Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
Planta ; 260(4): 88, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251530

RESUMEN

MAIN CONCLUSION: Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares , Filogenia , Goma , Taraxacum , Taraxacum/genética , Taraxacum/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Goma/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética
2.
PLoS Genet ; 20(9): e1011100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39241085

RESUMEN

Pseudouridine (Ψ) is an ubiquitous RNA modification, present in the tRNAs and rRNAs of species across all domains of life. Conserved pseudouridine synthases modify the mRNAs of diverse eukaryotes, but the modification has yet to be identified in bacterial mRNAs. Here, we report the discovery of pseudouridines in mRNA from E. coli. By testing the mRNA modification capacity of all 11 known pseudouridine synthases, we identify RluA as the predominant mRNA-modifying enzyme. RluA, a known tRNA and 23S rRNA pseudouridine synthase, modifies at least 31 of the 44 high-confidence sites we identified in E. coli mRNAs. Using RNA structure probing data to inform secondary structures, we show that the target sites of RluA occur in a common sequence and structural motif comprised of a ΨURAA sequence located in the loop of a short hairpin. This recognition element is shared with previously identified target sites of RluA in tRNAs and rRNA. Overall, our work identifies pseudouridine in key mRNAs and suggests the capacity of Ψ to regulate the transcripts that contain it.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Conformación de Ácido Nucleico , Seudouridina , ARN Mensajero , Escherichia coli/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Seudouridina/genética , Seudouridina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ARN de Transferencia/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , ARN Ribosómico 23S/genética , Procesamiento Postranscripcional del ARN , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo
3.
Science ; 385(6714): 1211-1217, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39265009

RESUMEN

In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Peróxido de Hidrógeno , Enfermedades de las Plantas , Ácido Salicílico , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peróxido de Hidrógeno/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Regulación de la Expresión Génica de las Plantas , Cisteína/metabolismo , Transducción de Señal , Pseudomonas syringae
4.
J Biol Chem ; 300(9): 107667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128721

RESUMEN

Isochorismate-derived metabolism enables biosynthesis of the plant defense hormone salicylic acid (SA) and its derivatives. In Arabidopsis thaliana, the stress-induced accumulation of SA depends on ISOCHORISMATE SYNTHASE1 (ICS1) and also requires the presumed isochorismate transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) and the GH3 enzyme avrPphB SUSCEPTIBLE3 (PBS3). By comparative metabolite and structural analyses, we identified several hitherto unreported ICS1- and EDS5-dependent, biotic stress-inducible Arabidopsis metabolites. These involve meta-substituted SA derivatives (5-formyl-SA, 5-carboxy-SA, 5-carboxymethyl-SA), their benzoic acid (BA) analogs (3-formyl-BA, 3-carboxy-BA, 3-carboxymethyl-BA), and besides the previously detected salicyloyl-aspartate (SA-Asp), the ester conjugate salicyloyl-malate (SA-Mal). SA functions as a biosynthetic precursor for SA-Mal and SA-Asp, but not for the meta-substituted SA- and BA-derivatives, which accumulate to moderate levels at later stages of bacterial infection. Interestingly, Arabidopsis leaves possess oxidizing activity to effectively convert meta-formyl- into meta-carboxy-SA/BAs. In contrast to SA, exogenously applied meta-substituted SA/BA-derivatives and SA-Mal exert a moderate impact on plant immunity and defence-related gene expression. While the isochorismate-derived metabolites are negatively regulated by the SA receptor NON-EXPRESSOR OF PR GENES1, SA conjugates (SA-Mal, SA-Asp, SA-glucose conjugates) and meta-substituted SA/BA-derivatives are oppositely affected by PBS3. Notably, our data indicate a PBS3-independent path to isochorismate-derived SA at later stages of bacterial infection, which does not considerably impact immune-related characteristics. Moreover, our results argue against a previously proposed role of EDS5 in the biosynthesis of the immune signal N-hydroxypipecolic acid and associated transport processes. We propose a significantly extended biochemical scheme of plant isochorismate metabolism that involves an alternative generation mode for benzoate- and salicylate-derivatives.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Malatos , Inmunidad de la Planta , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Malatos/metabolismo , Malatos/química , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/química , Benzoatos/química , Benzoatos/metabolismo , Ácido Corísmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
5.
Appl Microbiol Biotechnol ; 108(1): 447, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190181

RESUMEN

Perillic acid has been studied as an anticancer and antimicrobial drug. Production of perillic acid has attracted considerable attention. Meanwhile, Candida tropicalis is an unconventional diploid yeast, most significantly characterized by its ability to metabolize alkanes or fatty acids for growth and proliferation. Therefore, perillic acid's precursor (L-limonene) in C. tropicalis was firstly synthesized by expressing a Mentha spicata L-limonene synthase gene, LS_Ms in this work. Expression of a gene which encoded for a truncated version of tLS_Ms increased the production of L-limonene with a 2.78-fold increase in the titer over C. tropicalis GJR-LS-01. Compartmentalized expression of the gene tLS_Ms inhibited the production of L-limonene in C. tropicalis compared to cytoplasmic expression. Cytoplasmic overexpression of seven precursor synthesis genes significantly enhanced the production of L-limonene in C. tropicalis compared to their compartmentalized expression (mitochondria or peroxisomes), which increased by 31.7-fold in C. tropicalis GJR-tLS-01. The L-limonene titer in C. tropicalis GJR-EW-tLS-04 overexpressing the mutant gene ERG20WW in the cytoplasm was significantly increased, 11.33-fold higher than the control. The titer of L-limonene for 60 g/L glucose was increased by 1.40-fold compared to the control. Finally, a Salvia miltiorrhiza cytochrome P450 enzyme gene CYP7176 and an Arabidopsis thaliana NADPH cytochrome P450 reductase gene CPR were heterologously expressed in C. tropicalis GJR-EW-tLS-04C for the synthesis of perillic acid, which reached a titer of 106.69 mg/L in a 5-L fermenter. This is the first report of de novo synthesis of perillic acid in engineered microorganisms. The results also showed that other chemicals may be efficiently produced in C. tropicalis. KEY POINTS: • Key genes cytoplasmic expression was conducive to L-limonene production in C. tropicalis. • Perillic acid was first synthesized de novo in engineered microorganisms. • The titer of perillic acid reached 106.69 mg/L in a 5-L fermenter.


Asunto(s)
Candida tropicalis , Limoneno , Ingeniería Metabólica , Monoterpenos , Candida tropicalis/genética , Candida tropicalis/metabolismo , Ingeniería Metabólica/métodos , Limoneno/metabolismo , Monoterpenos/metabolismo , Mentha spicata/genética , Mentha spicata/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Terpenos/metabolismo , Ciclohexenos
6.
Genes Genet Syst ; 992024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39034114

RESUMEN

Intraspecific variation in specialized metabolites plays a crucial role in the adaptive response to diverse environments. Two major subspecies, japonica and indica, are observed in Asian cultivated rice (Oryza sativa L.). Previously, we identified (3R)-ß-tyrosine, a novel nonproteinogenic ß-amino acid in plants, along with the enzyme tyrosine aminomutase (TAM1), which is required for ß-tyrosine biosynthesis, in the japonica cultivar Nipponbare. Notably, TAM1 and ß-tyrosine were preferentially distributed in japonica cultivars compared with indica cultivars. Considering its phytotoxicity and antimicrobial activity, intraspecific variation in ß-tyrosine may contribute to the defensive potential of japonica rice. Investigation of the evolutionary trajectory of TAM1 and ß-tyrosine should enhance our understanding of the evolution of rice defense. However, their distribution patterns in O. rufipogon, the direct ancestor of O. sativa, remain unclear. Therefore, in this study, we extensively examined TAM1 presence/absence and ß-tyrosine content in 110 genetically and geographically diverse O. rufipogon accessions and revealed that they are characteristically observed in the ancestral subpopulation of japonica rice, while being absent or slightly accumulated in other subpopulations. Thus, we conclude that TAM1 and ß-tyrosine in japonica rice are likely derived from its ancestral subpopulation. Furthermore, the high and low TAM1 possession rates and ß-tyrosine content in japonica and indica rice, respectively, could be attributed to distribution patterns of TAM1 and ß-tyrosine in their ancestral subpopulations. This study provides fundamental insights into the evolution of rice defense.


Asunto(s)
Oryza , Tirosina , Oryza/genética , Oryza/metabolismo , Tirosina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Filogenia , Evolución Molecular
7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3204-3211, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041081

RESUMEN

Ursolic acid has gradually attracted much attention due to its unique pharmacological activities and valuable market value in recent years. Currently, ursolic acid is mostly extracted from loquat leaves, but the plant extraction method has low yield and high cost, and chemical synthesis is not readily available, so the biosynthesis method provides a new source for ursolic acid. α-amyrin acts as the main precursor for the synthesis of ursolic acid, and its yield is positively correlated with ursolic acid yield. Oxidosqualene cyclase(OSC) belongs to a multigene family which can catalyze the common precursor 2,3-oxidosqualene to generate different types of triterpene backbones, and plays a decisive role in the synthesis of triterpenoids. However, there are fewer reported key genes catalyzing the synthesis of α-amyrin in medicinal plants, and the yield and proportion of α-amyrin in the catalyzed products have always been a focus of research. In this study, ItOSC2, MdOSC1, AaOSC2 and CrAS, four enzymes capable of catalyzing the production of α-amyrin from 2,3-oxidosqualene, were cloned from Iris tectorum, Malus domestica, Artemisia annua and Catharanthus roseus, subject to sequence alignment and phylogenetic tree analyses, and transformed into Saccharomyces cerevisiae as plasmids. After 7 days of fermentation, the yield and proportions of α-amyrin, ß-amyrin and ergosterol were measured. Finally, AaOSC2 with the best ability to catalyze the generation of α-amyrin was filtered out, providing a key gene element for the later construction of engineered yeast strains with high production of α-amyrin and ursolic acid.


Asunto(s)
Transferasas Intramoleculares , Ácido Oleanólico , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/biosíntesis , Clonación Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Triterpenos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Filogenia , Triterpenos Pentacíclicos
9.
Protein Expr Purif ; 222: 106533, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38876402

RESUMEN

Artemisia argyi is a traditional medicinal and edible plant, generating various triterpenoids with pharmacological activities, such as anti-virus, anti-cancer, and anti-oxidant. The 2,3-oxidosqualene cyclase family of A. argyi offers novel insights into the triterpenoid pathway, which might contribute to the medicinal value of its tissue extracts. Nevertheless, the biosynthesis of active triterpenoids in Artemisia argyi is still uncertain. In this study, four putative OSC (2,3-oxidosqualene cyclase) genes (AaOSC1-4) were first isolated and identified from A. argyi. Through the yeast heterologous expression system, three AaOSCs were characterized for the biosynthesis of diverse triterpenoids including cycloartenol, ß-amyrin, (3S,13R)-malabarica-14(27),17,21-trien-3ß-ol, and dammara-20,24-dien-3ß-ol. AaOSC1 was a multifunctional dammara-20,24-dien-3ß-ol synthase, which yielded 8 different triterpenoids, including tricyclic, and tetracyclic products. AaOSC2 and AaOSC3 were cycloartenol, and ß-amyrin synthases, respectively. As a result, these findings provide a deeper understanding of the biosynthesis pathway of triterpenes in A. argyi.


Asunto(s)
Artemisia , Clonación Molecular , Transferasas Intramoleculares , Proteínas de Plantas , Triterpenos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Artemisia/genética , Artemisia/enzimología , Artemisia/química , Triterpenos/metabolismo , Triterpenos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
10.
Nat Commun ; 15(1): 4925, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858373

RESUMEN

Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist's toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.


Asunto(s)
Biocatálisis , Terpenos , Ciclización , Terpenos/metabolismo , Terpenos/química , Estereoisomerismo , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/química , Ciclodextrinas/química , Ciclodextrinas/metabolismo
11.
Plant Physiol ; 196(2): 773-787, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701037

RESUMEN

Salicylic acid (SA) plays a crucial role in plant defense against biotrophic and semibiotrophic pathogens. In Arabidopsis (Arabidopsis thaliana), isochorismate synthase 1 (AtICS1) is a key enzyme for the pathogen-induced biosynthesis of SA via catalytic conversion of chorismate into isochorismate, an essential precursor for SA synthesis. Despite the extensive knowledge of ICS1-related menaquinone, siderophore, and tryptophan (MST) enzymes in bacteria, the structural mechanisms for substrate binding and catalysis in plant isochorismate synthase (ICS) enzymes are unknown. This study reveals that plant ICS enzymes catalyze the isomerization of chorismate through a magnesium-dependent mechanism, with AtICS1 exhibiting the most substantial catalytic activity. Additionally, we present high-resolution crystal structures of apo AtICS1 and its complex with chorismate, offering detailed insights into the mechanisms of substrate recognition and catalysis. Importantly, our investigation indicates the existence of a potential substrate entrance channel and a gating mechanism regulating substrate into the catalytic site. Structural comparisons of AtICS1 with MST enzymes suggest a shared structural framework with conserved gating and catalytic mechanisms. This work provides valuable insights into the structural and regulatory mechanisms governing substrate delivery and catalysis in AtICS1, as well as other plant ICS enzymes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Dominio Catalítico , Ácido Corísmico , Transferasas Intramoleculares , Ácido Corísmico/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Magnesio/metabolismo , Cristalografía por Rayos X , Isomerismo , Modelos Moleculares , Especificidad por Sustrato
12.
Aging (Albany NY) ; 16(10): 9188-9203, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38819212

RESUMEN

AIM: Pseudouridylation has demonstrated the potential to control the development of numerous malignancies. PUS7(Pseudouridine Synthase 7) is one of the pseudouridine synthases, but the literature on this enzyme is limited to several cancer types. Currently, no investigation has been performed on the systematic pan-cancer analysis concerning PUS7 role in cancer diagnosis and prognosis. METHODS: Employing public databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), Human Protein Atlas (HPA), UALCAN and Tumor Immune Single-cell Hub (TISCH), this work investigated the PUS7 carcinogenesis in pan-cancer. Differential expression analysis, prognostic survival analysis and biological function were systematically performed. Furthermore, PUS7 potential as an osteosarcoma biomarker for diagnosis and prognosis was assessed in this study. RESULTS: The findings indicated that PUS7 was overexpressed in the majority of malignancies. High PUS7 expression contributed to the poor prognosis among 11 cancer types, including Adrenocortical Cancer (ACC), Bladder Cancer (BLCA), Liver Cancer (LIHC), Kidney Papillary Cell Carcinoma (KIRP), Mesothelioma (MESO), Lower Grade Glioma (LGG), Kidney Chromophobe (KICH), Sarcoma (SARC), osteosarcoma (OS), Pancreatic Cancer (PAAD), and Thyroid Cancer (THCA). In addition, elevated PUS7 expression was linked to advanced TNM across multiple malignancies, including ACC, BLCA, KIRP, LIHC and PAAD. The function enrichment analysis revealed that PUS7 participates in E2F targets, G2M checkpoint, ribosome biogenesis, and rRNA metabolic process. Moreover, PUS7 is also a reliable biomarker and a potential therapeutic target for osteosarcoma. CONCLUSIONS: In summary, PUS7 is a putative pan-cancer biomarker that reliably forecasts cancer patients' prognosis. In addition, this enzyme regulates the cell cycle, ribosome biogenesis, and rRNA metabolism. Most importantly, PUS7 possibly regulates osteosarcoma initiation and progression.


Asunto(s)
Biomarcadores de Tumor , Transferasas Intramoleculares , Osteosarcoma , Humanos , Proteínas Adaptadoras Transductoras de Señales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Neoplasias Óseas/metabolismo , Neoplasias Óseas/diagnóstico , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/mortalidad , Neoplasias/metabolismo , Neoplasias/patología , Osteosarcoma/genética , Osteosarcoma/mortalidad , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/diagnóstico , Pronóstico , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
13.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780624

RESUMEN

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas , Ácido Salicílico , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Ácidos Pipecólicos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo
14.
Biochem Biophys Res Commun ; 721: 150122, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776834

RESUMEN

Let-7 was one of the first microRNAs (miRNAs) to be discovered and its expression promotes differentiation during development and function as tumor suppressors in various cancers. The maturation process of let-7 miRNA is tightly regulated by multiple RNA-binding proteins. For example, LIN28 binds to the terminal loops of the precursors of let-7 family and block their processing into mature miRNAs. Trim25 promotes the uridylation-mediated degradation of pre-let-7 modified by LIN28/TUT4. Recently, human pseudouridine synthase TruB1 has been reported to facilitate let-7 maturation by directly binding to pri-let-7 and recruiting Drosha-DGCR8 microprocessor. Through biochemical assay and structural investigation, we show that human TruB1 binds specifically the terminal loop of pri-let-7a1 at nucleotides 31-41, which folds as a small stem-loop architecture. Although TruB1 recognizes the terminal loop of pri-let-7a1 in a way similar to how E. coli TruB interacts with tRNA, a conserved KRKK motif in human and other higher eukaryotes adds an extra binding interface and strengthens the recognition of TruB1 for pri-let-7a1 through electrostatic interactions. These findings reveal the structural basis of TruB1-pri-let-7 interaction which may assists the elucidation of precise role of TruB1 in biogenesis of let-7.


Asunto(s)
MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Unión Proteica , Modelos Moleculares , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Conformación de Ácido Nucleico , Sitios de Unión , Secuencia de Aminoácidos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
15.
J Chem Inf Model ; 64(9): 3933-3941, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38666964

RESUMEN

ß-Amyrin synthase (bAS) is a representative plant oxidosqualene cyclase (OSC), and previous studies have identified many functional residues and mutants that can alter its catalytic activity. However, the regulatory mechanism of the active site architecture for adjusting the catalytic activity remains unclear. In this study, we investigate the function of key residues and their regulatory effects on the catalytic activity of Glycyrrhiza glabra ß-amyrin synthase (GgbAS) through molecular dynamics simulations and site-directed mutagenesis experiments. We identified the plasticity residues located in two active site regions and explored the interactions between these residues and tetracyclic/pentacyclic intermediates. Based on computational and experimental results, we further categorize these plasticity residues into three types: effector, adjuster, and supporter residues, according to their functions in the catalytic process. This study provides valuable insights into the catalytic mechanism and active site plasticity of GgbAS, offering important references for the rational enzyme engineering of other OSC enzyme.


Asunto(s)
Biocatálisis , Dominio Catalítico , Transferasas Intramoleculares , Simulación de Dinámica Molecular , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Mutagénesis Sitio-Dirigida
16.
Org Lett ; 26(15): 3119-3123, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38588021

RESUMEN

Six oxidosqualene cyclases (NiOSC1-NiOSC6) from Neoalsomitra integrifoliola were characterized for the biosynthesis of diverse triterpene scaffolds, including tetracyclic and pentacyclic triterpenes from the 2,3-oxidosqualene (1) and oxacyclic triterpenes from the 2,3:22,23-dioxidosqualene (2). NiOSC1 showed high efficiency in the production of naturally rare (20R)-epimers of oxacyclic triterpenes. Mutagenesis results revealed that the NiOSC1-F731G mutant significantly increased the yields of (20R)-epimers compared to the wild type. Homology modeling and molecular docking elucidated the origin of the (20R)-configuration in the epoxide addition step.


Asunto(s)
Transferasas Intramoleculares , Escualeno/análogos & derivados , Triterpenos , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Transferasas Intramoleculares/genética
17.
J Agric Food Chem ; 72(18): 10584-10595, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38652774

RESUMEN

Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a ß-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.


Asunto(s)
Camellia sinensis , Transferasas Intramoleculares , Proteínas de Plantas , Triterpenos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Triterpenos/metabolismo , Triterpenos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Camellia sinensis/genética , Camellia sinensis/enzimología , Camellia sinensis/metabolismo , Camellia sinensis/química , Simulación del Acoplamiento Molecular , Genoma de Planta
18.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498624

RESUMEN

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Azufre , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azufre/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteómica , Transcriptoma , Multiómica
19.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38375885

RESUMEN

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Asunto(s)
Seudouridina , ARN de Archaea , ARN de Transferencia , Sulfolobus , Seudouridina/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Archaea/química , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Procesamiento Postranscripcional del ARN , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
20.
Mol Microbiol ; 121(5): 912-926, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38400525

RESUMEN

Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched ß-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.


Asunto(s)
Colletotrichum , Proteínas Fúngicas , Galactosa , Enfermedades de las Plantas , Factores de Virulencia , Zea mays , Pared Celular/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactanos/metabolismo , Galactosa/metabolismo , Galactosa/análogos & derivados , Hifa/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Mananos/metabolismo , Enfermedades de las Plantas/microbiología , UDPglucosa 4-Epimerasa/metabolismo , UDPglucosa 4-Epimerasa/genética , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...