3/genética , Proteína Smad2/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta/metabolismo , Ratones , Pulmón/patología , Dióxido de Silicio/toxicidad , Ratones Endogámicos C57BL , Silicosis/metabolismo , Silicosis/patología , Masculino , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Modelos Animales de Enfermedad , Humanos , Células Cultivadas
9.
Life Sci ; 346: 122645, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614297

RESUMEN

The increasing global prevalence and associated comorbidities need innovative approaches for type 2 diabetes mellitus (T2DM) prevention and treatment. Genetics contributes significantly to T2DM susceptibility, and genetic counseling is significant in detecting and informing people about the diabetic risk. T2DM is also intricately linked to overnutrition and obesity, and nutritional advising is beneficial to mitigate diabetic evolution. However, manipulating pancreatic cell plasticity and transdifferentiation could help beta cell regeneration and glucose homeostasis, effectively contributing to the antidiabetic fight. Targeted modulation of transcription factors is highlighted for their roles in various aspects of pancreatic cell differentiation and function, inducing non-beta cells' conversion into functional beta cells (responsive to glucose). In addition, pharmacological interventions targeting specific receptors and pathways might facilitate cell transdifferentiation aiming to maintain or increase beta cell mass and function. However, the mechanisms underlying cellular reprogramming are not yet well understood. The present review highlights the primary transcriptional factors in the endocrine pancreas, focusing on transdifferentiation as a primary mechanism. Therefore, islet cell reprogramming, converting one cell type to another and transforming non-beta cells into insulin-producing cells, depends, among others, on transcription factors. It is a promising fact that new transcription factors are discovered every day, and their actions on pancreatic islet cells are revealed. Exploring these pathways associated with pancreatic development and islet endocrine cell differentiation could unravel the molecular intricacies underlying transdifferentiation processes, exploring novel therapeutic strategies to treat diabetes. The medical use of this biotechnology is expected to be achievable within a short time.


Asunto(s)
Transdiferenciación Celular , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diferenciación Celular , Páncreas/metabolismo , Páncreas/patología
10.
Chin Med J (Engl) ; 137(7): 791-805, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479993

RESUMEN

ABSTRACT: Pancreatic ß-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing ß-cells and hence restoring insulin production are gaining attention in translational diabetes research, and ß-cell replenishment has been the main focus for diabetes treatment. Significant findings in ß-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate ß-cells. In this review, we summarize current knowledge on the mechanisms implicated in ß-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to ß-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting ß-cell proliferation, inducing non-ß-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for ß-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous ß-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/uso terapéutico , Transdiferenciación Celular , Diferenciación Celular
11.
Dev Cell ; 59(8): 961-978.e7, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38508181

RESUMEN

Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.


Asunto(s)
Transdiferenciación Celular , Embrión de Mamíferos , Inflamación , Transducción de Señal , Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Embrión de Mamíferos/metabolismo , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Transcriptoma/genética , Células Endoteliales/metabolismo
12.
Life Sci ; 343: 122543, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460812

RESUMEN

AIM: The secretome of mesenchymal stem cells (MSCs) could be a potential therapeutic intervention for diabetes and associated complications like nephropathy. This study aims to evaluate the effects of conditioned mediums (CMs) collected from umbilical cord-derived MSCs incubated under 2-dimensional (2D) or 3D culture conditions on kidney functions of rats with type-I diabetes (T1D). MAIN METHODS: Sprague-Dawley rats were treated with 20 mg/kg streptozocin for 5 consecutive days to induce T1D, and 12 doses of CMs were applied intraperitoneally for 4 weeks. The therapeutic effects of CMs were comparatively investigated by biochemical, physical, histopathological, and immunohistochemical analysis. KEY FINDINGS: 3D-CM had significantly higher total protein concentration than the 2D-CM Albumin/creatinine ratios of both treatment groups were significantly improved in comparison to diabetes. Light microscopic evaluations showed that glomerular and cortical tubular damages were significantly ameliorated in only the 3D-CM applied group compared to the diabetes group, which were correlated with transmission electron microscopic observations. The nephrin and synaptopodin expressions increased in both treatment groups compared to diabetes. The WT1, Ki-67, and active caspase-3 expressions in glomeruli and parietal layers of the treatment groups suggest that both types of CMs suppress apoptosis and promote possible parietal epithelial cells' (PECs') transdifferentiation towards podocyte precursor cells by switching on WT1 expression in parietal layer rather than inducing new cell proliferation. SIGNIFICANCE: 3D-CM was found to be more effective in improving kidney functions than 2D-CM by ameliorating glomerular damage through the possible mechanism of transdifferentiation of PECs into podocyte precursors and suppressing glomerular apoptosis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Enfermedades Renales , Células Madre Mesenquimatosas , Podocitos , Ratas , Animales , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Transdiferenciación Celular , Ratas Sprague-Dawley , Células Epiteliales/metabolismo , Enfermedades Renales/patología
13.
PLoS One ; 19(3): e0299821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517864

RESUMEN

Pancreatic ß-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-ß like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from ß cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-ß like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-ß like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic ß cells from α cells.


Asunto(s)
Células Secretoras de Glucagón , Células Secretoras de Insulina , MicroARNs , Animales , Ratones , Transdiferenciación Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Glucagón , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
14.
Medicine (Baltimore) ; 103(13): e37595, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552064

RESUMEN

BACKGROUND: Skin grafting is a common method of treating damaged skin; however, surgical complications may arise in patients with poor health. Currently, no effective conservative treatment is available for extensive skin loss. Mature adipocytes, which constitute a substantial portion of adipose tissue, have recently emerged as a potential source of stemness. When de-lipidated, these cells exhibit fibroblast-like characteristics and the ability to redifferentiate, offering homogeneity and research utility as "dedifferentiated fat cells." METHODS AND RESULTS: We conducted an in vitro study to induce fibroblast-like traits in the adipose tissue by transdifferentiating mature adipocytes for skin regeneration. Human subcutaneous fat tissues were isolated and purified from mature adipocytes that underwent a transformation process over 14 days of cultivation. Microscopic analysis revealed lipid degradation over time, ultimately transforming cells into fibroblast-like forms. Flow cytometry was used to verify their characteristics, highlighting markers such as CD90 and CD105 (mesenchymal stem cell markers) and CD56 and CD106 (for detecting fibroblast characteristics). Administering dedifferentiated fat cells with transforming growth factor-ß at the identified optimal differentiation concentration of 5 ng/mL for a span of 14 days led to heightened expression of alpha smooth muscle actin and fibronectin, as evidenced by RNA and protein analysis. Meanwhile, functional validation through cell sorting demonstrated limited fibroblast marker expression in both treated and untreated cells after transdifferentiation by transforming growth factor-ß. CONCLUSION: Although challenges remain in achieving more effective transformation and definitive fibroblast differentiation, our trial could pave the way for a novel skin regeneration treatment strategy.


Asunto(s)
Desdiferenciación Celular , Transdiferenciación Celular , Humanos , Proyectos Piloto , Desdiferenciación Celular/fisiología , Tejido Adiposo , Adipocitos/metabolismo , Diferenciación Celular , Fibroblastos/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Células Cultivadas
15.
Transl Psychiatry ; 14(1): 127, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418498

RESUMEN

The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.


Asunto(s)
Transdiferenciación Celular , Células Madre Pluripotentes Inducidas , Humanos , Reproducibilidad de los Resultados , Encéfalo , Células Madre Pluripotentes Inducidas/fisiología , Diferenciación Celular , Organoides
16.
Cells ; 13(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38391963

RESUMEN

The classification of tumors into subtypes, characterized by phenotypes determined by specific differentiation pathways, aids diagnosis and directs therapy towards targeted approaches. However, with the advent and explosion of next-generation sequencing, cancer phenotypes are turning out to be far more heterogenous than initially thought, and the classification is continually being updated to include more subtypes. Tumors are indeed highly dynamic, and they can evolve and undergo various changes in their characteristics during disease progression. The picture becomes even more complex when the tumor responds to a therapy. In all these cases, cancer cells acquire the ability to transdifferentiate, changing subtype, and adapt to changing microenvironments. These modifications affect the tumor's growth rate, invasiveness, response to treatment, and overall clinical behavior. Studying tumor subtype transitions is crucial for understanding tumor evolution, predicting disease outcomes, and developing personalized treatment strategies. We discuss this emerging hallmark of cancer and the molecular mechanisms involved at the crossroads between tumor cells and their microenvironment, focusing on four different human cancers in which tissue plasticity causes a subtype switch: breast cancer, prostate cancer, glioblastoma, and pancreatic adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Neoplasias Pancreáticas , Masculino , Humanos , Transdiferenciación Celular , Procesos Neoplásicos , Neoplasias de la Mama/patología , Microambiente Tumoral/genética
17.
Cells ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38334648

RESUMEN

The neurobiology of tumors has attracted considerable interest from clinicians and scientists and has become a multidisciplinary area of research. Neural components not only interact with tumor cells but also influence other elements within the TME, such as immune cells and vascular components, forming a polygonal relationship to synergistically facilitate tumor growth and progression. This review comprehensively summarizes the current state of the knowledge on nerve-tumor crosstalk in head and neck cancer and discusses the potential underlying mechanisms. Several mechanisms facilitating nerve-tumor crosstalk are covered, such as perineural invasion, axonogenesis, neurogenesis, neural reprogramming, and transdifferentiation, and the reciprocal interactions between the nervous and immune systems in the TME are also discussed in this review. Further understanding of the nerve-tumor crosstalk in the TME of head and neck cancer may provide new nerve-targeted treatment options and help improve clinical outcomes for patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tejido Nervioso , Humanos , Neoplasias de Cabeza y Cuello/terapia , Transdiferenciación Celular
18.
Cell Commun Signal ; 22(1): 48, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233853

RESUMEN

BACKGROUND: Interferon Regulatory Factor 3 (IRF3) is a transcription factor that plays a crucial role in the innate immune response by recognizing and responding to foreign antigens. Recently, its roles in sterile conditions are being studied, as in metabolic and fibrotic diseases. However, the search on the upstream regulator for efficient pharmacological targeting is yet to be fully explored. Here, we show that G protein-coupled receptors (GPCRs) can regulate IRF3 phosphorylation through of GPCR-Gα protein interaction. RESULTS: IRF3 and target genes were strongly associated with fibrosis markers in liver fibrosis patients and models. Conditioned media from MIHA hepatocytes overexpressing IRF3 induced fibrogenic activation of LX-2 hepatic stellate cells (HSCs). In an overexpression library screening using active mutant Gα subunits and Phos-tag immunoblotting, Gαs was found out to strongly phosphorylate IRF3. Stimulation of Gαs by glucagon or epinephrine or by Gαs-specific designed GPCR phosphorylated IRF3. Protein kinase A (PKA) signaling was primarily responsible for IRF3 phosphorylation and Interleukin 33 (IL-33) expression downstream of Gαs. PKA phosphorylated IRF3 on a previously unrecognized residue and did not require reported upstream kinases such as TANK-binding kinase 1 (TBK1). Activation of Gαs signaling by glucagon induced IL-33 production in hepatocytes. Conditioned media from the hepatocytes activated HSCs, as indicated by α-SMA and COL1A1 expression, and this was reversed by pre-treatment of the media with IL-33 neutralizing antibody. CONCLUSIONS: Gαs-coupled GPCR signaling increases IRF3 phosphorylation through cAMP-mediated activation of PKA. This leads to an increase of IL-33 expression, which further contributes to HSC activation. Our findings that hepatocyte GPCR signaling regulates IRF3 to control hepatic stellate cell transdifferentiation provides an insight for understanding the complex intercellular communication during liver fibrosis progression and suggests therapeutic opportunities for the disease. Video Abstract.


Asunto(s)
Células Estrelladas Hepáticas , Interleucina-33 , Humanos , Interleucina-33/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Transdiferenciación Celular , Medios de Cultivo Condicionados , Glucagón/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis
19.
ACS Chem Neurosci ; 15(2): 222-229, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38164894

RESUMEN

Development of multifunctional theranostics is challenging and crucial for deciphering complex biological phenomena and subsequently treating critical disease. In particular, development of theranostics for traumatic brain injury (TBI) and understanding its repair mechanism are challenging and highly complex areas of research. Recently, there have been interesting pieces of research work demonstrated that a small molecule-based neuroregenerative approach using stem cells has potential for future therapeutic lead development for TBI. However, these works demonstrated the application of a mixture of multiple molecules as a "chemical cocktail", which may have serious toxic effects in the differentiated cells. Therefore, development of a single-molecule-based potential differentiating agent for human mesenchymal stem cells (hMSCs) into functional neurons is vital for the upcoming neuro-regenerative therapeutics. This lead could be further extraploted for the design of theranostics for TBI. In this study, we have developed a multifunctional single-molecule-based fluorescent probe, which can image the transdifferentiated neurons as well as promote the differentiation process. We demonstrated a promising class of fluorescent probes (CP-4) that can be employed to convert hMSCs into neurons in the presence of fibroblast growth factor (FGF). This fluorescent probe was used in cellular imaging as its fluorescence intensity remained unaltered for up to 7 days of trans-differentiation. We envision that this imaging probe can have an important application in the study of neuropathological and neurodegenerative studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células Madre Mesenquimatosas , Humanos , Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Diferenciación Celular , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/metabolismo , Transdiferenciación Celular
20.
J Gastroenterol ; 59(2): 95-108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962678

RESUMEN

BACKGROUND: Autoimmune gastritis (AIG) is a prevalent chronic inflammatory disease with oncogenic potential that causes destruction of parietal cells and severe mucosal atrophy. We aimed to explore the distinctive gene expression profiles, activated signaling pathways, and their underlying mechanisms. METHODS: A comprehensive gene expression analysis was conducted using biopsy specimens from AIG, Helicobacter pylori-associated gastritis (HPG), and non-inflammatory normal stomachs. Gastric cancer cell lines were cultured under acidic (pH 6.5) conditions to evaluate changes in gene expression. RESULTS: Gastric mucosa with AIG had a unique gene expression profile compared with that with HPG and normal mucosa, such as extensively low expression of ATP4A and high expression of GAST and PAPPA2, which are involved in neuroendocrine tumorigenesis. Additionally, the mucosa with AIG and HPG showed the downregulation of stomach-specific genes and upregulation of small intestine-specific genes; however, intestinal trans-differentiation was much more prominent in AIG samples, likely in a CDX-dependent manner. Furthermore, AIG induced ectopic expression of pancreatic digestion-related genes, PNLIP, CEL, CTRB1, and CTRC; and a master regulator gene of the lung, NKX2-1/TTF1 with alveolar fluid secretion-related genes, SFTPB and SFTPC. Mechanistically, acidic conditions led to the downregulation of master regulator and stemness control genes of small intestine, suggesting that increased environmental pH may cause abnormal intestinal differentiation in the stomach. CONCLUSIONS: AIG induces diverse trans-differentiation in the gastric mucosa, characterized by the transactivation of genes specific to the small intestine, pancreas, and lung. Increased environmental pH owing to AIG may cause abnormal differentiation of the gastric mucosa.


Asunto(s)
Enfermedades Autoinmunes , Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Enfermedades Autoinmunes/genética , Gastritis/genética , Gastritis/patología , Mucosa Gástrica/patología , Páncreas/patología , Transdiferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA