RESUMEN
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Empatía , Interneuronas , Corteza Prefrontal , Somatostatina , Animales , Empatía/fisiología , Ratones , Interneuronas/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Somatostatina/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Humanos , Giro del Cíngulo/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Piramidales/metabolismo , FemeninoRESUMEN
SCOPE: Chalcones are widely present in most plants and have various health beneficial functions. This study investigates the suppressive effect of 13 natural and synthetic chalcones on transformation of aryl hydrocarbon receptor (AhR) induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3-MC) in a cell-free system, Hepa-1c1c7 cells, and liver of ICR mice. METHODS AND RESULTS: In the cell-free system, cardamonin dose-dependently inhibits AhR transformation. Chalcones with substitution on 2' and/or 6' position is important for the suppressive effect, while the substitution on 4' position is negatively for the effect. Moreover, cardamonin and 2'-hydroxychalcone competitively inhibit the binding of [3H]-3-MC to the AhR. In Hepa-1c1c7 cells, cardamonin inhibits AhR transformation and expression of cytochrome P4501A1 (CYP1A1) in a dose-dependent manner through suppressing TCDD-induced phosphorylation of both AhR and AhR nuclear translocator, heterodimerization of them, and nuclear translocation of AhR. In the liver of mice, oral administered cardamonin also inhibits 3-MC-induced AhR translocation and expression of CYP1A1. CONCLUSION: Among used chalcones, a natural chalcone cardamonin competitively binds to AhR and suppresses its transformation. Thus, cardamonin is an effective food factor for suppression of the dioxin-caused biochemical alterations and toxicities.
Asunto(s)
Chalconas , Citocromo P-450 CYP1A1 , Hígado , Ratones Endogámicos ICR , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Chalconas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Metilcolantreno , Masculino , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Fosforilación/efectos de los fármacos , Unión CompetitivaRESUMEN
TANGO1, TANGO1-Short, and cTAGE5 form stable complexes at the endoplasmic reticulum exit sites (ERES) to preferably export bulky cargoes. Their C-terminal proline-rich domain (PRD) binds Sec23A and affects COPII assembly. The PRD in TANGO1-Short was replaced with light-responsive domains to control its binding to Sec23A in U2OS cells (human osteosarcoma). TANGO1-ShortΔPRD was dispersed in the ER membrane but relocated rapidly, reversibly, to pre-existing ERES by binding to Sec23A upon light activation. Prolonged binding between the two, concentrated ERES in the juxtanuclear region, blocked cargo export and relocated ERGIC53 into the ER, minimally impacting the Golgi complex organization. Bulky collagen VII and endogenous collagen I were collected at less than 47% of the stalled ERES, whereas small cargo molecules were retained uniformly at almost all the ERES. We suggest that ERES are segregated to handle cargoes based on their size, permitting cells to traffic them simultaneously for optimal secretion.
Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Transporte de Proteínas , Humanos , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Línea Celular Tumoral , Unión Proteica , Factores de Transcripción con Cremalleras de Leucina de Carácter BásicoRESUMEN
Cargo translocation across membranes is a crucial aspect of secretion. In conventional secretion signal peptide-equipped proteins enter the endoplasmic reticulum (ER), whereas a subset of cargo lacking signal peptides translocate into the ER-Golgi intermediate compartment (ERGIC) in a process called unconventional protein secretion (UcPS). The regulatory events at the ERGIC in UcPS are unclear. Here we reveal the involvement of ERGIC-localized small GTPases, Rab1 (Rab1A and Rab1B) and Rab2A, in regulating UcPS cargo transport via TMED10 on the ERGIC. Rab1 enhances TMED10 translocator activity, promoting cargo translocation into the ERGIC, whereas Rab2A, in collaboration with KIF5B, regulates ERGIC compartmentalization, establishing a UcPS-specific compartment. This study highlights the pivotal role of ERGIC-localized Rabs in governing cargo translocation and specifying the ERGIC's function in UcPS.
Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Transporte de Proteínas , Retículo Endoplásmico/metabolismo , Humanos , Aparato de Golgi/metabolismo , Células HeLa , Cinesinas/metabolismo , Cinesinas/genética , Células HEK293 , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab1/genéticaRESUMEN
Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Macrófagos , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Esfingosina , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Masculino , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Humanos , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Modelos Animales de EnfermedadRESUMEN
Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.
Asunto(s)
Proteínas Reguladoras de la Apoptosis , Alveolos Pulmonares , Proteínas Represoras , Animales , Femenino , Masculino , Ratones , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Ácidos Grasos/metabolismo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismoRESUMEN
Single, high doses of TCDD in rats are known to cause wasting, a progressive loss of 30 to 50% body weight and death within several weeks. To identify pathway perturbations at or near doses causing wasting, we examined differentially gene expression (DGE) and pathway enrichment in centrilobular (CL) and periportal (PP) regions of female rat livers following 6 dose levels of TCDD - 0, 3, 22, 100, 300, and 1000 ng/kg/day, 5 days/week for 4 weeks. At the higher doses, rats lost weight, had increased liver/body weight ratios and nearly complete cessation of liver cell proliferation, signs consistent with wasting. DGE curves were left shifted for the CL versus the PP regions. Canonical Phase I and Phase II genes were maximally increased at lower doses and remained elevated at all doses. At lower doses, ≤ 22 ng/kg/day in the CL and ≤ 100 ng/kg/day, upregulated genes showed transcription factor (TF) enrichment for AHR and ARNT. At the mid- and high-dose doses, there was a large number of downregulated genes and pathway enrichment for DEGs which showed downregulation of many cellular metabolism processes including those for steroids, fatty acid metabolism, pyruvate metabolism and citric acid cycle. There was significant TF enrichment of the hi-dose downregulated genes for RXR, ESR1, LXR, PPARalpha. At the highest dose, there was also pathway enrichment with upregulated genes for extracellular matrix organization, collagen formation, hemostasis and innate immune system. TCDD demonstrates most of its effects through binding the aryl hydrocarbon receptor (AHR) while the downregulation of metabolism genes at higher TCDD doses is known to be independent of AHR binding to DREs. Based on our results with DEG, we provide a hypothesis for wasting in which high doses of TCDD shift circadian processes away from the resting state, leading to greatly reduced synthesis of steroids and complex lipids needed for cell growth, and producing gene expression signals consistent with an epithelial-to-mesenchymal transition in hepatocytes.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Hígado , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Dibenzodioxinas Policloradas/toxicidad , Ratas , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Ratas Sprague-Dawley , Relación Dosis-Respuesta a DrogaRESUMEN
Glioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. This study aimed to investigate the functional significance of aryl hydrocarbon receptor nuclear translocator (ARNT) in the pathogenesis of GBM. Analysis of public datasets revealed ARNT is upregulated in GBM tissues compared to lower grade gliomas or normal brain tissues. Higher ARNT expression correlated with the mesenchymal subtype and poorer survival in GBM patients. Silencing ARNT using lentiviral shRNAs attenuated the proliferative, invasive, and stem-like capabilities of GBM cell lines, while ARNT overexpression enhanced these malignant phenotypes. Single-cell RNA sequencing uncovered that ARNT is highly expressed in a stem-like subpopulation and is involved in regulating glycolysis, hypoxia response, and stress pathways. Mechanistic studies found ARNT activates p38 mitogen-activated protein kinase (MAPK) signaling to promote chemoresistance in GBM cells. Disrupting the ARNT/p38α protein interaction via the ARNT PAS-A domain restored temozolomide sensitivity. Overall, this study demonstrates ARNT functions as an oncogenic driver in GBM pathogenesis and represents a promising therapeutic target.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Resistencia a Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ratones Desnudos , Transducción de Señal/efectos de los fármacosRESUMEN
Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to ß-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.
Asunto(s)
Proteínas de Insectos , Insecticidas , Larva , Neonicotinoides , Nitrocompuestos , Receptores de Hidrocarburo de Aril , Animales , Insecticidas/farmacología , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Dípteros/metabolismo , Dípteros/genética , Dípteros/efectos de los fármacos , Dípteros/crecimiento & desarrollo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Inactivación Metabólica , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates biological signals to control various complicated cellular functions. It plays a crucial role in environmental sensing and xenobiotic metabolism. Dysregulation of AhR is associated with health concerns, including cancer and immune system disorders. Upon binding to AhR ligands, AhR, along with heat shock protein 90 and other partner proteins undergoes a transformation in the nucleus, heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), and mediates numerous biological functions by inducing the transcription of various AhR-responsive genes. In this manuscript, the 3-dimensional structure of the entire human AhR is obtained using an artificial intelligence tool, and molecular dynamics (MD) simulations are performed to study different structural conformations. These conformations provide insights into the protein's function and movement in response to ligand binding. Understanding the dynamic behavior of AhR will contribute to the development of targeted therapies for associated health conditions. Therefore, we employ well-tempered metadynamics (WTE-metaD) simulations to explore the conformational landscape of AhR and obtain a better understanding of its functional behavior. Our computational results are in excellent agreement with previous experimental findings, revealing the closed and open states of helix α1 in the basic helix-loop-helix (bHLH domain) in the cytoplasm at the atomic level. We also predict the inactive form of AhR and identify Arginine 42 as a key residue that regulates switching between closed and open conformations in existing AhR modulators.
Asunto(s)
Inteligencia Artificial , Receptores de Hidrocarburo de Aril , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismoRESUMEN
Breast cancer is one of the main causes of malignancy-related deaths globally and has a significant impact on women's quality of life. Despite significant therapeutic advances, there is a medical need for targeted therapies in breast cancer. Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor mediates responses to environment stimuli, is emerging as a unique pleiotropic target. Herein, a combined molecular simulation and in vitro investigations identified 3-(3-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine (3FPP) as a novel AhR ligand in T47D and MDA-MB-231 breast cancer cells. Its agonistic effects induced formation of the AhR-AhR nuclear translocator (Arnt) heterodimer and prompted its binding to the penta-nucleotide sequence, called xenobiotic-responsive element (XRE) motif. Moreover, 3FPP augmented the promoter-driven luciferase activities and expression of AhR-regulated genes encoding cytochrome P450 1A1 (CYP1A1) and microRNA (miR)-212/132 cluster. It reduced cell viability, migration, and invasion of both cell lines through AhR signaling. These anticancer properties were concomitant with reduced levels of B-cell lymphoma 2 (BCL-2), SRY-related HMG-box4 (SOX4), snail family zinc finger 2 (SNAI2), and cadherin 2 (CDH2). In vivo, 3FPP suppressed tumor growth and activated AhR signaling in an orthotopic mouse model. In conclusion, our results introduce the fused pyrazolopyridine 3FPP as a novel AhR agonist with AhR-specific anti-breast cancer potential in vitro and in vivo.
Asunto(s)
Neoplasias de la Mama , Pirazoles , Receptores de Hidrocarburo de Aril , Animales , Ratones , Femenino , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Calidad de Vida , Citocromo P-450 CYP1A1/metabolismo , Neoplasias de la Mama/genética , Piridinas/farmacología , Piridinas/uso terapéutico , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Factores de Transcripción SOXC/metabolismoRESUMEN
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Asunto(s)
Neoplasias , Receptores de Hidrocarburo de Aril , Humanos , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Epigénesis Genética , Neoplasias/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismoRESUMEN
Aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor activated by polycyclic aromatic hydrocarbons of synthetic and natural origin. While a number of novel AhR ligands have been recently identified, little is known about their possible influence on AhR levels and stability. We used western blot, qRT-PCR and immunocytochemistry to determine the effects of AhR ligands on AhR expression in N-TERT (N-TERT1) immortalized human keratinocytes, and immunohistochemistry to assess patterns of AhR expression in human and mouse skin and skin appendages. While AhR was highly expressed in cultured keratinocytes and in the skin, it was found primarily in the cytoplasm, but not in the nucleus, suggesting its inactivity. At the same time, treatment of N-TERT cells with proteasomal inhibitor MG132 and eventual inhibition of AhR degradation resulted in nuclear AhR accumulation. Treatment of keratinocytes with AhR ligands such as TCDD, FICZ, caused near-complete disappearance of AhR, and treatment with I3C resulted in substantially diminished level of AhR possibly due to ligand-induced AhR degradation. The AhR decay was blocked by proteasome inhibition, indicating degradation-based mechanism of regulation. Additionally, AhR decay was blocked by ligand-selective AhR antagonist CH223191, implying substrate-induced mechanism of degradation. Furthermore, degradation of AhR was blocked in N-TERT cells with knockdown of AhR dimerization partner ARNT (HIF1ß), suggesting that ARNT is required for AhR proteolysis. However, addition of hypoxia mimetics (HIF1 pathway activators) CoCl2 and DMOG had only minor effects on degradation of AhR. Additionally, inhibition of HDACs with Trichostatin A resulted in enhanced expression of AhR in both untreated and ligand-treated cells. These results demonstrate that in immortalized epidermal keratinocytes AhR is primarily regulated post-translationally via proteasome-mediated degradation, and suggest potential means to manipulate AhR levels and signaling in the skin. Overall, the AhR is regulated via multiple mechanisms, including proteasomal ligand- and ARNT-dependent degradation, and transcriptional regulation by HDACs, implying complex system of balancing its expression and protein stability.
Asunto(s)
Complejo de la Endopetidasa Proteasomal , Receptores de Hidrocarburo de Aril , Animales , Humanos , Ratones , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Queratinocitos/metabolismo , Ligandos , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Hidrocarburo de Aril/metabolismoRESUMEN
Cellular homeostasis requires the use of multiple environmental sensors that can respond to a variety of endogenous and exogenous compounds. The aryl hydrocarbon receptor (AHR) is classically known as a transcription factor that induces genes that encode drug metabolizing enzymes when bound to toxicants such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD). The receptor has a growing number of putative endogenous ligands, such as tryptophan, cholesterol, and heme metabolites. Many of these compounds are also linked to the translocator protein (TSPO), an outer mitochondrial membrane protein. Given a portion of the cellular pool of the AHR has also been localized to mitochondria and the overlap in putative ligands, we tested the hypothesis that crosstalk exists between the two proteins. CRISPR/Cas9 was used to create knockouts for AHR and TSPO in a mouse lung epithelial cell line (MLE-12). WT, AHR-/-, and TSPO-/- cells were then exposed to AHR ligand (TCDD), TSPO ligand (PK11195), or both and RNA-seq was performed. More mitochondrial-related genes were altered by loss of both AHR and TSPO than would have been expected just by chance. Some of the genes altered included those that encode for components of the electron transport system and the mitochondrial calcium uniporter. Both proteins altered the activity of the other as AHR loss caused the increase of TSPO at both the mRNA and protein level and loss of TSPO significantly increased the expression of classic AHR battery genes after TCDD treatment. This research provides evidence that AHR and TSPO participate in similar pathways that contribute to mitochondrial homeostasis.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Ratones , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Células Epiteliales/metabolismo , Ligandos , Pulmón/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismoRESUMEN
The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Receptores de Hidrocarburo de Aril , Piel , Animales , Femenino , Ratones , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Citocromo P-450 CYP1A1/genética , Ligandos , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversosRESUMEN
Angiogenesis is involved in the malignant transformation of cancers. Vascular endothelial growth factor (VEGF) is important in inducing angiogenesis. Cultured cells play an important role in analyzing the regulation of VEGF expression, and it is revealed that VEGF expression is induced under hypoxia. However, it has been shown that there are differences in the pathway for gene expression between two-dimensional (2D) cells and in vivo cells. Three-dimensional (3D) spheroids constructed in 3D culture with a gene expression pattern more similar to that of in vivo cells than 2D cells have been used to solve this problem. This study analyzed the VEGF gene expression pathway in 3D spheroids of human lung cancer cells, A549 and H1703. Hypoxia-inducible factor-1α (HIF-1α) and aryl hydrocarbon receptor nuclear translocator (ARNT) regulated VEGF gene expression in 3D spheroids. However, VEGF gene expression was not regulated by HIF-1α in 2D cells. To conclude, we found that the regulatory pathway of VEGF gene expression is different between 2D cells and 3D spheroids in human lung cancer cells. These results suggest the possibility of a new VEGF gene expression regulation pathway in vivo. In addition, they show useful knowledge for the analysis of angiogenesis induction mechanisms and also demonstrate the usefulness of 3D spheroids.
Asunto(s)
Neoplasias Pulmonares , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptores de Hidrocarburo de Aril/genética , Factores de Crecimiento Endotelial Vascular/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Regulación de la Expresión Génica , Neoplasias Pulmonares/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismoRESUMEN
During embryonic development, a subset of cells in the mesoderm germ layer are specified as hemato-vascular progenitor cells, which then differentiate into endothelial cells and hematopoietic stem and progenitor cells. In zebrafish, the transcription factor npas4l (cloche) is required for the specification of hemato-vascular progenitor cells. However, it is unclear whether npas4l is the sole factor at the top of the hemato-vascular specification cascade. Here, we show that arnt1 and arnt2 genes are required for hemato-vascular specification. We found that arnt1;arnt2 double mutant zebrafish embryos, but not arnt1 or arnt2 single mutants, lack blood cells and most endothelial cells. arnt1/2 mutants have reduced or absent expression of etsrp and tal1, the earliest known endothelial and hematopoietic transcription factor genes. We found that Npas4l binds both Arnt1 and Arnt2 proteins in vitro, consistent with the idea that PAS domain-containing bHLH transcription factors act in a multimeric complex to regulate gene expression. Our results demonstrate that npas4l, arnt1 and arnt2 act together to regulate endothelial and hematopoietic cell fate, where each gene is necessary, but not sufficient, to drive hemato-vascular specification.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Células Endoteliales , Proteínas de Pez Cebra , Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/genéticaRESUMEN
Preeclampsia (PE) is a common and serious complication of pregnancy with no cure except premature delivery. The root cause of PE is improper development of the placenta-the temporary organ supporting fetal growth and development. Continuous formation of the multinucleated syncytiotrophoblast (STB) layer via differentiation and fusion of cytotrophoblasts (CTBs) is vital for healthy placentation and is impaired in preeclamptic pregnancies. In PE, there is reduced/intermittent placental perfusion, likely resulting in a persistently low O2 environment. Low O2 inhibits differentiation and fusion of CTBs into STB and may thus contribute to PE pathogenesis; however, the underlying mechanisms are unknown. Because low O2 activates a transcription factor complex in cells known as the hypoxia-inducible factor (HIF), the objective of this study was to investigate whether HIF signaling inhibits STB formation by regulating genes required for this process. Culture of primary CTBs, the CTB-like cell line BeWo, and human trophoblast stem cells under low O2 reduced cell fusion and differentiation into STB. Knockdown of aryl hydrocarbon receptor nuclear translocator (a key component of the HIF complex) in BeWo cells restored syncytialization and expression of STB-associated genes under different O2 levels. Chromatin immunoprecipitation sequencing facilitated the identification of global aryl hydrocarbon receptor nuclear translocator/HIF binding sites, including several near genes implicated in STB development, such as ERVH48-1 and BHLHE40, providing new insights into mechanisms underlying pregnancy diseases linked to poor placental O2 supply.
Asunto(s)
Placenta , Trofoblastos , Humanos , Embarazo , Femenino , Placenta/metabolismo , Trofoblastos/metabolismo , Oxígeno/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Placentación , Hipoxia/patologíaRESUMEN
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Receptores de Hidrocarburo de Aril , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Regulación de la Expresión Génica , Ligandos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , HumanosRESUMEN
Osteosarcoma is the most common malignant tumor of bone, with rapid progressive growth, early distant metastases, and frequent recurrence after surgical treatment. Osteosarcoma is characterized by changes in the ratio and expression of different cytochrome P450 (CYP) isoforms that can affect the effectiveness of anticancer therapies. The inducible expression of CYP1 genes depends on the ligand-dependent functionality of the aryl hydrocarbon receptor (AHR). In this study, we examined the AHR/CYP1 signaling pathway in four osteosarcoma cell lines (MG63, HOS, SAOS2, and U2OS) induced by the known AHR ligands: indirubin, indole-3-carbinol, and beta-naphthoflavone. Using qPCR and Western blot analysis, we explored the effects of these ligands on the expression of the CYP1 genes and studied the correlation between these responses and the changes in the mRNA and protein levels of AHR and the AHR nuclear translocator (ARNT) in these osteosarcoma cell lines. The results show that the AHR/CYP1 signaling pathway retains its function only in MG63 and HOS cells, and is impaired in SAOS2 and U2OS cells. Our data should be taken into account when recommending new strategies for the treatment of osteosarcoma and when evaluating new drugs against osteosarcoma in vitro.