Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(17): 5503-5516, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439834

RESUMEN

In actinomycetes, the acyl-CoA carboxylases, including the so-called acetyl-CoA carboxylases (ACCs), are biotin-dependent enzymes that exhibit broad substrate specificity and diverse domain and subunit arrangements. Bioinformatic analyses of the Rhodococcus jostii RHA1 genome found that this microorganism contains a vast arrange of putative acyl-CoA carboxylases domains and subunits. From the thirteen putative carboxyltransferase domains, only the carboxyltransferase subunit RO01202 and the carboxyltransferase domain present in the multidomain protein RO04222 are highly similar to well-known essential ACC subunits from other actinobacteria. Mutant strains in each of these genes showed that none of these enzymes is essential for R. jostii growth in rich or in minimal media with high nitrogen concentration, presumably because of their partial overlapping activities. A mutant strain in the ro04222 gene showed a decrease in triacylglycerol and mycolic acids accumulation in rich and minimal medium, highlighting the relevance of this multidomain ACC in the biosynthesis of these lipids. On the other hand, RO01202, a carboxyltransferase domain of a putative ACC complex, whose biotin carboxylase and biotin carboxyl carrier protein domain were not yet identified, was found to be essential for R. jostii growth only in minimal medium with low nitrogen concentration. The results of this study have identified a new component of the TAG-accumulating machinery in the oleaginous R. jostii RHA1. While non-essential for growth and TAG biosynthesis in RHA1, the activity of RO04222 significantly contributes to lipogenesis during single-cell oil production. Furthermore, this study highlights the high functional diversity of ACCs in actinobacteria, particularly regarding their essentiality under different environmental conditions. KEY POINTS: • R. jostii possess a remarkable heterogeneity in their acyl-carboxylase complexes. • RO04222 is a multidomain acetyl-CoA carboxylase involved in lipid accumulation. • RO01202 is an essential carboxyltransferase only at low nitrogen conditions.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo , Rhodococcus , Triglicéridos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Nitrógeno/metabolismo
2.
Biochemistry ; 61(17): 1824-1835, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35943735

RESUMEN

Biotin-dependent enzymes employ a carrier domain to efficiently transport reaction intermediates between distant active sites. The translocation of this carrier domain is critical to the interpretation of kinetic and structural studies, but there have been few direct attempts to investigate the dynamic interplay between ligand binding and carrier domain positioning in biotin-dependent enzymes. Pyruvate carboxylase (PC) catalyzes the MgATP-dependent carboxylation of pyruvate where the biotinylated carrier domain must translocate ∼70 Šfrom the biotin carboxylase domain to the carboxyltransferase domain. Many prior studies have assumed that carrier domain movement is governed by ligand-induced conformational changes, but the mechanism underlying this movement has not been confirmed. Here, we have developed a system to directly observe PC carrier domain positioning in both the presence and absence of ligands, independent of catalytic turnover. We have incorporated a cross-linking trap that reports on the interdomain conformation of the carrier domain when it is positioned in proximity to a neighboring carboxyltransferase domain. Cross-linking was monitored by gel electrophoresis, inactivation kinetics, and intrinsic tryptophan fluorescence. We demonstrate that the carrier domain positioning equilibrium is sensitive to substrate analogues and the allosteric activator acetyl-CoA. Notably, saturating concentrations of biotin carboxylase ligands do not prevent carrier domain trapping proximal to the neighboring carboxyltransferase domain, demonstrating that carrier domain positioning is governed by conformational selection. This model of carrier domain translocation in PC can be applied to other multi-domain enzymes that employ large-scale domain motions to transfer intermediates during catalysis.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo , Piruvato Carboxilasa , Acetil-CoA Carboxilasa/metabolismo , Biotina/química , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Dominio Catalítico , Ligandos , Piruvato Carboxilasa/química , Staphylococcus aureus
3.
Sci Rep ; 10(1): 17733, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082392

RESUMEN

Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-ß, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.


Asunto(s)
Amiloide/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptidos beta-Amiloides/metabolismo , Cardiolipinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Potencial de la Membrana Mitocondrial , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
4.
Anal Chem ; 92(17): 11505-11510, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32794704

RESUMEN

We developed a simple and rapid method for analyzing nonproteinogenic amino acids that does not require conventional chromatographic equipment. In this technique, nonproteinogenic amino acids were first converted to a proteinogenic amino acid through in vitro metabolism in a cell extract. The proteinogenic amino acid generated from the nonproteinogenic precursors were then incorporated into a reporter protein using a cell-free protein synthesis system. The titers of the nonproteinogenic amino acids could be readily quantified by measuring the activity of reporter proteins. This method, which combines the enzymatic conversion of target amino acids with translational analysis, makes amino acid analysis more accessible while minimizing the cost and time requirements. We anticipate that the same strategy could be extended to the detection of diverse biochemical molecules with clinical and industrial implications.


Asunto(s)
Extractos Celulares/química , Citrulina/química , Ornitina/química , Proteínas/química , Secuencia de Aminoácidos , Arginina/química , Argininosuccinatoliasa/genética , Argininosuccinatoliasa/metabolismo , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Citrulina/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Ornitina/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Estereoisomerismo , Especificidad por Sustrato
5.
Appl Microbiol Biotechnol ; 103(6): 2649-2664, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30707253

RESUMEN

Lasso peptides belong to a peculiar family of ribosomally synthesized and post-translationally modified peptides (RiPPs)-natural products with an unusual isopeptide-bonded slipknot structure. Except for assembling of this unusual lasso fold, several further post-translational modifications of lasso peptides, including C-terminal methylation, phosphorylation/poly-phosphorylation, citrullination, and acetylation, have been reported recently. However, most of their biosynthetic logic have not been elucidated except the phosphorylated paeninodin lasso peptide. Herein, we identified two novel lassomycin-like lasso peptide biosynthetic pathways and, for the first time, characterized a novel C-terminal peptide carboxyl methyltransferase involved in these pathways. Our investigations revealed that this new family of methyltransferase could specifically methylate the C terminus of precursor peptide substrates, eventually leading to lassomycin-like C-terminal methylated lasso peptides. Our studies offer another rare insight into the extraordinary strategies of chemical diversification adopted by lasso peptide biosynthetic machinery and predicated two valuable sources for methylated lasso peptide discovery.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Metiltransferasas/metabolismo , Péptidos/metabolismo , Streptomyces/enzimología , Proteínas Bacterianas/aislamiento & purificación , Productos Biológicos , Vías Biosintéticas , Transferasas de Carboxilo y Carbamoilo/aislamiento & purificación , Metilación , Metiltransferasas/aislamiento & purificación , Biosíntesis de Péptidos , Péptidos Cíclicos , Fosforilación , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo
6.
Pestic Biochem Physiol ; 147: 27-31, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29933988

RESUMEN

The antibacterial mechanism of Yanglingmycin, a new dihydrooxazole antibiotic, was preliminarily investigated by symptomatology observation and physical and biochemical analysis. The electron microscopy observation exhibited that the bacterial cell became elongated, appeared breakage or even cavities on the cell surface after treated with Yanglingmycin. The content of reducing sugar and the activity levels of alanine transaminase and aspartate transaminase in treated group had a significant increase compared to control group. These results indicated that the integrity of bacteria cell membrane was damaged by the antibiotic. Furthermore, the activity of Accase and carboxyltransferase could be effectively inhibited by Yanglingmycin. Meanwhile, the addition of exogenous fatty acid resulted in the decrease or even loss of the antibacterial activity of Yanglingmycin. These findings implied that Yanglingmycin might take effect by inhibiting the activity of Accase, which resulted in the blockade of fatty acids and lipids biosynthesis.


Asunto(s)
Antibacterianos/farmacología , Oxazoles/farmacología , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/metabolismo , Bacterias/ultraestructura , Metabolismo de los Hidratos de Carbono , Transferasas de Carboxilo y Carbamoilo/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Ácidos Grasos/biosíntesis , Lípidos/biosíntesis , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica
7.
Mol Microbiol ; 108(4): 424-442, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29488667

RESUMEN

In starving Bacillus subtilis cells, the accDA operon encoding two subunits of the essential acetyl-CoA carboxylase (ACC) has been proposed to be tightly regulated by direct binding of the master regulator Spo0A to a cis element (0A box) in the promoter region. When the 0A box is mutated, biofilm formation and sporulation have been reported to be impaired. Here, we present evidence that two 0A boxes, one previously known (0A-1) and another newly discovered (0A-2) in the accDA promoter region are positively and negatively regulated by Spo0A∼P respectively. Cells with mutated 0A boxes experience slight delays in sporulation, but eventually sporulate with high efficiency. In contrast, cells harboring a single mutated 0A-2 box are deficient for biofilm formation, while cells harboring either a mutated 0A-1 box or both mutated 0A boxes form biofilms. We further show that the essential ACC enzyme localizes on or near the cell membrane by directly observing a functional GFP fusion to one of the enzyme's subunits. Collectively, we propose a revised model in which accDA is primarily transcribed by a major σA -RNA polymerase, while Spo0A∼P plays an additional role in the fine-tuning of accDA expression upon starvation to support proper biofilm formation and sporulation.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Ácidos Grasos/biosíntesis , Factores de Transcripción/metabolismo , Acetil-CoA Carboxilasa/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Membrana Celular/enzimología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Operón/genética , Regiones Promotoras Genéticas/genética , Factor sigma/genética , Factor sigma/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Factores de Transcripción/genética
8.
J Biol Chem ; 292(28): 11670-11681, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28539366

RESUMEN

Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H2). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN)2CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN)2CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase.


Asunto(s)
Coenzimas/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hidrogenasas/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dimerización , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Pliegue de Proteína , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Sci Rep ; 7: 42692, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205597

RESUMEN

Malonyl-coenzyme A (CoA) is a crucial extender unit for the synthesis of mycolic and other fatty acids in mycobacteria, generated in a reaction catalyzed by acetyl-CoA carboxylase. We previously reported on the essentiality of accD6Mtb encoding the functional acetyl-CoA carboxylase subunit in Mycobacterium tuberculosis. Strikingly, the homologous gene in the fast-growing, non-pathogenic Mycobacterium smegmatis - (accD6Msm) appeared to be dispensable, and its deletion did not influence the cell lipid content. Herein, we demonstrate that, despite the difference in essentiality, accD6Msm and accD6Mtb encode proteins of convergent catalytic activity in vivo. To identify an alternative, AccD6-independent, malonyl-CoA synthesis pathway in M. smegmatis, a complex genetic approach combined with lipid analysis was applied to screen all five remaining carboxyltransferase genes (accD1-accD5) with respect to their involvement in mycolic acid biosynthesis and ability to utilize acetyl-CoA as the substrate for carboxylation. This approach revealed that AccD1Msm, AccD2Msm and AccD3Msm are not essential for mycolic acid biosynthesis. Furthermore, we confirmed in vivo the function of AccD4Msm as an essential, long-chain acyl-CoA carboxyltransferase, unable to carboxylate short-chain substrate. Finally, our comparative studies unambiguously demonstrated between-species difference in in vivo ability of AccD5 carboxyltransferase to utilize acetyl-CoA that influences AccD6 essentiality in pathogenic and non-pathogenic mycobacteria.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Mycobacterium/enzimología , Mycobacterium/genética , Vías Biosintéticas , Activación Enzimática , Ácidos Grasos/metabolismo , Viabilidad Microbiana/genética , Mutación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Fenotipo , Especificidad por Sustrato , Virulencia
10.
Sci Rep ; 6: 32721, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619987

RESUMEN

The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aß42 peptide associated with Alzheimer's disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.


Asunto(s)
Amiloide/metabolismo , Membrana Celular/metabolismo , Multimerización de Proteína , Deficiencias en la Proteostasis/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Citosol/metabolismo , Proteínas de Escherichia coli/metabolismo , Gangliósido G(M1)/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Receptores de Glutamato/metabolismo , Resonancia por Plasmón de Superficie
11.
Biochemistry ; 55(33): 4666-74, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27471863

RESUMEN

The dramatic increase in the prevalence of antibiotic-resistant bacteria has necessitated a search for new antibacterial agents against novel targets. Moiramide B is a natural product, broad-spectrum antibiotic that inhibits the carboxyltransferase component of acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid synthesis. Herein, we report the 2.6 Å resolution crystal structure of moiramide B bound to carboxyltransferase. An unanticipated but significant finding was that moiramide B bound as the enol/enolate. Crystallographic studies demonstrate that the (4S)-methyl succinimide moiety interacts with the oxyanion holes of the enzyme, supporting the notion that an anionic enolate is the active form of the antibacterial agent. Structure-activity studies demonstrate that the unsaturated fatty acid tail of moiramide B is needed only for entry into the bacterial cell. These results will allow the design of new antibacterial agents against the bacterial form of carboxyltransferase.


Asunto(s)
Amidas/metabolismo , Antibacterianos/metabolismo , Transferasas de Carboxilo y Carbamoilo/química , Staphylococcus aureus/enzimología , Succinimidas/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Cristalografía por Rayos X , Conformación Proteica
12.
Structure ; 24(8): 1227-1236, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27396827

RESUMEN

Biotin-dependent acyl-coenzyme A (CoA) carboxylases (aCCs) are involved in key steps of anabolic pathways and comprise three distinct functional units: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT). YCC multienzymes are a poorly characterized family of prokaryotic aCCs of unidentified substrate specificity, which integrate all functional units into a single polypeptide chain. We employed a hybrid approach to study the dynamic structure of Deinococcus radiodurans (Dra) YCC: crystal structures of isolated domains reveal a hexameric CT core with extended substrate binding pocket and a dimeric BC domain. Negative-stain electron microscopy provides an approximation of the variable positioning of the BC dimers relative to the CT core. Small-angle X-ray scattering yields quantitative information on the ensemble of Dra YCC structures in solution. Comparison with other carrier protein-dependent multienzymes highlights a characteristic range of large-scale interdomain flexibility in this important class of biosynthetic enzymes.


Asunto(s)
Acetil-CoA Carboxilasa/química , Proteínas Bacterianas/química , Biotina/química , Ligasas de Carbono-Nitrógeno/química , Transferasas de Carboxilo y Carbamoilo/química , Deinococcus/química , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Deinococcus/enzimología , Escherichia coli/química , Escherichia coli/enzimología , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Células Sf9 , Spodoptera , Especificidad por Sustrato , Difracción de Rayos X
13.
Biochemistry ; 55(24): 3447-60, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27254467

RESUMEN

Protein structure, ligand binding, and catalytic turnover contributes to the governance of catalytic events occurring at spatially distinct domains in multifunctional enzymes. Coordination of these catalytic events partially rests on the ability of spatially discrete active sites to communicate with other allosteric and active sites on the same polypeptide chain (intramolecular) or on different polypeptide chains (intermolecular) within the holoenzyme. Often, communication results in long-range effects on substrate binding or product release. For example, pyruvate binding to the carboxyl transferase (CT) domain of pyruvate carboxylase (PC) increases the rate of product release in the biotin carboxylase (BC) domain. In order to address how CT domain ligand occupancy is "sensed" by other domains, we generated functional, mixed hybrid tetramers using the E218A (inactive BC domain) and T882S (low pyruvate binding, low activity) mutant forms of PC. The apparent Ka pyruvate for the pyruvate-stimulated release of Pi catalyzed by the T882S:E218A[1:1] hybrid tetramer was comparable to the wild-type enzyme and nearly 10-fold lower than that for the T882S homotetramer. In addition, the ratio of the rates of oxaloacetate formation to Pi release for the WT:T882S[1:1] and E218A:T882S[1:1] hybrid tetramer-catalyzed reactions was 0.5 and 0.6, respectively, while the T882S homotetramer exhibited a near 1:1 coupling of the two domains, suggesting that the mechanisms coordinating catalytic events is more complicated that we initially assumed. The results presented here are consistent with an intermolecular communication mechanism, where pyruvate binding to the CT domain is "sensed" by domains on a different polypeptide chain within the tetramer.


Asunto(s)
Proteínas Bacterianas/química , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/química , Transferasas de Carboxilo y Carbamoilo/química , Piruvato Carboxilasa/química , Ácido Pirúvico/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Ligasas de Carbono-Nitrógeno/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación Proteica , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , Ácido Pirúvico/metabolismo , Homología de Secuencia de Aminoácido
14.
ACS Chem Biol ; 11(5): 1198-204, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26886160

RESUMEN

Albicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X. albilineans. Expression of alb15 in Escherichia coli and in vitro reconstitution of the carbamoyltransferase activity confirmed albicidin as the substrate. The chemical synthesis of carbamoyl-albicidin finally enabled us to assess its bioactivity by means of in vitro gyrase inhibition and antibacterial assays. Compared to albicidin, carbamoyl-albicidin showed a significantly higher inhibitory efficiency against bacterial gyrase (∼8 vs 49 nM), which identifies the carbamoyl group as an important structural feature of albicidin maturation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Xanthomonas/enzimología , Proteínas Bacterianas/genética , Transferasas de Carboxilo y Carbamoilo/genética , Genes Bacterianos , Familia de Multigenes , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Especificidad por Sustrato , Xanthomonas/química , Xanthomonas/genética , Xanthomonas/metabolismo
15.
Biol Chem ; 397(5): 401-15, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26812789

RESUMEN

Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 µm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Clusterina/química , Proteínas de Escherichia coli/química , Cadena B de alfa-Cristalina/química , Animales , Transferasas de Carboxilo y Carbamoilo/metabolismo , Línea Celular Tumoral , Clusterina/genética , Clusterina/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Ratones , Prealbúmina/química , Prealbúmina/genética , Prealbúmina/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
16.
Int J Mol Sci ; 16(8): 18836-64, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26274952

RESUMEN

Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-L-ornithine transcarbamylase (AOTCase), N-succinyl-L-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/genética , Secuencia de Aminoácidos , Transferasas de Carboxilo y Carbamoilo/metabolismo , Catálisis , Dominio Catalítico , Bases de Datos Genéticas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Especificidad por Sustrato
17.
Angew Chem Int Ed Engl ; 54(17): 5175-8, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25728237

RESUMEN

Streptothricins (STNs) are atypical aminoglycosides containing a rare carbamoylated D-gulosamine (D-GulN) moiety, and the antimicrobial activity of STNs has been exploited for crop protection. Herein, the biosynthetic pathway of the carbamoylated D-GulN moiety was delineated. An N-acetyl-D-galactosamine is first attached to the streptolidine lactam by the glycosyltransferse StnG and then epimerized to N-acetyl-D-gulosamine by the putative epimerase StnJ. After carbamoylation by the carbamoyltransferase StnQ, N-acetyl-D-GulN is deacetylated by StnI to furnish the carbamoylated D-GulN moiety. In vitro studies characterized two novel enzymes: StnG is an unprecedented GT-A fold N-glycosyltransferase that glycosylates the imine nitrogen atom of guanidine, and StnI is the first reported N-acetyl-D-GulN deacetylase.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/metabolismo , Glicosiltransferasas/metabolismo , Estreptotricinas/biosíntesis , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/farmacología , Glicosilación , Familia de Multigenes , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Streptomyces/genética , Estreptotricinas/química , Estreptotricinas/farmacología
18.
Mol Microbiol ; 95(6): 1025-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25557370

RESUMEN

Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate-limiting step in fatty acid biosynthesis is catalyzed by a multi-subunit form of the acetyl-CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl-CoA to produce malonyl-CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC-BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC-BCCP-GlnB interaction and ACC inhibition were relieved by 2-oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2-oxoglutarate-sensitive dissociable regulatory subunit of ACC in Bacteria.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos/biosíntesis , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Azospirillum brasilense/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Transducción de Señal
19.
ACS Chem Biol ; 9(10): 2309-17, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25079908

RESUMEN

The misfolding and aberrant assembly of peptides and proteins into fibrillar aggregates is the hallmark of many pathologies. Fibril formation is accompanied by oligomeric species thought to be the primary pathogenic agents in many of these diseases. With the aim of identifying the structural determinants responsible for the toxicity of misfolded oligomers, we created 12 oligomeric variants from the N-terminal domain of the E. coli HypF protein (HypF-N) by replacing one or more charged amino acid residues with neutral apolar residues and allowing the mutated proteins to aggregate under two sets of conditions. The resulting oligomeric species have different degrees of cytotoxicity when added to the extracellular medium of the cells, as assessed by the extent of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, apoptosis, and influx of Ca2+ into the cells. The structural properties of the oligomeric variants were characterized by evaluating their surface hydrophobicity with 8-anilinonaphthalene-1-sulfonate (ANS) binding and by measuring their size by means of turbidimetry as well as light scattering. We find that increases in the surface hydrophobicity of the oligomers following mutation can promote the formation of larger assemblies and that the overall toxicity correlates with a combination of both surface hydrophobicity and size, with the most toxic oligomers having high hydrophobicity and small size. These results have allowed the relationships between these three parameters to be studied simultaneously and quantitatively, and have enabled the generation of an equation that is able to rationalize and even predict toxicity of the oligomers resulting from their surface hydrophobicity and size.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Multimerización de Proteína , Transferasas de Carboxilo y Carbamoilo/genética , Transferasas de Carboxilo y Carbamoilo/toxicidad , Dicroismo Circular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/toxicidad , Concentración de Iones de Hidrógeno , Mutación/genética
20.
Antimicrob Agents Chemother ; 58(10): 6122-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25092705

RESUMEN

In Mycobacterium tuberculosis, the carboxylation of acetyl coenzyme A (acetyl-CoA) to produce malonyl-CoA, a building block in long-chain fatty acid biosynthesis, is catalyzed by two enzymes working sequentially: a biotin carboxylase (AccA) and a carboxyltransferase (AccD). While the exact roles of the three different biotin carboxylases (AccA1 to -3) and the six carboxyltransferases (AccD1 to -6) in M. tuberculosis are still not clear, AccD6 in complex with AccA3 can synthesize malonyl-CoA from acetyl-CoA. A series of 10 herbicides that target plant acetyl-CoA carboxylases (ACC) were tested for inhibition of AccD6 and for whole-cell activity against M. tuberculosis. From the tested herbicides, haloxyfop, an arylophenoxypropionate, showed in vitro inhibition of M. tuberculosis AccD6, with a 50% inhibitory concentration (IC50) of 21.4 ± 1 µM. Here, we report the crystal structures of M. tuberculosis AccD6 in the apo form (3.0 Å) and in complex with haloxyfop-R (2.3 Å). The structure of M. tuberculosis AccD6 in complex with haloxyfop-R shows two molecules of the inhibitor bound on each AccD6 subunit. These results indicate the potential for developing novel therapeutics for tuberculosis based on herbicides with low human toxicity.


Asunto(s)
Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/metabolismo , Mycobacterium tuberculosis/enzimología , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Herbicidas/farmacología , Modelos Teóricos , Unión Proteica , Piridinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA